Implements mitigation for CVE-2024-5660 that affects Cortex-A78_AE
revisions r0p0, r0p1, r0p2, r0p3.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: I33ac653fcb45f687fe9ace1c76a3eb2000459751
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Implements mitigation for CVE-2024-5660 that affects Cortex-A78C
revisions r0p0, r0p1, r0p2.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: Ieb8d7b122320d16bf8987a43dc683ca41227beb5
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Implements mitigation for CVE-2024-5660 that affects Cortex-A78
revisions r0p0, r1p0, r1p1, r1p2.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: I4e40388bef814481943b2459fe35dd7267c625a2
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Implements mitigation for CVE-2024-5660 that affects Cortex-X1
revisions r0p0, r1p0, r1p1, r1p2.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: I3124db3980f2786412369a010ca6abbbbaa3b601
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Implements mitigation for CVE-2024-5660 that affects Neoverse-N2
revisions r0p0, r0p1, r0p2, r0p3.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
This patch implements the erratum mitigation for Neoverse-N2.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: I2b9dea78771cc159586a03ff563c0ec79591ea64
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Implements mitigation for CVE-2024-5660 that affects Cortex-A710
revisions r0p0, r1p0, r2p0, r2p1.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: I10feea238600dcceaac7bb75a59db7913ca65cf1
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Implements mitigation for CVE-2024-5660 that affects Neoverse-V2
revisions r0p0, r0p1, r0p2.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: If66687add52d16f68ce54fe5433dd3b3f067ee04
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Implements mitigation for CVE-2024-5660 that affects Cortex-X3
revisions r0p0, r1p0, r1p1, r1p2.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: Ibe90313948102ece3469f2cfe3faccc7f4beeabe
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Implements mitigation for CVE-2024-5660 that affects Neoverse-V3
revisions r0p0, r0p1.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: I9ed2590bf1215bf6a692f01dfd351e469ff072f8
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Implements mitigation for CVE-2024-5660 that affects Cortex-X4
revisions r0p0, r0p1, r0p2.
The workaround is to disable the hardware page aggregation at
EL3 by setting CPUECTLR_EL1[46] = 1'b1.
Public Documentation:
https://developer.arm.com/Arm%20Security%20Center/Arm%20CPU%20Vulnerability%20CVE-2024-5660
Change-Id: I378cb4978919cced03e7febc2ad431c572eac72d
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
This patch fixes a bug which was introduced in commit
3065513 related to improper saving of EL1 context in the
context management library code when using 128-bit
system registers.
Bug explanation:
The function el1_sysregs_context_save still used the normal
macros that read all the system registers related to the EL1
context, which then involved casting them to uint64_t and
eventually writing them to a memory structure. This means that
the context management library was saving EL1-related SYSREG128
registers with the upper 64 bits zeroed out.
Alternative macros had previously been introduced for the EL2
context in the aforementioned commit, but not for EL1.
Some refactoring has also been done as part of this patch:
- Re-added "common" back to write_el2_ctx_common_sysreg128
- Added dummy SYSREG128 macros for cases when some features
are disabled
- Removed some newlines
Change-Id: I15aa2190794ac099a493e5f430220b1c81e1b558
Signed-off-by: Igor Podgainõi <igor.podgainoi@arm.com>
This patch enables support of FEAT_FPMR by enabling access
to FPMR register. It achieves it by setting the EnFPM bit of
SCR_EL3. This feature is currently enabled for NS world only.
Reference:
https://developer.arm.com/documentation/109697/2024_09/
Feature-descriptions/The-Armv9-5-architecture-extension?lang=en
Change-Id: I580c409b9b22f8ead0737502280fb9093a3d5dd2
Signed-off-by: Arvind Ram Prakash <arvind.ramprakash@arm.com>
Cortex-X4 erratum 2923935 is a Cat B erratum that applies
to all revisions <= r0p1 and is fixed in r0p2.
The workaround is to set CPUACTLR4_EL1[11:10] to 0b11.
SDEN documentation:
https://developer.arm.com/documentation/SDEN-2432808/latest
Signed-off-by: Arvind Ram Prakash <arvind.ramprakash@arm.com>
Change-Id: I9207802ad479919a7f77c1271019fa2479e076ee
According to Platform Initialization (PI) Specification [1] and
discussion on edk2 mailing list [2],
StandaloneMm shouldn't create Hob but it should be passed from TF-A.
IOW, TF-A should pass boot information via HOB list to initialise
StandaloneMm properly.
And this HOB lists could be delivered via
- SPM_MM: Transfer List according to the firmware handoff spec[3]
- FF-A v1.1 >= : FF-A boot protocol.
This patch introduces a TF-A HOB creation library and
some of definitions which StandaloneMm requires to boot.
Link: https://uefi.org/sites/default/files/resources/PI_Spec_1_6.pdf [1]
Link: https://edk2.groups.io/g/devel/topic/103675962#114283 [2]
Link: https://github.com/FirmwareHandoff/firmware_handoff [3]
Signed-off-by: Levi Yun <yeoreum.yun@arm.com>
Change-Id: I5e0838adce487110206998a8b79bc3adca922cec
According to Platform Initialization (PI) Specification [1] and
Discussion on edk2 mailing list [2],
StandaloneMm shouldn't create Hob but it should be passed from TF-A.
IOW, TF-A should pass boot information via PHIT Hob to initialize
StandaloneMm properly.
This patch modifies Hob creation code from edk2 codebase
so that TF-A could create Hob information properly to boot StandaloneMm
Link: https://uefi.org/sites/default/files/resources/PI_Spec_1_6.pdf [1]
Link: https://edk2.groups.io/g/devel/topic/103675962#114283 [2]
Signed-off-by: Levi Yun <yeoreum.yun@arm.com>
Change-Id: I5e427b620d8006b118b266370bd08d4b0ff56a83
The ROMLIB build currently has a strong dependency on MbedTLS. This
patch has been introduced to remove this dependency, making it more
flexible.
Change-Id: If8c4cc7cf557687f40b235a4b8f931cfb70943fd
Signed-off-by: Manish V Badarkhe <Manish.Badarkhe@arm.com>
Remove the unused jmptbl.i file. The ROMLIB Makefile expects
platforms to provide the jmptbl according to their requirements.
Change-Id: I2784eaca5061aa77fdd99f7b2b5ef5a1145475e9
Signed-off-by: Manish V Badarkhe <Manish.Badarkhe@arm.com>
Add basic CPU library code to support the Alto CPU.
Change-Id: I45958be99c4a350a32a9e511d3705fb568b97236
Signed-off-by: Igor Podgainõi <igor.podgainoi@arm.com>
This change modifies the build rules for static libraries so that
individual rules which use those libraries depend directly on the
archive files that are generated, rather than their phony target aliases
and `-lX` link flags.
The goal of this is to clean up Make's view of the dependencies between
files, avoiding phony targets (which do not honour timestamps) making
their way into intermediate dependencies.
Change-Id: I96d655fcd94dc259ffa6e8970b2be7b8c7e11123
Signed-off-by: Chris Kay <chris.kay@arm.com>
Armv8.6 introduced the FEAT_LS64 extension, which provides a 64 *byte*
store instruction. A related instruction is ST64BV0, which will replace
the lowest 32 bits of the data with a value taken from the ACCDATA_EL1
system register (so that EL0 cannot alter them).
Using that ST64BV0 instruction and accessing the ACCDATA_EL1 system
register is guarded by two SCR_EL3 bits, which we should set to avoid a
trap into EL3, when lower ELs use one of those.
Add the required bits and pieces to make this feature usable:
- Add the ENABLE_FEAT_LS64_ACCDATA build option (defaulting to 0).
- Add the CPUID and SCR_EL3 bit definitions associated with FEAT_LS64.
- Add a feature check to check for the existing four variants of the
LS64 feature and detect future extensions.
- Add code to save and restore the ACCDATA_EL1 register on
secure/non-secure context switches.
- Enable the feature with runtime detection for FVP and Arm FPGA.
Please note that the *basic* FEAT_LS64 feature does not feature any trap
bits, it's only the addition of the ACCDATA_EL1 system register that
adds these traps and the SCR_EL3 bits.
Change-Id: Ie3e2ca2d9c4fbbd45c0cc6089accbb825579138a
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
When building with many cores (-j64), there's a good chance that the
rule to make the build directory is getting executed at the same time as
the rule for romlib.ldflags. On my machine, the former is slower,
resulting in romlib_generator.py not being able to write the file as the
directory doesn't exist yet.
Add an explicit dependency on the build directory for the target.
This ensures that we have a build directory before we start putting
stuff in it.
Change-Id: I120b0dc66c692c759ab1046c735be405b41db87c
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Grouped targets are a feature introduced with GNU Make 4.3 which enable
rules with multiple targets to communicate that all of the targets of
that rule are built simultaneously, rather than independently.
For example, without grouped targets the following rule may be executed
twice:
a.txt b.txt:
touch a.txt b.txt
# $ remake -j2 a.txt b.txt
# touch a.txt b.txt
# touch a.txt b.txt
In this example, both `a.txt` and `b.txt` are touched twice, when the
rule should only be executed once. Instead, this rule can use a grouped
target:
a.txt b.txt &:
touch a.txt b.txt
# $ remake -j2 a.txt b.txt
# touch a.txt b.txt
# remake: 'b.txt' is up to date.
In this case, both `a.txt` and `b.txt` are created once only, as Make
now knows that the recipe will create both files.
Note that pattern rules with multiple targets always behave this way.
Previously, we assumed that the grouped target feature was available,
but on systems still packaging Make 4.2, most prominently Ubuntu 20.04,
this is not the case. This change adds a check to ensure that we do not
use grouped targets if they are unavailable.
Change-Id: Ifd9da35421ae11468d7a25d3cbc76f6036921749
Signed-off-by: Chris Kay <chris.kay@arm.com>
This patch disables trapping to EL3 when the FEAT_D128
specific registers are accessed by setting the SCR_EL3.D128En bit.
If FEAT_D128 is implemented, then FEAT_SYSREG128 is implemented.
With FEAT_SYSREG128 certain system registers are treated as 128-bit,
so we should be context saving and restoring 128-bits instead of 64-bit
when FEAT_D128 is enabled.
FEAT_SYSREG128 adds support for MRRS and MSRR instruction which
helps us to read write to 128-bit system register.
Refer to Arm Architecture Manual for further details.
Change the FVP platform to default to handling this as a dynamic option
so the right decision can be made by the code at runtime.
Change-Id: I1a53db5eac29e56c8fbdcd4961ede3abfcb2411a
Signed-off-by: Jayanth Dodderi Chidanand <jayanthdodderi.chidanand@arm.com>
Signed-off-by: Govindraj Raja <govindraj.raja@arm.com>
Add the basic CPU library code to support Cortex-A720AE.
The overall library code is adapted based on Cortex-A720 code.
Signed-off-by: David Hu <david.hu2@arm.com>
Signed-off-by: Ahmed Azeem <ahmed.azeem@arm.com>
Change-Id: I3d64dc5a3098cc823e656a5ad3ea05cd71598dc6
It used to be the case that a FEAT_RME build could not be built with
FEAT_BRBE support. BRBE doesn't have a 3-world aware disable and
MDCR_EL3 was not context switched to allow for disabling in Realm world.
As of commit 123002f917 MDCR_EL3 is
context switched. Since the flag for BRBE support is
ENABLE_BRBE_FOR_NS, move brbe_enable() to only happen for NS world. The
other worlds will see BRBE disabled and branch recording prohibited.
This allows for a build with both RME and BRBE.
Note that EL2 BRBE registers are not context switched. Further work is
needed if non-NS support is required.
Change-Id: I82f0f08399dcd080902477dc9636bc4541685f89
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
Add basic CPU library code to support the Arcadia CPU.
Change-Id: Iecb0634dc6dcb34e9b5fda4902335530d237cc43
Signed-off-by: Govindraj Raja <govindraj.raja@arm.com>
The errata framework has a helper to invoke workarounds, complete with a
cpu rev_var check. We can use that directly instead of the
apply_cpu_pwr_dwn_errata to save on some code, as well as an extra
branch. It's also more readable.
Also, apply_erratum invocation in cpu files don't need to check the
rev_var as that was already done by the cpu_ops dispatcher for us to end
up in the file.
Finally, X2 erratum 2768515 only applies in the powerdown sequence, i.e.
at runtime. It doesn't achieve anything at reset, so we can label it
accordingly.
Change-Id: I02f9dd7d0619feb54c870938ea186be5e3a6ca7b
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>
* This patch adds root context procedure to restore/configure
the registers, which are of importance during EL3 execution.
* EL3/Root context is a simple restore operation that overwrites
the following bits: (MDCR_EL3.SDD, SCR_EL3.{EA, SIF}, PMCR_EL0.DP
PSTATE.DIT) while the execution is in EL3.
* It ensures EL3 world maintains its own settings distinct
from other worlds (NS/Realm/SWd). With this in place, the EL3
system register settings is no longer influenced by settings of
incoming worlds. This allows the EL3/Root world to access features
for its own execution at EL3 (eg: Pauth).
* It should be invoked at cold and warm boot entry paths and also
at all the possible exception handlers routing to EL3 at runtime.
Cold and warm boot paths are handled by including setup_el3_context
function in "el3_entrypoint_common" macro, which gets invoked in
both the entry paths.
* At runtime, el3_context is setup at the stage, while we get prepared
to enter into EL3 via "prepare_el3_entry" routine.
Change-Id: I5c090978c54a53bc1c119d1bc5fa77cd8813cdc2
Signed-off-by: Jayanth Dodderi Chidanand <jayanthdodderi.chidanand@arm.com>
Arm v8.9 introduces FEAT_SCTLR2, adding SCTLR2_ELx registers.
Support this, context switching the registers and disabling
traps so lower ELs can access the new registers.
Change the FVP platform to default to handling this as a dynamic option
so the right decision can be made by the code at runtime.
Change-Id: I0c4cba86917b6b065a7e8dd6af7daf64ee18dcda
Signed-off-by: Jayanth Dodderi Chidanand <jayanthdodderi.chidanand@arm.com>
Signed-off-by: Govindraj Raja <govindraj.raja@arm.com>
Arm v8.9 introduces FEAT_THE, adding Translation Hardening Extension
Read-Check-Write mask registers, RCWMASK_EL1 and RCWSMASK_EL1.
Support this, context switching the registers and disabling
traps so lower ELs can access the new registers.
Change the FVP platform to default to handling this as a dynamic option
so the right decision can be made by the code at runtime.
Change-Id: I8775787f523639b39faf61d046ef482f73b2a562
Signed-off-by: Jayanth Dodderi Chidanand <jayanthdodderi.chidanand@arm.com>
Signed-off-by: Govindraj Raja <govindraj.raja@arm.com>
Apply the mitigation only for the revision and variant
mentioned in the SDEN.
SDEN Documentation:
https://developer.arm.com/documentation/SDEN859515/latest
Change-Id: Ifda1f4cb32bdec9a9af29397ddc03bf22a7a87fc
Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
Cortex-X4 erratum 3076789 is a Cat B erratum that is present
in revisions r0p0, r0p1 and is fixed in r0p2.
The workaround is to set chicken bits CPUACTLR3_EL1[14:13]=0b11
and CPUACTLR_EL1[52] = 1.
Expected performance degradation is < 0.5%, but isolated
benchmark components might see higher impact.
SDEN documentation:
https://developer.arm.com/documentation/SDEN2432808/latest
Change-Id: Ib100bfab91efdb6330fdcdac127bcc5732d59196
Signed-off-by: Ryan Everett <ryan.everett@arm.com>
Cortex-X4 erratum 2897503 is a Cat B erratum that applies
to all revisions <= r0p1 and is fixed in r0p2.
The workaround is to set CPUACTLR4_EL1[8] to 1.
SDEN documentation:
https://developer.arm.com/documentation/SDEN-2432808/latest
Signed-off-by: Arvind Ram Prakash <arvind.ramprakash@arm.com>
Change-Id: I3178a890b6f1307b310e817af75f8fdfb8668cc9