u-boot/drivers/usb/tcpm/tcpm.c
Sebastian Reichel 1db4c0ac77 usb: tcpm: add core framework
This adds TCPM framework in preparation for fusb302 support, which can
handle USB power delivery messages. This is needed to solve issues with
devices, that are running from a USB-C port supporting USB-PD, but not
having a battery.

Such a device currently boots to the kernel without interacting with
the power-supply at all. If there are no USB-PD message replies within
5 seconds, the power-supply assumes the peripheral is not capable of
USB-PD. It usually takes more than 5 seconds for the system to reach
the kernel and probe the I2C based fusb302 chip driver. Thus the
system always runs into this state. The power-supply's solution to
fix this error state is a hard reset, which involves removing the
power from VBUS. Boards without a battery (or huge capacitors) will
reset at this point resulting in a boot loop.

This imports the TCPM framework from the kernel. The porting has
originally been done by Rockchip using hardware timers and the Linux
kernel's TCPM code from some years ago.

I had a look at upgrading to the latest TCPM kernel code, but that
beast became a lot more complex due to adding more USB-C features.
I believe these features are not needed in U-Boot and with multiple
kthreads and hrtimers being involved it is non-trivial to port them.
Instead I worked on stripping down features from the Rockchip port
to an even more basic level. Also the TCPM code has been reworked
to avoid complete use of any timers (Rockchip used SoC specific
hardware timers + IRQ to implement delayed work mechanism). Instead
the delayed state changes are handled directly from the poll loop.

Note, that (in contrast to the original Rockchip port) the state
machine has the same hard reset quirk, that the kernel has - i.e.
it avoids disabling the CC pin resistors for devices that are not
self-powered. Without that quirk, the Radxa Rock 5B will not just
end up doing a machine reset when a hard reset is triggered, but will
not even recover, because the CPU will loose power and the FUSB302
will keep this state because of leak voltage arriving through the RX
serial pin (assuming a serial adapter is connected).

This also includes a 'tcpm' command, which can be used to get
information about the current state and the negotiated voltage
and current.

Co-developed-by: Wang Jie <dave.wang@rock-chips.com>
Signed-off-by: Wang Jie <dave.wang@rock-chips.com>
Tested-by: Soeren Moch <smoch@web.de>
Tested-by: Anand Moon <linux.amoon@gmail.com>
Reviewed-by: Jonas Karlman <jonas@kwiboo.se>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
2024-10-17 03:12:47 +02:00

2288 lines
58 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2017 Google, Inc
*
* USB Power Delivery protocol stack.
*/
#include <asm/gpio.h>
#include <asm/io.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <dm/device-internal.h>
#include <dm/devres.h>
#include <linux/compat.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <time.h>
#include <usb/tcpm.h>
#include "tcpm-internal.h"
DECLARE_GLOBAL_DATA_PTR;
const char * const tcpm_states[] = {
FOREACH_TCPM_STATE(GENERATE_TCPM_STRING)
};
const char * const typec_pd_rev_name[] = {
[PD_REV10] = "rev1",
[PD_REV20] = "rev2",
[PD_REV30] = "rev3",
};
const char * const typec_role_name[] = {
[TYPEC_SINK] = "sink",
[TYPEC_SOURCE] = "source",
};
const char * const typec_data_role_name[] = {
[TYPEC_DEVICE] = "device",
[TYPEC_HOST] = "host",
};
const char * const typec_orientation_name[] = {
[TYPEC_ORIENTATION_NONE] = "none",
[TYPEC_ORIENTATION_NORMAL] = "normal",
[TYPEC_ORIENTATION_REVERSE] = "reverse",
};
const char * const typec_cc_status_name[] = {
[TYPEC_CC_OPEN] = "open",
[TYPEC_CC_RA] = "ra",
[TYPEC_CC_RD] = "rd",
[TYPEC_CC_RP_DEF] = "rp-def",
[TYPEC_CC_RP_1_5] = "rp-1.5",
[TYPEC_CC_RP_3_0] = "rp-3.0",
};
static inline bool tcpm_cc_is_sink(enum typec_cc_status cc)
{
return cc == TYPEC_CC_RP_DEF ||
cc == TYPEC_CC_RP_1_5 ||
cc == TYPEC_CC_RP_3_0;
}
static inline bool tcpm_port_is_sink(struct tcpm_port *port)
{
bool cc1_is_snk = tcpm_cc_is_sink(port->cc1);
bool cc2_is_snk = tcpm_cc_is_sink(port->cc2);
return (cc1_is_snk && !cc2_is_snk) ||
(cc2_is_snk && !cc1_is_snk);
}
static inline bool tcpm_cc_is_source(enum typec_cc_status cc)
{
return cc == TYPEC_CC_RD;
}
static inline bool tcpm_port_is_source(struct tcpm_port *port)
{
bool cc1_is_src = tcpm_cc_is_source(port->cc1);
bool cc2_is_src = tcpm_cc_is_source(port->cc2);
return (cc1_is_src && !cc2_is_src) ||
(cc2_is_src && !cc1_is_src);
}
static inline bool tcpm_try_src(struct tcpm_port *port)
{
return port->try_role == TYPEC_SOURCE &&
port->port_type == TYPEC_PORT_DRP;
}
static inline void tcpm_reset_event_cnt(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
port->poll_event_cnt = 0;
}
static enum tcpm_state tcpm_default_state(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP) {
if (port->try_role == TYPEC_SINK)
return SNK_UNATTACHED;
else if (port->try_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
} else if (port->port_type == TYPEC_PORT_SNK) {
return SNK_UNATTACHED;
}
return SRC_UNATTACHED;
}
static bool tcpm_port_is_disconnected(struct tcpm_port *port)
{
return (!port->attached && port->cc1 == TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN) ||
(port->attached && ((port->polarity == TYPEC_POLARITY_CC1 &&
port->cc1 == TYPEC_CC_OPEN) ||
(port->polarity == TYPEC_POLARITY_CC2 &&
port->cc2 == TYPEC_CC_OPEN)));
}
static void tcpm_set_cc(struct udevice *dev, enum typec_cc_status cc)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
dev_dbg(dev, "TCPM: set cc = %d\n", cc);
port->cc_req = cc;
drvops->set_cc(dev, cc);
}
/*
* Determine RP value to set based on maximum current supported
* by a port if configured as source.
* Returns CC value to report to link partner.
*/
static enum typec_cc_status tcpm_rp_cc(struct tcpm_port *port)
{
const u32 *src_pdo = port->src_pdo;
int nr_pdo = port->nr_src_pdo;
int i;
/*
* Search for first entry with matching voltage.
* It should report the maximum supported current.
*/
for (i = 0; i < nr_pdo; i++) {
const u32 pdo = src_pdo[i];
if (pdo_type(pdo) == PDO_TYPE_FIXED &&
pdo_fixed_voltage(pdo) == 5000) {
unsigned int curr = pdo_max_current(pdo);
if (curr >= 3000)
return TYPEC_CC_RP_3_0;
else if (curr >= 1500)
return TYPEC_CC_RP_1_5;
return TYPEC_CC_RP_DEF;
}
}
return TYPEC_CC_RP_DEF;
}
static void tcpm_check_and_run_delayed_work(struct udevice *dev);
static bool tcpm_transmit_helper(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
drvops->poll_event(dev);
udelay(500);
tcpm_check_and_run_delayed_work(dev);
return port->tx_complete;
}
static int tcpm_pd_transmit(struct udevice *dev,
enum tcpm_transmit_type type,
const struct pd_message *msg)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
u32 timeout_us = PD_T_TCPC_TX_TIMEOUT * 1000;
bool tx_complete;
int ret;
if (msg)
dev_dbg(dev, "TCPM: PD TX, header: %#x\n",
le16_to_cpu(msg->header));
else
dev_dbg(dev, "TCPM: PD TX, type: %#x\n", type);
port->tx_complete = false;
ret = drvops->pd_transmit(dev, type, msg, port->negotiated_rev);
if (ret < 0)
return ret;
/*
* At this point we basically need to block until the TCPM controller
* returns successful transmission. Since this is usually done using
* the generic interrupt status bits, we poll for any events. That
* will clear the interrupt status, so we also need to process any
* of the incoming events. This means we will do more processing and
* thus let's give everything a bit more time.
*/
timeout_us *= 5;
ret = read_poll_timeout(tcpm_transmit_helper, tx_complete,
!tx_complete, false, timeout_us, dev);
if (ret < 0) {
dev_err(dev, "TCPM: PD transmit data failed: %d\n", ret);
return ret;
}
switch (port->tx_status) {
case TCPC_TX_SUCCESS:
port->message_id = (port->message_id + 1) & PD_HEADER_ID_MASK;
break;
case TCPC_TX_DISCARDED:
ret = -EAGAIN;
break;
case TCPC_TX_FAILED:
default:
ret = -EIO;
break;
}
return ret;
}
void tcpm_pd_transmit_complete(struct udevice *dev,
enum tcpm_transmit_status status)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
dev_dbg(dev, "TCPM: PD TX complete, status: %u\n", status);
tcpm_reset_event_cnt(dev);
port->tx_status = status;
port->tx_complete = true;
}
static int tcpm_set_polarity(struct udevice *dev,
enum typec_cc_polarity polarity)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
int ret;
dev_dbg(dev, "TCPM: set polarity = %d\n", polarity);
if (drvops->set_polarity) {
ret = drvops->set_polarity(dev, polarity);
if (ret < 0)
return ret;
}
port->polarity = polarity;
return 0;
}
static int tcpm_set_vconn(struct udevice *dev, bool enable)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
dev_dbg(dev, "TCPM: set vconn = %d\n", enable);
ret = drvops->set_vconn(dev, enable);
if (!ret)
port->vconn_role = enable ? TYPEC_SOURCE : TYPEC_SINK;
return ret;
}
static inline u32 tcpm_get_current_limit(struct tcpm_port *port)
{
switch (port->polarity ? port->cc2 : port->cc1) {
case TYPEC_CC_RP_1_5:
return 1500;
case TYPEC_CC_RP_3_0:
return 3000;
case TYPEC_CC_RP_DEF:
default:
return 0;
}
}
static int tcpm_set_current_limit(struct udevice *dev, u32 max_ma, u32 mv)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret = -EOPNOTSUPP;
dev_info(dev, "TCPM: set voltage limit = %u mV\n", mv);
dev_info(dev, "TCPM: set current limit = %u mA\n", max_ma);
port->supply_voltage = mv;
port->current_limit = max_ma;
return ret;
}
static int tcpm_set_attached_state(struct udevice *dev, bool attached)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
return drvops->set_roles(dev, attached, port->pwr_role,
port->data_role);
}
static int tcpm_set_roles(struct udevice *dev, bool attached,
enum typec_role role, enum typec_data_role data)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
ret = drvops->set_roles(dev, attached, role, data);
if (ret < 0)
return ret;
port->pwr_role = role;
port->data_role = data;
return 0;
}
static int tcpm_pd_send_source_caps(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
struct pd_message msg;
int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_src_pdo) {
/* No source capabilities defined, sink only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SOURCE_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
port->nr_src_pdo);
}
for (i = 0; i < port->nr_src_pdo; i++)
msg.payload[i] = cpu_to_le32(port->src_pdo[i]);
return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg);
}
static int tcpm_pd_send_sink_caps(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
struct pd_message msg;
unsigned int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_snk_pdo) {
/* No sink capabilities defined, source only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SINK_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
port->nr_snk_pdo);
}
for (i = 0; i < port->nr_snk_pdo; i++)
msg.payload[i] = cpu_to_le32(port->snk_pdo[i]);
return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg);
}
static void tcpm_state_machine(struct udevice *dev);
static inline void tcpm_timer_uninit(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
port->delay_target = 0;
}
static void tcpm_timer_init(struct udevice *dev, uint32_t ms)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned long time_us = ms * 1000;
port->delay_target = timer_get_us() + time_us;
}
static void tcpm_check_and_run_delayed_work(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
/* no delayed state changes scheduled */
if (port->delay_target == 0)
return;
/* it's not yet time */
if (timer_get_us() < port->delay_target)
return;
tcpm_timer_uninit(dev);
tcpm_state_machine(dev);
}
static void mod_tcpm_delayed_work(struct udevice *dev, unsigned int delay_ms)
{
if (delay_ms) {
tcpm_timer_init(dev, delay_ms);
} else {
tcpm_timer_uninit(dev);
tcpm_state_machine(dev);
}
}
static void tcpm_set_state(struct udevice *dev, enum tcpm_state state,
unsigned int delay_ms)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
if (delay_ms) {
dev_dbg(dev, "TCPM: pending state change %s -> %s @ %u ms [%s]\n",
tcpm_states[port->state], tcpm_states[state], delay_ms,
typec_pd_rev_name[port->negotiated_rev]);
port->delayed_state = state;
mod_tcpm_delayed_work(dev, delay_ms);
port->delay_ms = delay_ms;
} else {
dev_dbg(dev, "TCPM: state change %s -> %s\n",
tcpm_states[port->state], tcpm_states[state]);
port->delayed_state = INVALID_STATE;
port->prev_state = port->state;
port->state = state;
/*
* Don't re-queue the state machine work item if we're currently
* in the state machine and we're immediately changing states.
* tcpm_state_machine_work() will continue running the state
* machine.
*/
if (!port->state_machine_running)
mod_tcpm_delayed_work(dev, 0);
}
}
static void tcpm_set_state_cond(struct udevice *dev, enum tcpm_state state,
unsigned int delay_ms)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
if (port->enter_state == port->state)
tcpm_set_state(dev, state, delay_ms);
else
dev_dbg(dev, "TCPM: skipped %sstate change %s -> %s [%u ms], context state %s [%s]\n",
delay_ms ? "delayed " : "",
tcpm_states[port->state], tcpm_states[state],
delay_ms, tcpm_states[port->enter_state],
typec_pd_rev_name[port->negotiated_rev]);
}
static void tcpm_queue_message(struct udevice *dev,
enum pd_msg_request message)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
port->queued_message = message;
mod_tcpm_delayed_work(dev, 0);
}
enum pdo_err {
PDO_NO_ERR,
PDO_ERR_NO_VSAFE5V,
PDO_ERR_VSAFE5V_NOT_FIRST,
PDO_ERR_PDO_TYPE_NOT_IN_ORDER,
PDO_ERR_FIXED_NOT_SORTED,
PDO_ERR_VARIABLE_BATT_NOT_SORTED,
PDO_ERR_DUPE_PDO,
PDO_ERR_PPS_APDO_NOT_SORTED,
PDO_ERR_DUPE_PPS_APDO,
};
static const char * const pdo_err_msg[] = {
[PDO_ERR_NO_VSAFE5V] =
" err: source/sink caps should at least have vSafe5V",
[PDO_ERR_VSAFE5V_NOT_FIRST] =
" err: vSafe5V Fixed Supply Object Shall always be the first object",
[PDO_ERR_PDO_TYPE_NOT_IN_ORDER] =
" err: PDOs should be in the following order: Fixed; Battery; Variable",
[PDO_ERR_FIXED_NOT_SORTED] =
" err: Fixed supply pdos should be in increasing order of their fixed voltage",
[PDO_ERR_VARIABLE_BATT_NOT_SORTED] =
" err: Variable/Battery supply pdos should be in increasing order of their minimum voltage",
[PDO_ERR_DUPE_PDO] =
" err: Variable/Batt supply pdos cannot have same min/max voltage",
[PDO_ERR_PPS_APDO_NOT_SORTED] =
" err: Programmable power supply apdos should be in increasing order of their maximum voltage",
[PDO_ERR_DUPE_PPS_APDO] =
" err: Programmable power supply apdos cannot have same min/max voltage and max current",
};
static enum pdo_err tcpm_caps_err(struct udevice *dev, const u32 *pdo,
unsigned int nr_pdo)
{
unsigned int i;
/* Should at least contain vSafe5v */
if (nr_pdo < 1)
return PDO_ERR_NO_VSAFE5V;
/* The vSafe5V Fixed Supply Object Shall always be the first object */
if (pdo_type(pdo[0]) != PDO_TYPE_FIXED ||
pdo_fixed_voltage(pdo[0]) != VSAFE5V)
return PDO_ERR_VSAFE5V_NOT_FIRST;
for (i = 1; i < nr_pdo; i++) {
if (pdo_type(pdo[i]) < pdo_type(pdo[i - 1])) {
return PDO_ERR_PDO_TYPE_NOT_IN_ORDER;
} else if (pdo_type(pdo[i]) == pdo_type(pdo[i - 1])) {
enum pd_pdo_type type = pdo_type(pdo[i]);
switch (type) {
/*
* The remaining Fixed Supply Objects, if
* present, shall be sent in voltage order;
* lowest to highest.
*/
case PDO_TYPE_FIXED:
if (pdo_fixed_voltage(pdo[i]) <=
pdo_fixed_voltage(pdo[i - 1]))
return PDO_ERR_FIXED_NOT_SORTED;
break;
/*
* The Battery Supply Objects and Variable
* supply, if present shall be sent in Minimum
* Voltage order; lowest to highest.
*/
case PDO_TYPE_VAR:
case PDO_TYPE_BATT:
if (pdo_min_voltage(pdo[i]) <
pdo_min_voltage(pdo[i - 1]))
return PDO_ERR_VARIABLE_BATT_NOT_SORTED;
else if ((pdo_min_voltage(pdo[i]) ==
pdo_min_voltage(pdo[i - 1])) &&
(pdo_max_voltage(pdo[i]) ==
pdo_max_voltage(pdo[i - 1])))
return PDO_ERR_DUPE_PDO;
break;
/*
* The Programmable Power Supply APDOs, if present,
* shall be sent in Maximum Voltage order;
* lowest to highest.
*/
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo[i]) != APDO_TYPE_PPS)
break;
if (pdo_pps_apdo_max_voltage(pdo[i]) <
pdo_pps_apdo_max_voltage(pdo[i - 1]))
return PDO_ERR_PPS_APDO_NOT_SORTED;
else if (pdo_pps_apdo_min_voltage(pdo[i]) ==
pdo_pps_apdo_min_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_voltage(pdo[i]) ==
pdo_pps_apdo_max_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_current(pdo[i]) ==
pdo_pps_apdo_max_current(pdo[i - 1]))
return PDO_ERR_DUPE_PPS_APDO;
break;
default:
dev_err(dev, "TCPM: Unknown pdo type\n");
}
}
}
return PDO_NO_ERR;
}
static int tcpm_validate_caps(struct udevice *dev, const u32 *pdo,
unsigned int nr_pdo)
{
enum pdo_err err_index = tcpm_caps_err(dev, pdo, nr_pdo);
if (err_index != PDO_NO_ERR) {
dev_err(dev, "TCPM:%s\n", pdo_err_msg[err_index]);
return -EINVAL;
}
return 0;
}
/*
* PD (data, control) command handling functions
*/
static inline enum tcpm_state ready_state(struct tcpm_port *port)
{
if (port->pwr_role == TYPEC_SOURCE)
return SRC_READY;
else
return SNK_READY;
}
static void tcpm_pd_data_request(struct udevice *dev,
const struct pd_message *msg)
{
enum pd_data_msg_type type = pd_header_type_le(msg->header);
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned int cnt = pd_header_cnt_le(msg->header);
unsigned int rev = pd_header_rev_le(msg->header);
unsigned int i;
switch (type) {
case PD_DATA_SOURCE_CAP:
for (i = 0; i < cnt; i++)
port->source_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_source_caps = cnt;
tcpm_validate_caps(dev, port->source_caps,
port->nr_source_caps);
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just do nothing in that scenario.
*/
if (rev == PD_REV10)
break;
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
if ((pdo_type(port->source_caps[0]) == PDO_TYPE_FIXED) &&
(port->source_caps[0] & PDO_FIXED_DUAL_ROLE) &&
(port->source_caps[0] & PDO_FIXED_DATA_SWAP)) {
/* Dual role power and data, eg: self-powered Type-C */
port->wait_dr_swap_message = true;
} else {
/* Non-Dual role power, eg: adapter */
port->wait_dr_swap_message = false;
}
/*
* This message may be received even if VBUS is not
* present. This is quite unexpected; see USB PD
* specification, sections 8.3.3.6.3.1 and 8.3.3.6.3.2.
* However, at the same time, we must be ready to
* receive this message and respond to it 15ms after
* receiving PS_RDY during power swap operations, no matter
* if VBUS is available or not (USB PD specification,
* section 6.5.9.2).
* So we need to accept the message either way,
* but be prepared to keep waiting for VBUS after it was
* handled.
*/
tcpm_set_state(dev, SNK_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_REQUEST:
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just reject in that scenario.
*/
if (rev == PD_REV10) {
tcpm_queue_message(dev, PD_MSG_CTRL_REJECT);
break;
}
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
port->sink_request = le32_to_cpu(msg->payload[0]);
tcpm_set_state(dev, SRC_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_SINK_CAP:
/* We don't do anything with this at the moment... */
for (i = 0; i < cnt; i++)
port->sink_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_sink_caps = cnt;
break;
default:
break;
}
}
static void tcpm_pd_ctrl_request(struct udevice *dev,
const struct pd_message *msg)
{
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum tcpm_state next_state;
switch (type) {
case PD_CTRL_GOOD_CRC:
case PD_CTRL_PING:
break;
case PD_CTRL_GET_SOURCE_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(dev, PD_MSG_DATA_SOURCE_CAP);
break;
default:
tcpm_queue_message(dev, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GET_SINK_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(dev, PD_MSG_DATA_SINK_CAP);
break;
default:
tcpm_queue_message(dev, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GOTO_MIN:
break;
case PD_CTRL_PS_RDY:
switch (port->state) {
case SNK_TRANSITION_SINK:
if (port->vbus_present) {
tcpm_set_current_limit(dev,
port->req_current_limit,
port->req_supply_voltage);
port->explicit_contract = true;
tcpm_set_state(dev, SNK_READY, 0);
} else {
/*
* Seen after power swap. Keep waiting for VBUS
* in a transitional state.
*/
tcpm_set_state(dev,
SNK_TRANSITION_SINK_VBUS, 0);
}
break;
default:
break;
}
break;
case PD_CTRL_REJECT:
case PD_CTRL_WAIT:
case PD_CTRL_NOT_SUPP:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
/* USB PD specification, Figure 8-43 */
if (port->explicit_contract)
next_state = SNK_READY;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(dev, next_state, 0);
break;
default:
break;
}
break;
case PD_CTRL_ACCEPT:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
tcpm_set_state(dev, SNK_TRANSITION_SINK, 0);
break;
case SOFT_RESET_SEND:
port->message_id = 0;
port->rx_msgid = -1;
if (port->pwr_role == TYPEC_SOURCE)
next_state = SRC_SEND_CAPABILITIES;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(dev, next_state, 0);
break;
default:
break;
}
break;
case PD_CTRL_SOFT_RESET:
tcpm_set_state(dev, SOFT_RESET, 0);
break;
case PD_CTRL_DR_SWAP:
if (port->port_type != TYPEC_PORT_DRP) {
tcpm_queue_message(dev, PD_MSG_CTRL_REJECT);
break;
}
/*
* 6.3.9: If an alternate mode is active, a request to swap
* alternate modes shall trigger a port reset.
*/
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_set_state(dev, DR_SWAP_ACCEPT, 0);
break;
default:
tcpm_queue_message(dev, PD_MSG_CTRL_WAIT);
break;
}
break;
case PD_CTRL_PR_SWAP:
case PD_CTRL_VCONN_SWAP:
case PD_CTRL_GET_SOURCE_CAP_EXT:
case PD_CTRL_GET_STATUS:
case PD_CTRL_FR_SWAP:
case PD_CTRL_GET_PPS_STATUS:
case PD_CTRL_GET_COUNTRY_CODES:
/* Currently not supported */
dev_err(dev, "TCPM: Currently not supported type %#x\n", type);
tcpm_queue_message(dev, PD_MSG_CTRL_NOT_SUPP);
break;
default:
dev_err(dev, "TCPM: Unrecognized ctrl message type %#x\n", type);
break;
}
}
static void tcpm_pd_rx_handler(struct udevice *dev,
const struct pd_message *msg)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned int cnt = pd_header_cnt_le(msg->header);
bool remote_is_host, local_is_host;
dev_dbg(dev, "TCPM: PD RX, header: %#x [%d]\n",
le16_to_cpu(msg->header), port->attached);
if (port->attached) {
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
unsigned int msgid = pd_header_msgid_le(msg->header);
/*
* USB PD standard, 6.6.1.2:
* "... if MessageID value in a received Message is the
* same as the stored value, the receiver shall return a
* GoodCRC Message with that MessageID value and drop
* the Message (this is a retry of an already received
* Message). Note: this shall not apply to the Soft_Reset
* Message which always has a MessageID value of zero."
*/
if (msgid == port->rx_msgid && type != PD_CTRL_SOFT_RESET)
return;
port->rx_msgid = msgid;
/*
* If both ends believe to be DFP/host, we have a data role
* mismatch.
*/
remote_is_host = !!(le16_to_cpu(msg->header) & PD_HEADER_DATA_ROLE);
local_is_host = port->data_role == TYPEC_HOST;
if (remote_is_host == local_is_host) {
dev_err(dev, "TCPM: data role mismatch, initiating error recovery\n");
tcpm_set_state(dev, ERROR_RECOVERY, 0);
} else {
if (cnt)
tcpm_pd_data_request(dev, msg);
else
tcpm_pd_ctrl_request(dev, msg);
}
}
}
void tcpm_pd_receive(struct udevice *dev, const struct pd_message *msg)
{
tcpm_reset_event_cnt(dev);
tcpm_pd_rx_handler(dev, msg);
}
static int tcpm_pd_send_control(struct udevice *dev,
enum pd_ctrl_msg_type type)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
struct pd_message msg;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(type, port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg);
}
/*
* Send queued message without affecting state.
* Return true if state machine should go back to sleep,
* false otherwise.
*/
static bool tcpm_send_queued_message(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum pd_msg_request queued_message;
int max_messages = 100;
do {
queued_message = port->queued_message;
port->queued_message = PD_MSG_NONE;
max_messages--;
switch (queued_message) {
case PD_MSG_CTRL_WAIT:
tcpm_pd_send_control(dev, PD_CTRL_WAIT);
break;
case PD_MSG_CTRL_REJECT:
tcpm_pd_send_control(dev, PD_CTRL_REJECT);
break;
case PD_MSG_CTRL_NOT_SUPP:
tcpm_pd_send_control(dev, PD_CTRL_NOT_SUPP);
break;
case PD_MSG_DATA_SINK_CAP:
tcpm_pd_send_sink_caps(dev);
break;
case PD_MSG_DATA_SOURCE_CAP:
tcpm_pd_send_source_caps(dev);
break;
default:
break;
}
} while (max_messages > 0 && port->queued_message != PD_MSG_NONE);
if (!max_messages)
dev_err(dev, "Aborted sending of too many queued messages\n");
return false;
}
static int tcpm_pd_check_request(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
u32 pdo, rdo = port->sink_request;
unsigned int max, op, pdo_max, index;
enum pd_pdo_type type;
index = rdo_index(rdo);
if (!index || index > port->nr_src_pdo)
return -EINVAL;
pdo = port->src_pdo[index - 1];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
case PDO_TYPE_VAR:
max = rdo_max_current(rdo);
op = rdo_op_current(rdo);
pdo_max = pdo_max_current(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
if (type == PDO_TYPE_FIXED)
dev_dbg(dev, "TCPM: Requested %u mV, %u mA for %u / %u mA\n",
pdo_fixed_voltage(pdo), pdo_max, op, max);
else
dev_dbg(dev, "TCPM: Requested %u -> %u mV, %u mA for %u / %u mA\n",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
case PDO_TYPE_BATT:
max = rdo_max_power(rdo);
op = rdo_op_power(rdo);
pdo_max = pdo_max_power(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
dev_info(dev, "TCPM: Requested %u -> %u mV, %u mW for %u / %u mW\n",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
default:
return -EINVAL;
}
return 0;
}
#define min_power(x, y) min(pdo_max_power(x), pdo_max_power(y))
#define min_current(x, y) min(pdo_max_current(x), pdo_max_current(y))
static int tcpm_pd_select_pdo(struct udevice *dev, int *sink_pdo,
int *src_pdo)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned int i, j, max_src_mv = 0, min_src_mv = 0, max_mw = 0,
max_mv = 0, src_mw = 0, src_ma = 0, max_snk_mv = 0,
min_snk_mv = 0;
int ret = -EINVAL;
/*
* Select the source PDO providing the most power which has a
* matchig sink cap.
*/
for (i = 0; i < port->nr_source_caps; i++) {
u32 pdo = port->source_caps[i];
enum pd_pdo_type type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
max_src_mv = pdo_fixed_voltage(pdo);
min_src_mv = max_src_mv;
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
max_src_mv = pdo_max_voltage(pdo);
min_src_mv = pdo_min_voltage(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
dev_err(dev, "TCPM: Invalid source PDO type, ignoring\n");
continue;
}
switch (type) {
case PDO_TYPE_FIXED:
case PDO_TYPE_VAR:
src_ma = pdo_max_current(pdo);
src_mw = src_ma * min_src_mv / 1000;
break;
case PDO_TYPE_BATT:
src_mw = pdo_max_power(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
dev_err(dev, "TCPM: Invalid source PDO type, ignoring\n");
continue;
}
for (j = 0; j < port->nr_snk_pdo; j++) {
pdo = port->snk_pdo[j];
switch (pdo_type(pdo)) {
case PDO_TYPE_FIXED:
max_snk_mv = pdo_fixed_voltage(pdo);
min_snk_mv = max_snk_mv;
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
max_snk_mv = pdo_max_voltage(pdo);
min_snk_mv = pdo_min_voltage(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
dev_err(dev, "TCPM: Invalid sink PDO type, ignoring\n");
continue;
}
if (max_src_mv <= max_snk_mv && min_src_mv >= min_snk_mv) {
/* Prefer higher voltages if available */
if ((src_mw == max_mw && min_src_mv > max_mv) ||
src_mw > max_mw) {
*src_pdo = i;
*sink_pdo = j;
max_mw = src_mw;
max_mv = min_src_mv;
ret = 0;
}
}
}
}
return ret;
}
static int tcpm_pd_build_request(struct udevice *dev, u32 *rdo)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned int mv, ma, mw, flags;
unsigned int max_ma, max_mw;
enum pd_pdo_type type;
u32 pdo, matching_snk_pdo;
int src_pdo_index = 0;
int snk_pdo_index = 0;
int ret;
ret = tcpm_pd_select_pdo(dev, &snk_pdo_index, &src_pdo_index);
if (ret < 0)
return ret;
pdo = port->source_caps[src_pdo_index];
matching_snk_pdo = port->snk_pdo[snk_pdo_index];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
mv = pdo_fixed_voltage(pdo);
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
mv = pdo_min_voltage(pdo);
break;
default:
dev_err(dev, "TCPM: Invalid PDO selected!\n");
return -EINVAL;
}
/* Select maximum available current within the sink pdo's limit */
if (type == PDO_TYPE_BATT) {
mw = min_power(pdo, matching_snk_pdo);
ma = 1000 * mw / mv;
} else {
ma = min_current(pdo, matching_snk_pdo);
mw = ma * mv / 1000;
}
flags = RDO_USB_COMM | RDO_NO_SUSPEND;
/* Set mismatch bit if offered power is less than operating power */
max_ma = ma;
max_mw = mw;
if (mw < port->operating_snk_mw) {
flags |= RDO_CAP_MISMATCH;
if (type == PDO_TYPE_BATT &&
(pdo_max_power(matching_snk_pdo) > pdo_max_power(pdo)))
max_mw = pdo_max_power(matching_snk_pdo);
else if (pdo_max_current(matching_snk_pdo) >
pdo_max_current(pdo))
max_ma = pdo_max_current(matching_snk_pdo);
}
dev_dbg(dev, "TCPM: cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d\n",
port->cc_req, port->cc1, port->cc2, port->vbus_source,
port->vconn_role == TYPEC_SOURCE ? "source" : "sink",
port->polarity);
if (type == PDO_TYPE_BATT) {
*rdo = RDO_BATT(src_pdo_index + 1, mw, max_mw, flags);
dev_info(dev, "TCPM: requesting PDO %d: %u mV, %u mW%s\n",
src_pdo_index, mv, mw,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
} else {
*rdo = RDO_FIXED(src_pdo_index + 1, ma, max_ma, flags);
dev_info(dev, "TCPM: requesting PDO %d: %u mV, %u mA%s\n",
src_pdo_index, mv, ma,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
}
port->req_current_limit = ma;
port->req_supply_voltage = mv;
return 0;
}
static int tcpm_pd_send_request(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
struct pd_message msg;
int ret;
u32 rdo;
ret = tcpm_pd_build_request(dev, &rdo);
if (ret < 0)
return ret;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(PD_DATA_REQUEST,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 1);
msg.payload[0] = cpu_to_le32(rdo);
return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg);
}
static int tcpm_set_vbus(struct udevice *dev, bool enable)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
int ret;
if (enable && port->vbus_charge)
return -EINVAL;
dev_dbg(dev, "TCPM: set vbus = %d charge = %d\n",
enable, port->vbus_charge);
ret = drvops->set_vbus(dev, enable, port->vbus_charge);
if (ret < 0)
return ret;
port->vbus_source = enable;
return 0;
}
static int tcpm_set_charge(struct udevice *dev, bool charge)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
if (charge && port->vbus_source)
return -EINVAL;
if (charge != port->vbus_charge) {
dev_dbg(dev, "TCPM: set vbus = %d charge = %d\n",
port->vbus_source, charge);
ret = drvops->set_vbus(dev, port->vbus_source,
charge);
if (ret < 0)
return ret;
}
port->vbus_charge = charge;
return 0;
}
static bool tcpm_start_toggling(struct udevice *dev, enum typec_cc_status cc)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
if (!drvops->start_toggling)
return false;
dev_dbg(dev, "TCPM: Start toggling\n");
ret = drvops->start_toggling(dev, port->port_type, cc);
return ret == 0;
}
static int tcpm_init_vbus(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
ret = drvops->set_vbus(dev, false, false);
port->vbus_source = false;
port->vbus_charge = false;
return ret;
}
static int tcpm_init_vconn(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
ret = drvops->set_vconn(dev, false);
port->vconn_role = TYPEC_SINK;
return ret;
}
static inline void tcpm_typec_connect(struct tcpm_port *port)
{
if (!port->connected)
port->connected = true;
}
static int tcpm_src_attach(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum typec_cc_polarity polarity =
port->cc2 == TYPEC_CC_RD ? TYPEC_POLARITY_CC2
: TYPEC_POLARITY_CC1;
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(dev, polarity);
if (ret < 0)
return ret;
ret = tcpm_set_roles(dev, true, TYPEC_SOURCE, TYPEC_HOST);
if (ret < 0)
return ret;
ret = drvops->set_pd_rx(dev, true);
if (ret < 0)
goto out_disable_mux;
/*
* USB Type-C specification, version 1.2,
* chapter 4.5.2.2.8.1 (Attached.SRC Requirements)
* Enable VCONN only if the non-RD port is set to RA.
*/
if ((polarity == TYPEC_POLARITY_CC1 && port->cc2 == TYPEC_CC_RA) ||
(polarity == TYPEC_POLARITY_CC2 && port->cc1 == TYPEC_CC_RA)) {
ret = tcpm_set_vconn(dev, true);
if (ret < 0)
goto out_disable_pd;
}
ret = tcpm_set_vbus(dev, true);
if (ret < 0)
goto out_disable_vconn;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
return 0;
out_disable_vconn:
tcpm_set_vconn(dev, false);
out_disable_pd:
drvops->set_pd_rx(dev, false);
out_disable_mux:
dev_err(dev, "TCPM: CC connected in %s as DFP\n",
polarity ? "CC2" : "CC1");
return 0;
}
static inline void tcpm_typec_disconnect(struct tcpm_port *port)
{
if (port->connected) {
port->partner = NULL;
port->connected = false;
}
}
static void tcpm_reset_port(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
tcpm_timer_uninit(dev);
tcpm_typec_disconnect(port);
tcpm_reset_event_cnt(dev);
port->wait_dr_swap_message = false;
port->attached = false;
port->pd_capable = false;
/*
* First Rx ID should be 0; set this to a sentinel of -1 so that
* we can check tcpm_pd_rx_handler() if we had seen it before.
*/
port->rx_msgid = -1;
drvops->set_pd_rx(dev, false);
tcpm_init_vbus(dev); /* also disables charging */
tcpm_init_vconn(dev);
tcpm_set_current_limit(dev, 0, 0);
tcpm_set_polarity(dev, TYPEC_POLARITY_CC1);
tcpm_set_attached_state(dev, false);
port->nr_sink_caps = 0;
}
static void tcpm_detach(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
if (tcpm_port_is_disconnected(port))
port->hard_reset_count = 0;
if (!port->attached)
return;
tcpm_reset_port(dev);
}
static void tcpm_src_detach(struct udevice *dev)
{
tcpm_detach(dev);
}
static int tcpm_snk_attach(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(dev, port->cc2 != TYPEC_CC_OPEN ?
TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1);
if (ret < 0)
return ret;
ret = tcpm_set_roles(dev, true, TYPEC_SINK, TYPEC_DEVICE);
if (ret < 0)
return ret;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
dev_info(dev, "TCPM: CC connected in %s as UFP\n",
port->cc1 != TYPEC_CC_OPEN ? "CC1" : "CC2");
return 0;
}
static void tcpm_snk_detach(struct udevice *dev)
{
tcpm_detach(dev);
}
static inline enum tcpm_state hard_reset_state(struct tcpm_port *port)
{
if (port->hard_reset_count < PD_N_HARD_RESET_COUNT)
return HARD_RESET_SEND;
if (port->pd_capable)
return ERROR_RECOVERY;
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
if (port->state == SNK_WAIT_CAPABILITIES)
return SNK_READY;
return SNK_UNATTACHED;
}
static inline enum tcpm_state unattached_state(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP) {
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
else
return SNK_UNATTACHED;
} else if (port->port_type == TYPEC_PORT_SRC) {
return SRC_UNATTACHED;
}
return SNK_UNATTACHED;
}
static void run_state_machine(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
port->enter_state = port->state;
switch (port->state) {
case TOGGLING:
break;
/* SRC states */
case SRC_UNATTACHED:
tcpm_src_detach(dev);
if (tcpm_start_toggling(dev, tcpm_rp_cc(port))) {
tcpm_set_state(dev, TOGGLING, 0);
break;
}
tcpm_set_cc(dev, tcpm_rp_cc(port));
if (port->port_type == TYPEC_PORT_DRP)
tcpm_set_state(dev, SNK_UNATTACHED, PD_T_DRP_SNK);
break;
case SRC_ATTACH_WAIT:
if (tcpm_port_is_source(port))
tcpm_set_state(dev, SRC_ATTACHED, PD_T_CC_DEBOUNCE);
break;
case SRC_ATTACHED:
ret = tcpm_src_attach(dev);
/*
* Currently, vbus control is not implemented,
* and the SRC detection process cannot be fully implemented.
*/
tcpm_set_state(dev, SRC_READY, 0);
break;
case SRC_STARTUP:
port->caps_count = 0;
port->negotiated_rev = PD_MAX_REV;
port->message_id = 0;
port->rx_msgid = -1;
port->explicit_contract = false;
tcpm_set_state(dev, SRC_SEND_CAPABILITIES, 0);
break;
case SRC_SEND_CAPABILITIES:
port->caps_count++;
if (port->caps_count > PD_N_CAPS_COUNT) {
tcpm_set_state(dev, SRC_READY, 0);
break;
}
ret = tcpm_pd_send_source_caps(dev);
if (ret < 0) {
tcpm_set_state(dev, SRC_SEND_CAPABILITIES,
PD_T_SEND_SOURCE_CAP);
} else {
/*
* Per standard, we should clear the reset counter here.
* However, that can result in state machine hang-ups.
* Reset it only in READY state to improve stability.
*/
/* port->hard_reset_count = 0; */
port->caps_count = 0;
port->pd_capable = true;
tcpm_set_state_cond(dev, SRC_SEND_CAPABILITIES_TIMEOUT,
PD_T_SEND_SOURCE_CAP);
}
break;
case SRC_SEND_CAPABILITIES_TIMEOUT:
/*
* Error recovery for a PD_DATA_SOURCE_CAP reply timeout.
*
* PD 2.0 sinks are supposed to accept src-capabilities with a
* 3.0 header and simply ignore any src PDOs which the sink does
* not understand such as PPS but some 2.0 sinks instead ignore
* the entire PD_DATA_SOURCE_CAP message, causing contract
* negotiation to fail.
*
* After PD_N_HARD_RESET_COUNT hard-reset attempts, we try
* sending src-capabilities with a lower PD revision to
* make these broken sinks work.
*/
if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) {
tcpm_set_state(dev, HARD_RESET_SEND, 0);
} else if (port->negotiated_rev > PD_REV20) {
port->negotiated_rev--;
port->hard_reset_count = 0;
tcpm_set_state(dev, SRC_SEND_CAPABILITIES, 0);
} else {
tcpm_set_state(dev, hard_reset_state(port), 0);
}
break;
case SRC_NEGOTIATE_CAPABILITIES:
ret = tcpm_pd_check_request(dev);
if (ret < 0) {
tcpm_pd_send_control(dev, PD_CTRL_REJECT);
if (!port->explicit_contract) {
tcpm_set_state(dev,
SRC_WAIT_NEW_CAPABILITIES, 0);
} else {
tcpm_set_state(dev, SRC_READY, 0);
}
} else {
tcpm_pd_send_control(dev, PD_CTRL_ACCEPT);
tcpm_set_state(dev, SRC_TRANSITION_SUPPLY,
PD_T_SRC_TRANSITION);
}
break;
case SRC_TRANSITION_SUPPLY:
/* XXX: regulator_set_voltage(vbus, ...) */
tcpm_pd_send_control(dev, PD_CTRL_PS_RDY);
port->explicit_contract = true;
tcpm_set_state_cond(dev, SRC_READY, 0);
break;
case SRC_READY:
port->hard_reset_count = 0;
tcpm_typec_connect(port);
break;
case SRC_WAIT_NEW_CAPABILITIES:
/* Nothing to do... */
break;
/* SNK states */
case SNK_UNATTACHED:
tcpm_snk_detach(dev);
if (tcpm_start_toggling(dev, TYPEC_CC_RD)) {
tcpm_set_state(dev, TOGGLING, 0);
break;
}
tcpm_set_cc(dev, TYPEC_CC_RD);
if (port->port_type == TYPEC_PORT_DRP)
tcpm_set_state(dev, SRC_UNATTACHED, PD_T_DRP_SRC);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
tcpm_set_state(dev, SNK_DEBOUNCED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, SNK_UNATTACHED,
PD_T_CC_DEBOUNCE);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, SNK_UNATTACHED, PD_T_PD_DEBOUNCE);
else if (port->vbus_present)
tcpm_set_state(dev, SNK_ATTACHED, 0);
else
/* Wait for VBUS, but not forever */
tcpm_set_state(dev, PORT_RESET, PD_T_PS_SOURCE_ON);
break;
case SNK_ATTACHED:
ret = tcpm_snk_attach(dev);
if (ret < 0)
tcpm_set_state(dev, SNK_UNATTACHED, 0);
else
tcpm_set_state(dev, SNK_STARTUP, 0);
break;
case SNK_STARTUP:
port->negotiated_rev = PD_MAX_REV;
port->message_id = 0;
port->rx_msgid = -1;
port->explicit_contract = false;
tcpm_set_state(dev, SNK_DISCOVERY, 0);
break;
case SNK_DISCOVERY:
if (port->vbus_present) {
tcpm_set_current_limit(dev,
tcpm_get_current_limit(port),
5000);
tcpm_set_charge(dev, true);
tcpm_set_state(dev, SNK_WAIT_CAPABILITIES, 0);
break;
}
/*
* For DRP, timeouts differ. Also, handling is supposed to be
* different and much more complex (dead battery detection;
* see USB power delivery specification, section 8.3.3.6.1.5.1).
*/
tcpm_set_state(dev, hard_reset_state(port),
port->port_type == TYPEC_PORT_DRP ?
PD_T_DB_DETECT : PD_T_NO_RESPONSE);
break;
case SNK_DISCOVERY_DEBOUNCE:
tcpm_set_state(dev, SNK_DISCOVERY_DEBOUNCE_DONE,
PD_T_CC_DEBOUNCE);
break;
case SNK_DISCOVERY_DEBOUNCE_DONE:
tcpm_set_state(dev, unattached_state(port), 0);
break;
case SNK_WAIT_CAPABILITIES:
ret = drvops->set_pd_rx(dev, true);
if (ret < 0) {
tcpm_set_state(dev, SNK_READY, 0);
break;
}
/*
* If VBUS has never been low, and we time out waiting
* for source cap, try a soft reset first, in case we
* were already in a stable contract before this boot.
* Do this only once.
*/
if (port->vbus_never_low) {
port->vbus_never_low = false;
tcpm_set_state(dev, SOFT_RESET_SEND,
PD_T_SINK_WAIT_CAP);
} else {
tcpm_set_state(dev, hard_reset_state(port),
PD_T_SINK_WAIT_CAP);
}
break;
case SNK_NEGOTIATE_CAPABILITIES:
port->pd_capable = true;
port->hard_reset_count = 0;
ret = tcpm_pd_send_request(dev);
if (ret < 0) {
/* Let the Source send capabilities again. */
tcpm_set_state(dev, SNK_WAIT_CAPABILITIES, 0);
} else {
tcpm_set_state_cond(dev, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
}
break;
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
tcpm_set_state(dev, hard_reset_state(port),
PD_T_PS_TRANSITION);
break;
case SNK_READY:
port->update_sink_caps = false;
tcpm_typec_connect(port);
/*
* Here poll_event_cnt is cleared, waiting for self-powered Type-C devices
* to send DR_swap Messge until 1s (TCPM_POLL_EVENT_TIME_OUT * 500us)timeout
*/
if (port->wait_dr_swap_message)
tcpm_reset_event_cnt(dev);
break;
/* Hard_Reset states */
case HARD_RESET_SEND:
tcpm_pd_transmit(dev, TCPC_TX_HARD_RESET, NULL);
tcpm_set_state(dev, HARD_RESET_START, 0);
port->wait_dr_swap_message = false;
break;
case HARD_RESET_START:
port->hard_reset_count++;
drvops->set_pd_rx(dev, false);
port->nr_sink_caps = 0;
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(dev, SRC_HARD_RESET_VBUS_OFF,
PD_T_PS_HARD_RESET);
else
tcpm_set_state(dev, SNK_HARD_RESET_SINK_OFF, 0);
break;
case SRC_HARD_RESET_VBUS_OFF:
tcpm_set_vconn(dev, true);
tcpm_set_vbus(dev, false);
tcpm_set_roles(dev, port->self_powered, TYPEC_SOURCE,
TYPEC_HOST);
tcpm_set_state(dev, SRC_HARD_RESET_VBUS_ON, PD_T_SRC_RECOVER);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_vconn(dev, true);
tcpm_set_vbus(dev, true);
drvops->set_pd_rx(dev, true);
tcpm_set_attached_state(dev, true);
tcpm_set_state(dev, SRC_UNATTACHED, PD_T_PS_SOURCE_ON);
break;
case SNK_HARD_RESET_SINK_OFF:
tcpm_set_vconn(dev, false);
if (port->pd_capable)
tcpm_set_charge(dev, false);
tcpm_set_roles(dev, port->self_powered, TYPEC_SINK,
TYPEC_DEVICE);
/*
* VBUS may or may not toggle, depending on the adapter.
* If it doesn't toggle, transition to SNK_HARD_RESET_SINK_ON
* directly after timeout.
*/
tcpm_set_state(dev, SNK_HARD_RESET_SINK_ON, PD_T_SAFE_0V);
break;
case SNK_HARD_RESET_WAIT_VBUS:
/* Assume we're disconnected if VBUS doesn't come back. */
tcpm_set_state(dev, SNK_UNATTACHED,
PD_T_SRC_RECOVER_MAX + PD_T_SRC_TURN_ON);
break;
case SNK_HARD_RESET_SINK_ON:
/* Note: There is no guarantee that VBUS is on in this state */
/*
* XXX:
* The specification suggests that dual mode ports in sink
* mode should transition to state PE_SRC_Transition_to_default.
* See USB power delivery specification chapter 8.3.3.6.1.3.
* This would mean to
* - turn off VCONN, reset power supply
* - request hardware reset
* - turn on VCONN
* - Transition to state PE_Src_Startup
* SNK only ports shall transition to state Snk_Startup
* (see chapter 8.3.3.3.8).
* Similar, dual-mode ports in source mode should transition
* to PE_SNK_Transition_to_default.
*/
if (port->pd_capable) {
tcpm_set_current_limit(dev,
tcpm_get_current_limit(port),
5000);
tcpm_set_charge(dev, true);
}
tcpm_set_attached_state(dev, true);
tcpm_set_state(dev, SNK_STARTUP, 0);
break;
/* Soft_Reset states */
case SOFT_RESET:
port->message_id = 0;
port->rx_msgid = -1;
tcpm_pd_send_control(dev, PD_CTRL_ACCEPT);
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(dev, SRC_SEND_CAPABILITIES, 0);
else
tcpm_set_state(dev, SNK_WAIT_CAPABILITIES, 0);
break;
case SOFT_RESET_SEND:
port->message_id = 0;
port->rx_msgid = -1;
if (tcpm_pd_send_control(dev, PD_CTRL_SOFT_RESET))
tcpm_set_state_cond(dev, hard_reset_state(port), 0);
else
tcpm_set_state_cond(dev, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
break;
/* DR_Swap states */
case DR_SWAP_ACCEPT:
tcpm_pd_send_control(dev, PD_CTRL_ACCEPT);
tcpm_set_state_cond(dev, DR_SWAP_CHANGE_DR, 0);
break;
case DR_SWAP_CHANGE_DR:
if (port->data_role == TYPEC_HOST) {
tcpm_set_roles(dev, true, port->pwr_role,
TYPEC_DEVICE);
} else {
tcpm_set_roles(dev, true, port->pwr_role,
TYPEC_HOST);
}
/* DR_swap process complete, wait_dr_swap_message is cleared */
port->wait_dr_swap_message = false;
tcpm_set_state(dev, ready_state(port), 0);
break;
case ERROR_RECOVERY:
tcpm_set_state(dev, PORT_RESET, 0);
break;
case PORT_RESET:
tcpm_reset_port(dev);
if (port->self_powered)
tcpm_set_cc(dev, TYPEC_CC_OPEN);
else
tcpm_set_cc(dev, tcpm_default_state(port) == SNK_UNATTACHED ?
TYPEC_CC_RD : tcpm_rp_cc(port));
tcpm_set_state(dev, PORT_RESET_WAIT_OFF,
PD_T_ERROR_RECOVERY);
break;
case PORT_RESET_WAIT_OFF:
tcpm_set_state(dev,
tcpm_default_state(port),
port->vbus_present ? PD_T_PS_SOURCE_OFF : 0);
break;
default:
dev_err(dev, "TCPM: Unexpected port state %d\n", port->state);
break;
}
}
static void tcpm_state_machine(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum tcpm_state prev_state;
mutex_lock(&port->lock);
port->state_machine_running = true;
if (port->queued_message && tcpm_send_queued_message(dev))
goto done;
/* If we were queued due to a delayed state change, update it now */
if (port->delayed_state) {
dev_dbg(dev, "TCPM: state change %s -> %s [delayed %ld ms]\n",
tcpm_states[port->state],
tcpm_states[port->delayed_state], port->delay_ms);
port->prev_state = port->state;
port->state = port->delayed_state;
port->delayed_state = INVALID_STATE;
}
/*
* Continue running as long as we have (non-delayed) state changes
* to make.
*/
do {
prev_state = port->state;
run_state_machine(dev);
if (port->queued_message)
tcpm_send_queued_message(dev);
} while (port->state != prev_state && !port->delayed_state);
done:
port->state_machine_running = false;
mutex_unlock(&port->lock);
}
static void _tcpm_cc_change(struct udevice *dev, enum typec_cc_status cc1,
enum typec_cc_status cc2)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum typec_cc_status old_cc1, old_cc2;
enum tcpm_state new_state;
old_cc1 = port->cc1;
old_cc2 = port->cc2;
port->cc1 = cc1;
port->cc2 = cc2;
dev_dbg(dev, "TCPM: CC1: %u -> %u, CC2: %u -> %u [state %s, polarity %d, %s]\n",
old_cc1, cc1, old_cc2, cc2, tcpm_states[port->state],
port->polarity,
tcpm_port_is_disconnected(port) ? "disconnected" : "connected");
switch (port->state) {
case TOGGLING:
if (tcpm_port_is_source(port))
tcpm_set_state(dev, SRC_ATTACH_WAIT, 0);
else if (tcpm_port_is_sink(port))
tcpm_set_state(dev, SNK_ATTACH_WAIT, 0);
break;
case SRC_UNATTACHED:
case SRC_ATTACH_WAIT:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, SRC_UNATTACHED, 0);
else if (cc1 != old_cc1 || cc2 != old_cc2)
tcpm_set_state(dev, SRC_ATTACH_WAIT, 0);
break;
case SRC_ATTACHED:
case SRC_SEND_CAPABILITIES:
case SRC_READY:
if (tcpm_port_is_disconnected(port) ||
!tcpm_port_is_source(port))
tcpm_set_state(dev, SRC_UNATTACHED, 0);
break;
case SNK_UNATTACHED:
if (tcpm_port_is_sink(port))
tcpm_set_state(dev, SNK_ATTACH_WAIT, 0);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
new_state = SNK_DEBOUNCED;
else if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else
break;
if (new_state != port->delayed_state)
tcpm_set_state(dev, SNK_ATTACH_WAIT, 0);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else if (port->vbus_present)
new_state = tcpm_try_src(port) ? INVALID_STATE : SNK_ATTACHED;
else
new_state = SNK_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(dev, SNK_DEBOUNCED, 0);
break;
case SNK_READY:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, unattached_state(port), 0);
else if (!port->pd_capable &&
(cc1 != old_cc1 || cc2 != old_cc2))
tcpm_set_current_limit(dev,
tcpm_get_current_limit(port),
5000);
break;
case SNK_DISCOVERY:
/* CC line is unstable, wait for debounce */
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, SNK_DISCOVERY_DEBOUNCE, 0);
break;
case SNK_DISCOVERY_DEBOUNCE:
break;
case PORT_RESET:
case PORT_RESET_WAIT_OFF:
/*
* State set back to default mode once the timer completes.
* Ignore CC changes here.
*/
break;
default:
/*
* While acting as sink and auto vbus discharge is enabled, Allow disconnect
* to be driven by vbus disconnect.
*/
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, unattached_state(port), 0);
break;
}
}
static void _tcpm_pd_vbus_on(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
dev_dbg(dev, "TCPM: VBUS on event\n");
port->vbus_present = true;
/*
* When vbus_present is true i.e. Voltage at VBUS is greater than VSAFE5V implicitly
* states that vbus is not at VSAFE0V, hence clear the vbus_vsafe0v flag here.
*/
port->vbus_vsafe0v = false;
switch (port->state) {
case SNK_TRANSITION_SINK_VBUS:
port->explicit_contract = true;
tcpm_set_state(dev, SNK_READY, 0);
break;
case SNK_DISCOVERY:
tcpm_set_state(dev, SNK_DISCOVERY, 0);
break;
case SNK_DEBOUNCED:
tcpm_set_state(dev, SNK_ATTACHED, 0);
break;
case SNK_HARD_RESET_WAIT_VBUS:
tcpm_set_state(dev, SNK_HARD_RESET_SINK_ON, 0);
break;
case SRC_ATTACHED:
tcpm_set_state(dev, SRC_STARTUP, 0);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_state(dev, SRC_STARTUP, 0);
break;
case PORT_RESET:
case PORT_RESET_WAIT_OFF:
/*
* State set back to default mode once the timer completes.
* Ignore vbus changes here.
*/
break;
default:
break;
}
}
static void _tcpm_pd_vbus_off(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
dev_dbg(dev, "TCPM: VBUS off event\n");
port->vbus_present = false;
port->vbus_never_low = false;
switch (port->state) {
case SNK_HARD_RESET_SINK_OFF:
tcpm_set_state(dev, SNK_HARD_RESET_WAIT_VBUS, 0);
break;
case HARD_RESET_SEND:
break;
case SNK_ATTACH_WAIT:
tcpm_set_state(dev, SNK_UNATTACHED, 0);
break;
case SNK_NEGOTIATE_CAPABILITIES:
break;
case PORT_RESET_WAIT_OFF:
tcpm_set_state(dev, tcpm_default_state(port), 0);
break;
case PORT_RESET:
/*
* State set back to default mode once the timer completes.
* Ignore vbus changes here.
*/
break;
default:
if (port->pwr_role == TYPEC_SINK && port->attached)
tcpm_set_state(dev, SNK_UNATTACHED, 0);
break;
}
}
void tcpm_cc_change(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
enum typec_cc_status cc1, cc2;
tcpm_reset_event_cnt(dev);
if (drvops->get_cc(dev, &cc1, &cc2) == 0)
_tcpm_cc_change(dev, cc1, cc2);
}
void tcpm_vbus_change(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
bool vbus;
tcpm_reset_event_cnt(dev);
vbus = drvops->get_vbus(dev);
if (vbus)
_tcpm_pd_vbus_on(dev);
else
_tcpm_pd_vbus_off(dev);
}
void tcpm_pd_hard_reset(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
tcpm_reset_event_cnt(dev);
dev_dbg(dev, "TCPM: Received hard reset\n");
/* If a hard reset message is received during the port reset process,
* we should ignore it, that is, do not set port->state to HARD_RESET_START.
*/
if (port->state == PORT_RESET || port->state == PORT_RESET_WAIT_OFF)
return;
/*
* If we keep receiving hard reset requests, executing the hard reset
* must have failed. Revert to error recovery if that happens.
*/
tcpm_set_state(dev,
port->hard_reset_count < PD_N_HARD_RESET_COUNT ?
HARD_RESET_START : ERROR_RECOVERY,
0);
}
static void tcpm_init(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum typec_cc_status cc1, cc2;
drvops->init(dev);
tcpm_reset_port(dev);
/*
* XXX
* Should possibly wait for VBUS to settle if it was enabled locally
* since tcpm_reset_port() will disable VBUS.
*/
port->vbus_present = drvops->get_vbus(dev);
if (port->vbus_present)
port->vbus_never_low = true;
/*
* 1. When vbus_present is true, voltage on VBUS is already at VSAFE5V.
* So implicitly vbus_vsafe0v = false.
*
* 2. When vbus_present is false and TCPC does NOT support querying
* vsafe0v status, then, it's best to assume vbus is at VSAFE0V i.e.
* vbus_vsafe0v is true.
*
* 3. When vbus_present is false and TCPC does support querying vsafe0v,
* then, query tcpc for vsafe0v status.
*/
if (port->vbus_present)
port->vbus_vsafe0v = false;
else
port->vbus_vsafe0v = true;
tcpm_set_state(dev, tcpm_default_state(port), 0);
if (drvops->get_cc(dev, &cc1, &cc2) == 0)
_tcpm_cc_change(dev, cc1, cc2);
}
static int tcpm_fw_get_caps(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
ofnode node;
const char *cap_str;
int ret;
u32 mw;
ret = drvops->get_connector_node(dev, &node);
if (ret)
return ret;
cap_str = ofnode_read_string(node, "power-role");
if (!cap_str)
return -EINVAL;
if (!strcmp("dual", cap_str))
port->typec_type = TYPEC_PORT_DRP;
else if (!strcmp("source", cap_str))
port->typec_type = TYPEC_PORT_SRC;
else if (!strcmp("sink", cap_str))
port->typec_type = TYPEC_PORT_SNK;
else
return -EINVAL;
port->port_type = port->typec_type;
if (port->port_type == TYPEC_PORT_SNK)
goto sink;
/* Get source pdos */
ret = ofnode_read_size(node, "source-pdos") / sizeof(u32);
if (ret <= 0)
return -EINVAL;
port->nr_src_pdo = min(ret, PDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "source-pdos",
port->src_pdo, port->nr_src_pdo);
if (ret || tcpm_validate_caps(dev, port->src_pdo, port->nr_src_pdo))
return -EINVAL;
if (port->port_type == TYPEC_PORT_SRC)
return 0;
/* Get the preferred power role for DRP */
cap_str = ofnode_read_string(node, "try-power-role");
if (!cap_str)
return -EINVAL;
if (!strcmp("sink", cap_str))
port->typec_prefer_role = TYPEC_SINK;
else if (!strcmp("source", cap_str))
port->typec_prefer_role = TYPEC_SOURCE;
else
return -EINVAL;
if (port->typec_prefer_role < 0)
return -EINVAL;
sink:
/* Get sink pdos */
ret = ofnode_read_size(node, "sink-pdos") / sizeof(u32);
if (ret <= 0)
return -EINVAL;
port->nr_snk_pdo = min(ret, PDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "sink-pdos",
port->snk_pdo, port->nr_snk_pdo);
if (ret || tcpm_validate_caps(dev, port->snk_pdo, port->nr_snk_pdo))
return -EINVAL;
if (ofnode_read_u32_array(node, "op-sink-microwatt", &mw, 1))
return -EINVAL;
port->operating_snk_mw = mw / 1000;
port->self_powered = ofnode_read_bool(node, "self-powered");
return 0;
}
static int tcpm_port_init(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
int err;
err = tcpm_fw_get_caps(dev);
if (err < 0) {
dev_err(dev, "TCPM: please check the dts config: %d\n", err);
return err;
}
port->try_role = port->typec_prefer_role;
port->port_type = port->typec_type;
tcpm_init(dev);
dev_info(dev, "TCPM: init finished\n");
return 0;
}
static void tcpm_poll_event(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
if (!drvops->get_vbus(dev))
return;
while (port->poll_event_cnt < TCPM_POLL_EVENT_TIME_OUT) {
if (!port->wait_dr_swap_message &&
(port->state == SNK_READY || port->state == SRC_READY))
break;
drvops->poll_event(dev);
port->poll_event_cnt++;
udelay(500);
tcpm_check_and_run_delayed_work(dev);
}
if (port->state != SNK_READY && port->state != SRC_READY)
dev_warn(dev, "TCPM: exit in state %s\n",
tcpm_states[port->state]);
/*
* At this time, call the callback function of the respective pd chip
* to enter the low-power mode. In order to reduce the time spent on
* the PD chip driver as much as possible, the tcpm framework does not
* fully process the communication initiated by the device,so it should
* be noted that we can disable the internal oscillator, etc., but do
* not turn off the power of the transceiver module, otherwise the
* self-powered Type-C device will initiate a Message(eg: self-powered
* Type-C hub initiates a SINK capability request(PD_CTRL_GET_SINK_CAP))
* and the pd chip cannot reply to GoodCRC, causing the self-powered Type-C
* device to switch vbus to vSafe5v, or even turn off vbus.
*/
if (!drvops->enter_low_power_mode)
return;
if (drvops->enter_low_power_mode(dev, port->attached, port->pd_capable))
dev_err(dev, "TCPM: failed to enter low power\n");
else
dev_info(dev, "TCPM: PD chip enter low power mode\n");
}
int tcpm_post_probe(struct udevice *dev)
{
int ret = tcpm_port_init(dev);
if (ret < 0) {
dev_err(dev, "failed to tcpm port init\n");
return ret;
}
tcpm_poll_event(dev);
return 0;
}