Certain erratum workarounds like Neoverse N1 1542419, need a part
of their mitigation done in EL3 and the rest in lower EL. But currently
such workarounds return HIGHER_EL_MITIGATION which indicates that the
erratum has already been mitigated by a higher EL(EL3 in this case)
which causes the lower EL to not apply it's part of the mitigation.
This patch fixes this issue by adding support for split workarounds
so that on certain errata we return AFFECTED even though EL3 has
applied it's workaround. This is done by reusing the chosen field of
erratum_entry structure into a bitfield that has two bitfields -
Bit 0 indicates that the erratum has been enabled in build,
Bit 1 indicates that the erratum is a split workaround and should
return AFFECTED instead of HIGHER_EL_MITIGATION.
SDEN documentation:
https://developer.arm.com/documentation/SDEN885747/latest
Signed-off-by: Arvind Ram Prakash <arvind.ramprakash@arm.com>
Change-Id: Iec94d665b5f55609507a219a7d1771eb75e7f4a7
MPMM is a core-specific microarchitectural feature. It has been present
in every Arm core since the Cortex-A510 and has been implemented in
exactly the same way. Despite that, it is enabled more like an
architectural feature with a top level enable flag. This utilised the
identical implementation.
This duality has left MPMM in an awkward place, where its enablement
should be generic, like an architectural feature, but since it is not,
it should also be core-specific if it ever changes. One choice to do
this has been through the device tree.
This has worked just fine so far, however, recent implementations expose
a weakness in that this is rather slow - the device tree has to be read,
there's a long call stack of functions with many branches, and system
registers are read. In the hot path of PSCI CPU powerdown, this has a
significant and measurable impact. Besides it being a rather large
amount of code that is difficult to understand.
Since MPMM is a microarchitectural feature, its correct placement is in
the reset function. The essence of the current enablement is to write
CPUPPMCR_EL3.MPMM_EN if CPUPPMCR_EL3.MPMMPINCTL == 0. Replacing the C
enablement with an assembly macro in each CPU's reset function achieves
the same effect with just a single close branch and a grand total of 6
instructions (versus the old 2 branches and 32 instructions).
Having done this, the device tree entry becomes redundant. Should a core
that doesn't support MPMM arise, this can cleanly be handled in the
reset function. As such, the whole ENABLE_MPMM_FCONF and platform hooks
mechanisms become obsolete and are removed.
Change-Id: I1d0475b21a1625bb3519f513ba109284f973ffdf
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Errata application is painful for performance. For a start, it's done
when the core has just come out of reset, which means branch predictors
and caches will be empty so a branch to a workaround function must be
fetched from memory and that round trip is very slow. Then it also runs
with the I-cache off, which means that the loop to iterate over the
workarounds must also be fetched from memory on each iteration.
We can remove both branches. First, we can simply apply every erratum
directly instead of defining a workaround function and jumping to it.
Currently, no errata that need to be applied at both reset and runtime,
with the same workaround function, exist. If the need arose in future,
this should be achievable with a reset + runtime wrapper combo.
Then, we can construct a function that applies each erratum linearly
instead of looping over the list. If this function is part of the reset
function, then the only "far" branches at reset will be for the checker
functions. Importantly, this mitigates the slowdown even when an erratum
is disabled.
The result is ~50% speedup on N1SDP and ~20% on AArch64 Juno on wakeup
from PSCI calls that end in powerdown. This is roughly back to the
baseline of v2.9, before the errata framework regressed on performance
(or a little better). It is important to note that there are other
slowdowns since then that remain unknown.
Change-Id: Ie4d5288a331b11fd648e5c4a0b652b74160b07b9
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Similar to the cpu_rev_var and cpu_ger_rev_var functions, inline the
call_reset_handler handler. This way we skip the costly branch at no
extra cost as this is the only place where this is called.
While we're at it, drop the options for CPU_NO_RESET_FUNC. The only cpus
that need that are virtual cpus which can spare the tiny bit of
performance lost. The rest are real cores which can save on the check
for zero.
Now is a good time to put the assert for a missing cpu in the
get_cpu_ops_ptr function so that it's a bit better encapsulated.
Change-Id: Ia7c3dcd13b75e5d7c8bafad4698994ea65f42406
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Similar to the cpu_rev_var_xy functions, branching far away so early in
the reset sequence incurs significant slowdowns. Inline the function.
Change-Id: Ifc349015902cd803e11a1946208141bfe7606b89
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
We strive to apply errata as close to reset as possible with as few
things enabled as possible. Importantly, the I-cache will not be
enabled. This means that repeated branches to these tiny functions must
be re-fetched all the way from memory each time which has glacial speed.
Cores are allowed to fetch things ahead of time though as long as
execution is fairly linear. So we can trade a little bit of space (3 to
7 instructions per erratum) to keep things linear and not have to go to
memory.
While we're at it, optimise the the cpu_rev_var_{ls, hs, range}
functions to take up less space. Dropping the moves allows for a bit of
assembly magic that produces the same result in 2 and 3 instructions
respectively.
Change-Id: I51608352f23b2244ea7a99e76c10892d257f12bf
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
The workarounds introduced in the three patches starting at
888eafa00b assumed that any powerdown
request will be (forced to be) terminal. This assumption can no longer
be the case for new CPUs so there is a need to revisit these older
cores. Since we may wake up, we now need to respect the workaround's
recommendation that the workaround needs to be reverted on wakeup. So do
exactly that.
Introduce a new helper to toggle bits in assembly. This allows us to
call the workaround twice, with the first call setting the workaround
and second undoing it. This is also used for gelas' an travis' powerdown
routines. This is so the same function can be called again
Also fix the condition in the cpu helper macro as it was subtly wrong
Change-Id: Iff9e5251dc9d8670d085d88c070f78991955e7c3
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Introduce a new helper to toggle bits in assembly. This allows us to
call the workaround twice, with the first call setting the workaround
and second undoing it. This allows the (errata) workaround functions to
be used to both apply and undo the mitigation.
This is applied to functions where the undo part will be required in
follow-up patches.
Change-Id: I058bad58f5949b2d5fe058101410e33b6be1b8ba
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
This patch adds new cpu ops function extra4 and a new macro
for CVE-2024-7881 [1]. This new macro declare_cpu_ops_wa_4 allows
support for new CVE check function.
[1]: https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-7881
Signed-off-by: Arvind Ram Prakash <arvind.ramprakash@arm.com>
Change-Id: I417389f040c6ead7f96f9b720d29061833f43d37
The errata framework has a helper to invoke workarounds, complete with a
cpu rev_var check. We can use that directly instead of the
apply_cpu_pwr_dwn_errata to save on some code, as well as an extra
branch. It's also more readable.
Also, apply_erratum invocation in cpu files don't need to check the
rev_var as that was already done by the cpu_ops dispatcher for us to end
up in the file.
Finally, X2 erratum 2768515 only applies in the powerdown sequence, i.e.
at runtime. It doesn't achieve anything at reset, so we can label it
accordingly.
Change-Id: I02f9dd7d0619feb54c870938ea186be5e3a6ca7b
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Errata printing is done directly via generic_errata_report.
This commit removes the unused \_cpu\()_errata_report
functions for all cores, and removes errata_func from cpu_ops.
Change-Id: I04fefbde5f0ff63b1f1cd17c864557a14070d68c
Signed-off-by: Ryan Everett <ryan.everett@arm.com>
In all non-trivial cases the CPU specific errata functions
already call generic_errata_report, this cuts out the middleman
by directly calling generic_errata_report from
print_errata_status.
The CPU specific errata functions (cpu_ops->errata_func)
can now be removed from all cores, and this field can be
removed from cpu_ops.
Also removes the now unused old errata reporting
function and macros.
Change-Id: Ie4a4fd60429aca37cf434e79c0ce2992a5ff5d68
Signed-off-by: Ryan Everett <ryan.everett@arm.com>
A macro 'sysreg_bitfield_insert_from_gpr' is introduced for inserting
bitfield from a general register.
Change-Id: I7288a13d70d98e23dc7a93287b04b493ffce9171
Signed-off-by: Jagdish Gediya <jagdish.gediya@arm.com>
Signed-off-by: Leo Yan <leo.yan@arm.com>
For runtime errata, we should avoid generating calls to
`cpu_get_rev_var` unless its necessary. Make the path that generates
this call parameterized, and cache the result in a temporary register to
allow future calls that go down the alternate path to retrieve the cache
CPU revision.
Change-Id: I9882ede76568fbd9a7ccd4caa74eff0c66a7b20e
Signed-off-by: Harrison Mutai <harrison.mutai@arm.com>
Adding an helper macro for bit field insert(bic) instruction
to group all the operations related to it.
Change-Id: Idfd06c7f38faf52090f62b458d2d96c2682f63fe
Signed-off-by: Jayanth Dodderi Chidanand <jayanthdodderi.chidanand@arm.com>
Figuring out the naming format of errata is annoying, so add a shorthand
for the custom checker functions. Also add some more semantic macros
instead of passing around constants.
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Change-Id: Ibdcf72146738026df4ebd047bfb30790fd4a1053
Using the errata framework per-cpu data structure, errata can all be
reported automatically through a single standard errata reporter which
can replace the cpu-specific ones.
This reporter can also enforce the ordering requirement of errata.
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Change-Id: I7d2d5ac5bcb9d21aed0d560d7d23919a323ffdab
Errata implementation involves adding a lot of boilerplate to random
places with just conventions on how to do them. Copy pasting is the
usual method for doing this. The result is an error-prone and verbose
patch that is a nightmare to get through review.
Errata workarounds have a very large degree of similarity - most of them
involve setting a bit at reset. As such most of the boilerplate is not
strictly necessary. To solve this, add a collection of assembly macros
to wrap errata implementations such that only the actual mitigations
need to be written. A new erratum mitigation looks something like:
workaround_reset_start cortex_a77, ERRATUM(1925769), ERRATA_A77_1925769
sysreg_bit_set CORTEX_A77_CPUECTLR_EL1, CORTEX_A77_CPUECTLR_EL1_BIT_8
workaround_reset_end cortex_a77, ERRATUM(1925769)
check_erratum_ls cortex_a77, ERRATUM(1925769), CPU_REV(1, 1)
Note, that the long comment on every mitigation is missing. This is on
purpose, as this new format includes all of its contents into an easily
readable format.
The workaround wrappers add an erratum entry (24 bytes) to a per-cpu
data structure which can then be read by a standard reset function to
apply all errata automatically. This has the added benefit of collecting
all errata TF-A knows about in a central way, which was previously
missing. This can then be used at runtime with the errata ABI.
If an erratum doesn't fit this standard definition (eg. the
CVE_2022_23960), it can progressively be unwrapped to the old
convention. The only differences are that the naming format is slightly
more verbose and a call to add_erratum_entry is needed to inform the
framework about the errata.
Finally, the internal workaround names change a tiny bit, especially
CVEs.
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Change-Id: Iac644f85dcf85b8279b25e83baf1e7d08b253b16
The ERRATA_XXX macros, used in cpu_helpers.S, are necessary for the
check_errata_xxx family of functions. The CPU_REV should be used in the
cpu files but for whatever reason the values have been hard-coded so far
(at the cost of readability). It's evident this file is not strictly for
status reporting.
The new purpose of this file is to make it a one-stop-shop for all
things errata.
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Change-Id: I1ce22dd36df5aa0bcfc5f2772251f91af8703dfb
The cpu_macros.S file is loaded with lots of definitions for the cpu_ops
structure. However, since they are defined as .equ directives they are
inaccessible for C code. Convert them to #defines, put them into order,
refactor them for readability, and extract them to a separate file to
make this possible.
This has the benefit of removing some Aarch differences and a lot of
duplicate code.
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Change-Id: I72861794b6c9131285a9297d5918822ed718b228
Some of our specialized sections are not prefixed with the conventional
period. The compiler uses input section names to derive certain other
section names (e.g. `.rela.text`, `.relacpu_ops`), and these can be
difficult to select in linker scripts when there is a lack of a
delimiter.
This change introduces the period prefix to all specialized section
names.
BREAKING-CHANGE: All input and output linker section names have been
prefixed with the period character, e.g. `cpu_ops` -> `.cpu_ops`.
Change-Id: I51c13c5266d5975fbd944ef4961328e72f82fc1c
Signed-off-by: Chris Kay <chris.kay@arm.com>
This patch applies CVE-2022-23960 workarounds for Cortex-A75,
Cortex-A73, Cortex-A72 & Cortex-A57. This patch also implements
the new SMCCC_ARCH_WORKAROUND_3 and enables necessary discovery
hooks for Coxtex-A72, Cortex-A57, Cortex-A73 and Cortex-A75 to
enable discovery of this SMC via SMC_FEATURES. SMCCC_ARCH_WORKAROUND_3
is implemented for A57/A72 because some revisions are affected by both
CVE-2022-23960 and CVE-2017-5715 and this allows callers to replace
SMCCC_ARCH_WORKAROUND_1 calls with SMCCC_ARCH_WORKAROUND_3. For details
of SMCCC_ARCH_WORKAROUND_3, please refer SMCCCv1.4 specification.
Signed-off-by: Bipin Ravi <bipin.ravi@arm.com>
Signed-off-by: John Powell <john.powell@arm.com>
Change-Id: Ifa6d9c7baa6764924638efe3c70468f98d60ed7c
Commit d5e97a1d2c ("Build: define IMAGE_AT_EL1 or IMAGE_AT_EL3
globally for C files") does not have commit 848a7e8ce1 ("Build:
introduce per-BL CPPFLAGS and ASFLAGS") as an ancestor because
they were pulled almost at the same time.
This is a follow-up conversion to be consistent with commit
11a3c5ee73 ("plat: pass -D option to BL*_CPPFLAGS instead of
BL*_CFLAGS").
With this change, the command line option, IMAGE_AT_EL3, will be
passed to .S files as well.
I remove the definition in include/lib/cpus/aarch64/cpu_macros.S
Otherwise, the following error would happen.
include/lib/cpus/aarch64/cpu_macros.S:29:0: error: "IMAGE_AT_EL3" redefined [-Werror]
Change-Id: I943c8f22356483c2ae3c57b515c69243a8fa6889
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Coherent I-cache is causing a prefetch violation where when the core
executes an instruction that has recently been modified, the core might
fetch a stale instruction which violates the ordering of instruction
fetches.
The workaround includes an instruction sequence to implementation
defined registers to trap all EL0 IC IVAU instructions to EL3 and a trap
handler to execute a TLB inner-shareable invalidation to an arbitrary
address followed by a DSB.
Signed-off-by: Lauren Wehrmeister <lauren.wehrmeister@arm.com>
Change-Id: Ic3b7cbb11cf2eaf9005523ef5578a372593ae4d6
Armv8.5 introduces the field CSV2 to register ID_AA64PFR0_EL1. It can
have the following 3 values:
- 0: Branch targets trained in one hardware described context may affect
speculative execution in a different hardware described context. In
some CPUs it may be needed to apply mitigations.
- 1: Branch targets trained in one hardware described context can only
affect speculative execution in a different hardware described
context in a hard-to-determine way. No mitigation required.
- 2: Same as 1, but the device is also aware of SCXTNUM_ELx register
contexts. The TF doesn't use the registers, so there is no
difference with 1.
The field CSV2 was originally introduced in the TRM of the Cortex-A76
before the release of the Armv8.5 architecture. That TRM only mentions
the meaning of values 0 and 1. Because of this, the code only checks if
the field has value 1 to know whether to enable or disable the
mitigations.
This patch makes it aware of value 2 as well. Both values 1 and 2
disable the mitigation, and 0 enables it.
Change-Id: I5af33de25a0197c98173f52c6c8c77b51a51429f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Enforce full include path for includes. Deprecate old paths.
The following folders inside include/lib have been left unchanged:
- include/lib/cpus/${ARCH}
- include/lib/el3_runtime/${ARCH}
The reason for this change is that having a global namespace for
includes isn't a good idea. It defeats one of the advantages of having
folders and it introduces problems that are sometimes subtle (because
you may not know the header you are actually including if there are two
of them).
For example, this patch had to be created because two headers were
called the same way: e0ea0928d5 ("Fix gpio includes of mt8173 platform
to avoid collision."). More recently, this patch has had similar
problems: 46f9b2c3a2 ("drivers: add tzc380 support").
This problem was introduced in commit 4ecca33988 ("Move include and
source files to logical locations"). At that time, there weren't too
many headers so it wasn't a real issue. However, time has shown that
this creates problems.
Platforms that want to preserve the way they include headers may add the
removed paths to PLAT_INCLUDES, but this is discouraged.
Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
All identifiers, regardless of use, that start with two underscores are
reserved. This means they can't be used in header guards.
The style that this project is now to use the full name of the file in
capital letters followed by 'H'. For example, for a file called
"uart_example.h", the header guard is UART_EXAMPLE_H.
The exceptions are files that are imported from other projects:
- CryptoCell driver
- dt-bindings folders
- zlib headers
Change-Id: I50561bf6c88b491ec440d0c8385c74650f3c106e
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Previously the errata reporting was optional for CPU operation
files and this was achieved by making use of weak reference to
resolve to 0 if the symbol is not defined. This is error prone
when adding new CPU operation files and weak references are
problematic when fixing up dynamic relocations. Hence this patch
removes the weak reference and makes it mandatory for the CPU
operation files to define the errata reporting function.
Change-Id: I8af192e19b85b7cd8c7579e52f8f05a4294e5396
Signed-off-by: Soby Mathew <soby.mathew@arm.com>
macro jump_if_cpu_midr is used commonly by many arm platform.
It has now been relocated to common place to remove duplication
of code.
Change-Id: Ic0876097dbc085df4f90eadb4b7687dde7c726da
Signed-off-by: Deepak Pandey <Deepak.Pandey@arm.com>
This check was added to ensure the correct behaviour of fill_constants
macro. This macro has been verified and it is known his correct
behaviour. The check generates an error when the clang assembler is
used, so it is better to remove the check.
Change-Id: I3447ff9e9e5ee5cf0502f65e53c3d105d9396b8b
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
This directive is not implemented by clang assembler. The traditional
way to implement structs in assembly is using two macros for every field,
one for the offset, and another one for the size. For every field, the
offset can be calculated using the size and offset of the previous field.
Change-Id: Iacc6781e8f302fb925898737b8e85ab4e88a51cc
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
Some CPUS may benefit from using a dynamic mitigation approach for
CVE-2018-3639. A new SMC interface is defined to allow software
executing in lower ELs to enable or disable the mitigation for their
execution context.
It should be noted that regardless of the state of the mitigation for
lower ELs, code executing in EL3 is always mitigated against
CVE-2018-3639.
NOTE: This change is a compatibility break for any platform using
the declare_cpu_ops_workaround_cve_2017_5715 macro. Migrate to
the declare_cpu_ops_wa macro instead.
Change-Id: I3509a9337ad217bbd96de9f380c4ff8bf7917013
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
A fix for errata 843419 may be available in revision r0p4 of the
Cortex-A53 processor. The presence of the fix is determined by checking
bit 8 in the REVIDR register.
If the fix is present we report ERRATA_NOT_APPLIES which silences the
erroneous 'missing workaround' warning.
Change-Id: Ibd2a478df3e2a6325442a6a48a0bb0259dcfc1d7
Signed-off-by: Jonathan Wright <jonathan.wright@arm.com>
When querying `SMCCC_ARCH_WORKAROUND_1` through `SMCCC_ARCH_FEATURES`,
return either:
* -1 to indicate the PE on which `SMCCC_ARCH_FEATURES` is called
requires firmware mitigation for CVE-2017-5715 but the mitigation
is not compiled in.
* 0 to indicate that firmware mitigation is required, or
* 1 to indicate that no firmware mitigation is required.
This patch complies with v1.2 of the firmware interfaces
specification (ARM DEN 0070A).
Change-Id: Ibc32d6620efdac6c340758ec502d95554a55f02a
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
If the CSV2 field reads as 1 then branch targets trained in one
context cannot affect speculative execution in a different context.
In that case skip the workaround on Cortex A72 and A73.
Change-Id: Ide24fb6efc77c548e4296295adc38dca87d042ee
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
This patch enables BL2 to execute at the highest exception level
without any dependancy on TF BL1. This enables platforms which already
have a non-TF Boot ROM to directly load and execute BL2 and subsequent BL
stages without need for BL1. This is not currently possible because
BL2 executes at S-EL1 and cannot jump straight to EL3.
Change-Id: Ief1efca4598560b1b8c8e61fbe26d1f44e929d69
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
To make software license auditing simpler, use SPDX[0] license
identifiers instead of duplicating the license text in every file.
NOTE: Files that have been imported by FreeBSD have not been modified.
[0]: https://spdx.org/
Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a
Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
The errata reporting policy is as follows:
- If an errata workaround is enabled:
- If it applies (i.e. the CPU is affected by the errata), an INFO
message is printed, confirming that the errata workaround has been
applied.
- If it does not apply, a VERBOSE message is printed, confirming
that the errata workaround has been skipped.
- If an errata workaround is not enabled, but would have applied had
it been, a WARN message is printed, alerting that errata workaround
is missing.
The CPU errata messages are printed by both BL1 (primary CPU only) and
runtime firmware on debug builds, once for each CPU/errata combination.
Relevant output from Juno r1 console when ARM Trusted Firmware is built
with PLAT=juno LOG_LEVEL=50 DEBUG=1:
VERBOSE: BL1: cortex_a57: errata workaround for 806969 was not applied
VERBOSE: BL1: cortex_a57: errata workaround for 813420 was not applied
INFO: BL1: cortex_a57: errata workaround for disable_ldnp_overread was applied
WARNING: BL1: cortex_a57: errata workaround for 826974 was missing!
WARNING: BL1: cortex_a57: errata workaround for 826977 was missing!
WARNING: BL1: cortex_a57: errata workaround for 828024 was missing!
WARNING: BL1: cortex_a57: errata workaround for 829520 was missing!
WARNING: BL1: cortex_a57: errata workaround for 833471 was missing!
...
VERBOSE: BL31: cortex_a57: errata workaround for 806969 was not applied
VERBOSE: BL31: cortex_a57: errata workaround for 813420 was not applied
INFO: BL31: cortex_a57: errata workaround for disable_ldnp_overread was applied
WARNING: BL31: cortex_a57: errata workaround for 826974 was missing!
WARNING: BL31: cortex_a57: errata workaround for 826977 was missing!
WARNING: BL31: cortex_a57: errata workaround for 828024 was missing!
WARNING: BL31: cortex_a57: errata workaround for 829520 was missing!
WARNING: BL31: cortex_a57: errata workaround for 833471 was missing!
...
VERBOSE: BL31: cortex_a53: errata workaround for 826319 was not applied
INFO: BL31: cortex_a53: errata workaround for disable_non_temporal_hint was applied
Also update documentation.
Change-Id: Iccf059d3348adb876ca121cdf5207bdbbacf2aba
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
One nasty part of ATF is some of boolean macros are always defined
as 1 or 0, and the rest of them are only defined under certain
conditions.
For the former group, "#if FOO" or "#if !FOO" must be used because
"#ifdef FOO" is always true. (Options passed by $(call add_define,)
are the cases.)
For the latter, "#ifdef FOO" or "#ifndef FOO" should be used because
checking the value of an undefined macro is strange.
Here, IMAGE_BL* is handled by make_helpers/build_macro.mk like
follows:
$(eval IMAGE := IMAGE_BL$(call uppercase,$(3)))
$(OBJ): $(2)
@echo " CC $$<"
$$(Q)$$(CC) $$(TF_CFLAGS) $$(CFLAGS) -D$(IMAGE) -c $$< -o $$@
This means, IMAGE_BL* is defined when building the corresponding
image, but *undefined* for the other images.
So, IMAGE_BL* belongs to the latter group where we should use #ifdef
or #ifndef.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Various CPU drivers in ARM Trusted Firmware register functions to handle
power-down operations. At present, separate functions are registered to
power down individual cores and clusters.
This scheme operates on the basis of core and cluster, and doesn't cater
for extending the hierarchy for power-down operations. For example,
future CPUs might support multiple threads which might need powering
down individually.
This patch therefore reworks the CPU operations framework to allow for
registering power down handlers on specific level basis. Henceforth:
- Generic code invokes CPU power down operations by the level
required.
- CPU drivers explicitly mention CPU_NO_RESET_FUNC when the CPU has no
reset function.
- CPU drivers register power down handlers as a list: a mandatory
handler for level 0, and optional handlers for higher levels.
All existing CPU drivers are adapted to the new CPU operations framework
without needing any functional changes within.
Also update firmware design guide.
Change-Id: I1826842d37a9e60a9e85fdcee7b4b8f6bc1ad043
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
This patch removes the dash character from the image name, to
follow the image terminology in the Trusted Firmware Wiki page:
https://github.com/ARM-software/arm-trusted-firmware/wiki
Changes apply to output messages, comments and documentation.
non-ARM platform files have been left unmodified.
Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
Some assembly files containing macros are included like header files
into other assembly files. This will cause assembler errors if they
are included multiple times.
Add header guards to assembly macro files to avoid assembler errors.
Change-Id: Ia632e767ed7df7bf507b294982b8d730a6f8fe69
This patch adds support to call the reset_handler() function in BL3-1 in the
cold and warm boot paths when another Boot ROM reset_handler() has already run.
This means the BL1 and BL3-1 versions of the CPU and platform specific reset
handlers may execute different code to each other. This enables a developer to
perform additional actions or undo actions already performed during the first
call of the reset handlers e.g. apply additional errata workarounds.
Typically, the reset handler will be first called from the BL1 Boot ROM. Any
additional functionality can be added to the reset handler when it is called
from BL3-1 resident in RW memory. The constant FIRST_RESET_HANDLER_CALL is used
to identify whether this is the first version of the reset handler code to be
executed or an overridden version of the code.
The Cortex-A57 errata workarounds are applied only if they have not already been
applied.
FixesARM-software/tf-issue#275
Change-Id: Id295f106e4fda23d6736debdade2ac7f2a9a9053
This patch adds handlers for dumping Cortex-A57 and Cortex-A53 specific register
state to the CPU specific operations framework. The contents of CPUECTLR_EL1 are
dumped currently.
Change-Id: I63d3dbfc4ac52fef5e25a8cf6b937c6f0975c8ab
This patch adds CPU core and cluster power down sequences to the CPU specific
operations framework introduced in a earlier patch. Cortex-A53, Cortex-A57 and
generic AEM sequences have been added. The latter is suitable for the
Foundation and Base AEM FVPs. A pointer to each CPU's operations structure is
saved in the per-cpu data so that it can be easily accessed during power down
seqeunces.
An optional platform API has been introduced to allow a platform to disable the
Accelerator Coherency Port (ACP) during a cluster power down sequence. The weak
definition of this function (plat_disable_acp()) does not take any action. It
should be overriden with a strong definition if the ACP is present on a
platform.
Change-Id: I8d09bd40d2f528a28d2d3f19b77101178778685d
2014-08-20 19:14:31 +01:00
Renamed from include/lib/aarch64/cpu_macros.S (Browse further)