// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2015-2017 Google, Inc * * USB Power Delivery protocol stack. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "tcpm-internal.h" DECLARE_GLOBAL_DATA_PTR; const char * const tcpm_states[] = { FOREACH_TCPM_STATE(GENERATE_TCPM_STRING) }; const char * const typec_pd_rev_name[] = { [PD_REV10] = "rev1", [PD_REV20] = "rev2", [PD_REV30] = "rev3", }; const char * const typec_role_name[] = { [TYPEC_SINK] = "sink", [TYPEC_SOURCE] = "source", }; const char * const typec_data_role_name[] = { [TYPEC_DEVICE] = "device", [TYPEC_HOST] = "host", }; const char * const typec_orientation_name[] = { [TYPEC_ORIENTATION_NONE] = "none", [TYPEC_ORIENTATION_NORMAL] = "normal", [TYPEC_ORIENTATION_REVERSE] = "reverse", }; const char * const typec_cc_status_name[] = { [TYPEC_CC_OPEN] = "open", [TYPEC_CC_RA] = "ra", [TYPEC_CC_RD] = "rd", [TYPEC_CC_RP_DEF] = "rp-def", [TYPEC_CC_RP_1_5] = "rp-1.5", [TYPEC_CC_RP_3_0] = "rp-3.0", }; static inline bool tcpm_cc_is_sink(enum typec_cc_status cc) { return cc == TYPEC_CC_RP_DEF || cc == TYPEC_CC_RP_1_5 || cc == TYPEC_CC_RP_3_0; } static inline bool tcpm_port_is_sink(struct tcpm_port *port) { bool cc1_is_snk = tcpm_cc_is_sink(port->cc1); bool cc2_is_snk = tcpm_cc_is_sink(port->cc2); return (cc1_is_snk && !cc2_is_snk) || (cc2_is_snk && !cc1_is_snk); } static inline bool tcpm_cc_is_source(enum typec_cc_status cc) { return cc == TYPEC_CC_RD; } static inline bool tcpm_port_is_source(struct tcpm_port *port) { bool cc1_is_src = tcpm_cc_is_source(port->cc1); bool cc2_is_src = tcpm_cc_is_source(port->cc2); return (cc1_is_src && !cc2_is_src) || (cc2_is_src && !cc1_is_src); } static inline bool tcpm_try_src(struct tcpm_port *port) { return port->try_role == TYPEC_SOURCE && port->port_type == TYPEC_PORT_DRP; } static inline void tcpm_reset_event_cnt(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); port->poll_event_cnt = 0; } static enum tcpm_state tcpm_default_state(struct tcpm_port *port) { if (port->port_type == TYPEC_PORT_DRP) { if (port->try_role == TYPEC_SINK) return SNK_UNATTACHED; else if (port->try_role == TYPEC_SOURCE) return SRC_UNATTACHED; } else if (port->port_type == TYPEC_PORT_SNK) { return SNK_UNATTACHED; } return SRC_UNATTACHED; } static bool tcpm_port_is_disconnected(struct tcpm_port *port) { return (!port->attached && port->cc1 == TYPEC_CC_OPEN && port->cc2 == TYPEC_CC_OPEN) || (port->attached && ((port->polarity == TYPEC_POLARITY_CC1 && port->cc1 == TYPEC_CC_OPEN) || (port->polarity == TYPEC_POLARITY_CC2 && port->cc2 == TYPEC_CC_OPEN))); } static void tcpm_set_cc(struct udevice *dev, enum typec_cc_status cc) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); dev_dbg(dev, "TCPM: set cc = %d\n", cc); port->cc_req = cc; drvops->set_cc(dev, cc); } /* * Determine RP value to set based on maximum current supported * by a port if configured as source. * Returns CC value to report to link partner. */ static enum typec_cc_status tcpm_rp_cc(struct tcpm_port *port) { const u32 *src_pdo = port->src_pdo; int nr_pdo = port->nr_src_pdo; int i; /* * Search for first entry with matching voltage. * It should report the maximum supported current. */ for (i = 0; i < nr_pdo; i++) { const u32 pdo = src_pdo[i]; if (pdo_type(pdo) == PDO_TYPE_FIXED && pdo_fixed_voltage(pdo) == 5000) { unsigned int curr = pdo_max_current(pdo); if (curr >= 3000) return TYPEC_CC_RP_3_0; else if (curr >= 1500) return TYPEC_CC_RP_1_5; return TYPEC_CC_RP_DEF; } } return TYPEC_CC_RP_DEF; } static void tcpm_check_and_run_delayed_work(struct udevice *dev); static bool tcpm_transmit_helper(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); drvops->poll_event(dev); udelay(500); tcpm_check_and_run_delayed_work(dev); return port->tx_complete; } static int tcpm_pd_transmit(struct udevice *dev, enum tcpm_transmit_type type, const struct pd_message *msg) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); u32 timeout_us = PD_T_TCPC_TX_TIMEOUT * 1000; bool tx_complete; int ret; if (msg) dev_dbg(dev, "TCPM: PD TX, header: %#x\n", le16_to_cpu(msg->header)); else dev_dbg(dev, "TCPM: PD TX, type: %#x\n", type); port->tx_complete = false; ret = drvops->pd_transmit(dev, type, msg, port->negotiated_rev); if (ret < 0) return ret; /* * At this point we basically need to block until the TCPM controller * returns successful transmission. Since this is usually done using * the generic interrupt status bits, we poll for any events. That * will clear the interrupt status, so we also need to process any * of the incoming events. This means we will do more processing and * thus let's give everything a bit more time. */ timeout_us *= 5; ret = read_poll_timeout(tcpm_transmit_helper, tx_complete, !tx_complete, false, timeout_us, dev); if (ret < 0) { dev_err(dev, "TCPM: PD transmit data failed: %d\n", ret); return ret; } switch (port->tx_status) { case TCPC_TX_SUCCESS: port->message_id = (port->message_id + 1) & PD_HEADER_ID_MASK; break; case TCPC_TX_DISCARDED: ret = -EAGAIN; break; case TCPC_TX_FAILED: default: ret = -EIO; break; } return ret; } void tcpm_pd_transmit_complete(struct udevice *dev, enum tcpm_transmit_status status) { struct tcpm_port *port = dev_get_uclass_plat(dev); dev_dbg(dev, "TCPM: PD TX complete, status: %u\n", status); tcpm_reset_event_cnt(dev); port->tx_status = status; port->tx_complete = true; } static int tcpm_set_polarity(struct udevice *dev, enum typec_cc_polarity polarity) { struct tcpm_port *port = dev_get_uclass_plat(dev); const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); int ret; dev_dbg(dev, "TCPM: set polarity = %d\n", polarity); if (drvops->set_polarity) { ret = drvops->set_polarity(dev, polarity); if (ret < 0) return ret; } port->polarity = polarity; return 0; } static int tcpm_set_vconn(struct udevice *dev, bool enable) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); int ret; dev_dbg(dev, "TCPM: set vconn = %d\n", enable); ret = drvops->set_vconn(dev, enable); if (!ret) port->vconn_role = enable ? TYPEC_SOURCE : TYPEC_SINK; return ret; } static inline u32 tcpm_get_current_limit(struct tcpm_port *port) { switch (port->polarity ? port->cc2 : port->cc1) { case TYPEC_CC_RP_1_5: return 1500; case TYPEC_CC_RP_3_0: return 3000; case TYPEC_CC_RP_DEF: default: return 0; } } static int tcpm_set_current_limit(struct udevice *dev, u32 max_ma, u32 mv) { struct tcpm_port *port = dev_get_uclass_plat(dev); int ret = -EOPNOTSUPP; dev_info(dev, "TCPM: set voltage limit = %u mV\n", mv); dev_info(dev, "TCPM: set current limit = %u mA\n", max_ma); port->supply_voltage = mv; port->current_limit = max_ma; return ret; } static int tcpm_set_attached_state(struct udevice *dev, bool attached) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); return drvops->set_roles(dev, attached, port->pwr_role, port->data_role); } static int tcpm_set_roles(struct udevice *dev, bool attached, enum typec_role role, enum typec_data_role data) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); int ret; ret = drvops->set_roles(dev, attached, role, data); if (ret < 0) return ret; port->pwr_role = role; port->data_role = data; return 0; } static int tcpm_pd_send_source_caps(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); struct pd_message msg; int i; memset(&msg, 0, sizeof(msg)); if (!port->nr_src_pdo) { /* No source capabilities defined, sink only */ msg.header = PD_HEADER_LE(PD_CTRL_REJECT, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); } else { msg.header = PD_HEADER_LE(PD_DATA_SOURCE_CAP, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, port->nr_src_pdo); } for (i = 0; i < port->nr_src_pdo; i++) msg.payload[i] = cpu_to_le32(port->src_pdo[i]); return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg); } static int tcpm_pd_send_sink_caps(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); struct pd_message msg; unsigned int i; memset(&msg, 0, sizeof(msg)); if (!port->nr_snk_pdo) { /* No sink capabilities defined, source only */ msg.header = PD_HEADER_LE(PD_CTRL_REJECT, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); } else { msg.header = PD_HEADER_LE(PD_DATA_SINK_CAP, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, port->nr_snk_pdo); } for (i = 0; i < port->nr_snk_pdo; i++) msg.payload[i] = cpu_to_le32(port->snk_pdo[i]); return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg); } static void tcpm_state_machine(struct udevice *dev); static inline void tcpm_timer_uninit(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); port->delay_target = 0; } static void tcpm_timer_init(struct udevice *dev, uint32_t ms) { struct tcpm_port *port = dev_get_uclass_plat(dev); unsigned long time_us = ms * 1000; port->delay_target = timer_get_us() + time_us; } static void tcpm_check_and_run_delayed_work(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); /* no delayed state changes scheduled */ if (port->delay_target == 0) return; /* it's not yet time */ if (timer_get_us() < port->delay_target) return; tcpm_timer_uninit(dev); tcpm_state_machine(dev); } static void mod_tcpm_delayed_work(struct udevice *dev, unsigned int delay_ms) { if (delay_ms) { tcpm_timer_init(dev, delay_ms); } else { tcpm_timer_uninit(dev); tcpm_state_machine(dev); } } static void tcpm_set_state(struct udevice *dev, enum tcpm_state state, unsigned int delay_ms) { struct tcpm_port *port = dev_get_uclass_plat(dev); if (delay_ms) { dev_dbg(dev, "TCPM: pending state change %s -> %s @ %u ms [%s]\n", tcpm_states[port->state], tcpm_states[state], delay_ms, typec_pd_rev_name[port->negotiated_rev]); port->delayed_state = state; mod_tcpm_delayed_work(dev, delay_ms); port->delay_ms = delay_ms; } else { dev_dbg(dev, "TCPM: state change %s -> %s\n", tcpm_states[port->state], tcpm_states[state]); port->delayed_state = INVALID_STATE; port->prev_state = port->state; port->state = state; /* * Don't re-queue the state machine work item if we're currently * in the state machine and we're immediately changing states. * tcpm_state_machine_work() will continue running the state * machine. */ if (!port->state_machine_running) mod_tcpm_delayed_work(dev, 0); } } static void tcpm_set_state_cond(struct udevice *dev, enum tcpm_state state, unsigned int delay_ms) { struct tcpm_port *port = dev_get_uclass_plat(dev); if (port->enter_state == port->state) tcpm_set_state(dev, state, delay_ms); else dev_dbg(dev, "TCPM: skipped %sstate change %s -> %s [%u ms], context state %s [%s]\n", delay_ms ? "delayed " : "", tcpm_states[port->state], tcpm_states[state], delay_ms, tcpm_states[port->enter_state], typec_pd_rev_name[port->negotiated_rev]); } static void tcpm_queue_message(struct udevice *dev, enum pd_msg_request message) { struct tcpm_port *port = dev_get_uclass_plat(dev); port->queued_message = message; mod_tcpm_delayed_work(dev, 0); } enum pdo_err { PDO_NO_ERR, PDO_ERR_NO_VSAFE5V, PDO_ERR_VSAFE5V_NOT_FIRST, PDO_ERR_PDO_TYPE_NOT_IN_ORDER, PDO_ERR_FIXED_NOT_SORTED, PDO_ERR_VARIABLE_BATT_NOT_SORTED, PDO_ERR_DUPE_PDO, PDO_ERR_PPS_APDO_NOT_SORTED, PDO_ERR_DUPE_PPS_APDO, }; static const char * const pdo_err_msg[] = { [PDO_ERR_NO_VSAFE5V] = " err: source/sink caps should at least have vSafe5V", [PDO_ERR_VSAFE5V_NOT_FIRST] = " err: vSafe5V Fixed Supply Object Shall always be the first object", [PDO_ERR_PDO_TYPE_NOT_IN_ORDER] = " err: PDOs should be in the following order: Fixed; Battery; Variable", [PDO_ERR_FIXED_NOT_SORTED] = " err: Fixed supply pdos should be in increasing order of their fixed voltage", [PDO_ERR_VARIABLE_BATT_NOT_SORTED] = " err: Variable/Battery supply pdos should be in increasing order of their minimum voltage", [PDO_ERR_DUPE_PDO] = " err: Variable/Batt supply pdos cannot have same min/max voltage", [PDO_ERR_PPS_APDO_NOT_SORTED] = " err: Programmable power supply apdos should be in increasing order of their maximum voltage", [PDO_ERR_DUPE_PPS_APDO] = " err: Programmable power supply apdos cannot have same min/max voltage and max current", }; static enum pdo_err tcpm_caps_err(struct udevice *dev, const u32 *pdo, unsigned int nr_pdo) { unsigned int i; /* Should at least contain vSafe5v */ if (nr_pdo < 1) return PDO_ERR_NO_VSAFE5V; /* The vSafe5V Fixed Supply Object Shall always be the first object */ if (pdo_type(pdo[0]) != PDO_TYPE_FIXED || pdo_fixed_voltage(pdo[0]) != VSAFE5V) return PDO_ERR_VSAFE5V_NOT_FIRST; for (i = 1; i < nr_pdo; i++) { if (pdo_type(pdo[i]) < pdo_type(pdo[i - 1])) { return PDO_ERR_PDO_TYPE_NOT_IN_ORDER; } else if (pdo_type(pdo[i]) == pdo_type(pdo[i - 1])) { enum pd_pdo_type type = pdo_type(pdo[i]); switch (type) { /* * The remaining Fixed Supply Objects, if * present, shall be sent in voltage order; * lowest to highest. */ case PDO_TYPE_FIXED: if (pdo_fixed_voltage(pdo[i]) <= pdo_fixed_voltage(pdo[i - 1])) return PDO_ERR_FIXED_NOT_SORTED; break; /* * The Battery Supply Objects and Variable * supply, if present shall be sent in Minimum * Voltage order; lowest to highest. */ case PDO_TYPE_VAR: case PDO_TYPE_BATT: if (pdo_min_voltage(pdo[i]) < pdo_min_voltage(pdo[i - 1])) return PDO_ERR_VARIABLE_BATT_NOT_SORTED; else if ((pdo_min_voltage(pdo[i]) == pdo_min_voltage(pdo[i - 1])) && (pdo_max_voltage(pdo[i]) == pdo_max_voltage(pdo[i - 1]))) return PDO_ERR_DUPE_PDO; break; /* * The Programmable Power Supply APDOs, if present, * shall be sent in Maximum Voltage order; * lowest to highest. */ case PDO_TYPE_APDO: if (pdo_apdo_type(pdo[i]) != APDO_TYPE_PPS) break; if (pdo_pps_apdo_max_voltage(pdo[i]) < pdo_pps_apdo_max_voltage(pdo[i - 1])) return PDO_ERR_PPS_APDO_NOT_SORTED; else if (pdo_pps_apdo_min_voltage(pdo[i]) == pdo_pps_apdo_min_voltage(pdo[i - 1]) && pdo_pps_apdo_max_voltage(pdo[i]) == pdo_pps_apdo_max_voltage(pdo[i - 1]) && pdo_pps_apdo_max_current(pdo[i]) == pdo_pps_apdo_max_current(pdo[i - 1])) return PDO_ERR_DUPE_PPS_APDO; break; default: dev_err(dev, "TCPM: Unknown pdo type\n"); } } } return PDO_NO_ERR; } static int tcpm_validate_caps(struct udevice *dev, const u32 *pdo, unsigned int nr_pdo) { enum pdo_err err_index = tcpm_caps_err(dev, pdo, nr_pdo); if (err_index != PDO_NO_ERR) { dev_err(dev, "TCPM:%s\n", pdo_err_msg[err_index]); return -EINVAL; } return 0; } /* * PD (data, control) command handling functions */ static inline enum tcpm_state ready_state(struct tcpm_port *port) { if (port->pwr_role == TYPEC_SOURCE) return SRC_READY; else return SNK_READY; } static void tcpm_pd_data_request(struct udevice *dev, const struct pd_message *msg) { enum pd_data_msg_type type = pd_header_type_le(msg->header); struct tcpm_port *port = dev_get_uclass_plat(dev); unsigned int cnt = pd_header_cnt_le(msg->header); unsigned int rev = pd_header_rev_le(msg->header); unsigned int i; switch (type) { case PD_DATA_SOURCE_CAP: for (i = 0; i < cnt; i++) port->source_caps[i] = le32_to_cpu(msg->payload[i]); port->nr_source_caps = cnt; tcpm_validate_caps(dev, port->source_caps, port->nr_source_caps); /* * Adjust revision in subsequent message headers, as required, * to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't * support Rev 1.0 so just do nothing in that scenario. */ if (rev == PD_REV10) break; if (rev < PD_MAX_REV) port->negotiated_rev = rev; if ((pdo_type(port->source_caps[0]) == PDO_TYPE_FIXED) && (port->source_caps[0] & PDO_FIXED_DUAL_ROLE) && (port->source_caps[0] & PDO_FIXED_DATA_SWAP)) { /* Dual role power and data, eg: self-powered Type-C */ port->wait_dr_swap_message = true; } else { /* Non-Dual role power, eg: adapter */ port->wait_dr_swap_message = false; } /* * This message may be received even if VBUS is not * present. This is quite unexpected; see USB PD * specification, sections 8.3.3.6.3.1 and 8.3.3.6.3.2. * However, at the same time, we must be ready to * receive this message and respond to it 15ms after * receiving PS_RDY during power swap operations, no matter * if VBUS is available or not (USB PD specification, * section 6.5.9.2). * So we need to accept the message either way, * but be prepared to keep waiting for VBUS after it was * handled. */ tcpm_set_state(dev, SNK_NEGOTIATE_CAPABILITIES, 0); break; case PD_DATA_REQUEST: /* * Adjust revision in subsequent message headers, as required, * to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't * support Rev 1.0 so just reject in that scenario. */ if (rev == PD_REV10) { tcpm_queue_message(dev, PD_MSG_CTRL_REJECT); break; } if (rev < PD_MAX_REV) port->negotiated_rev = rev; port->sink_request = le32_to_cpu(msg->payload[0]); tcpm_set_state(dev, SRC_NEGOTIATE_CAPABILITIES, 0); break; case PD_DATA_SINK_CAP: /* We don't do anything with this at the moment... */ for (i = 0; i < cnt; i++) port->sink_caps[i] = le32_to_cpu(msg->payload[i]); port->nr_sink_caps = cnt; break; default: break; } } static void tcpm_pd_ctrl_request(struct udevice *dev, const struct pd_message *msg) { enum pd_ctrl_msg_type type = pd_header_type_le(msg->header); struct tcpm_port *port = dev_get_uclass_plat(dev); enum tcpm_state next_state; switch (type) { case PD_CTRL_GOOD_CRC: case PD_CTRL_PING: break; case PD_CTRL_GET_SOURCE_CAP: switch (port->state) { case SRC_READY: case SNK_READY: tcpm_queue_message(dev, PD_MSG_DATA_SOURCE_CAP); break; default: tcpm_queue_message(dev, PD_MSG_CTRL_REJECT); break; } break; case PD_CTRL_GET_SINK_CAP: switch (port->state) { case SRC_READY: case SNK_READY: tcpm_queue_message(dev, PD_MSG_DATA_SINK_CAP); break; default: tcpm_queue_message(dev, PD_MSG_CTRL_REJECT); break; } break; case PD_CTRL_GOTO_MIN: break; case PD_CTRL_PS_RDY: switch (port->state) { case SNK_TRANSITION_SINK: if (port->vbus_present) { tcpm_set_current_limit(dev, port->req_current_limit, port->req_supply_voltage); port->explicit_contract = true; tcpm_set_state(dev, SNK_READY, 0); } else { /* * Seen after power swap. Keep waiting for VBUS * in a transitional state. */ tcpm_set_state(dev, SNK_TRANSITION_SINK_VBUS, 0); } break; default: break; } break; case PD_CTRL_REJECT: case PD_CTRL_WAIT: case PD_CTRL_NOT_SUPP: switch (port->state) { case SNK_NEGOTIATE_CAPABILITIES: /* USB PD specification, Figure 8-43 */ if (port->explicit_contract) next_state = SNK_READY; else next_state = SNK_WAIT_CAPABILITIES; tcpm_set_state(dev, next_state, 0); break; default: break; } break; case PD_CTRL_ACCEPT: switch (port->state) { case SNK_NEGOTIATE_CAPABILITIES: tcpm_set_state(dev, SNK_TRANSITION_SINK, 0); break; case SOFT_RESET_SEND: port->message_id = 0; port->rx_msgid = -1; if (port->pwr_role == TYPEC_SOURCE) next_state = SRC_SEND_CAPABILITIES; else next_state = SNK_WAIT_CAPABILITIES; tcpm_set_state(dev, next_state, 0); break; default: break; } break; case PD_CTRL_SOFT_RESET: tcpm_set_state(dev, SOFT_RESET, 0); break; case PD_CTRL_DR_SWAP: if (port->port_type != TYPEC_PORT_DRP) { tcpm_queue_message(dev, PD_MSG_CTRL_REJECT); break; } /* * 6.3.9: If an alternate mode is active, a request to swap * alternate modes shall trigger a port reset. */ switch (port->state) { case SRC_READY: case SNK_READY: tcpm_set_state(dev, DR_SWAP_ACCEPT, 0); break; default: tcpm_queue_message(dev, PD_MSG_CTRL_WAIT); break; } break; case PD_CTRL_PR_SWAP: case PD_CTRL_VCONN_SWAP: case PD_CTRL_GET_SOURCE_CAP_EXT: case PD_CTRL_GET_STATUS: case PD_CTRL_FR_SWAP: case PD_CTRL_GET_PPS_STATUS: case PD_CTRL_GET_COUNTRY_CODES: /* Currently not supported */ dev_err(dev, "TCPM: Currently not supported type %#x\n", type); tcpm_queue_message(dev, PD_MSG_CTRL_NOT_SUPP); break; default: dev_err(dev, "TCPM: Unrecognized ctrl message type %#x\n", type); break; } } static void tcpm_pd_rx_handler(struct udevice *dev, const struct pd_message *msg) { struct tcpm_port *port = dev_get_uclass_plat(dev); unsigned int cnt = pd_header_cnt_le(msg->header); bool remote_is_host, local_is_host; dev_dbg(dev, "TCPM: PD RX, header: %#x [%d]\n", le16_to_cpu(msg->header), port->attached); if (port->attached) { enum pd_ctrl_msg_type type = pd_header_type_le(msg->header); unsigned int msgid = pd_header_msgid_le(msg->header); /* * USB PD standard, 6.6.1.2: * "... if MessageID value in a received Message is the * same as the stored value, the receiver shall return a * GoodCRC Message with that MessageID value and drop * the Message (this is a retry of an already received * Message). Note: this shall not apply to the Soft_Reset * Message which always has a MessageID value of zero." */ if (msgid == port->rx_msgid && type != PD_CTRL_SOFT_RESET) return; port->rx_msgid = msgid; /* * If both ends believe to be DFP/host, we have a data role * mismatch. */ remote_is_host = !!(le16_to_cpu(msg->header) & PD_HEADER_DATA_ROLE); local_is_host = port->data_role == TYPEC_HOST; if (remote_is_host == local_is_host) { dev_err(dev, "TCPM: data role mismatch, initiating error recovery\n"); tcpm_set_state(dev, ERROR_RECOVERY, 0); } else { if (cnt) tcpm_pd_data_request(dev, msg); else tcpm_pd_ctrl_request(dev, msg); } } } void tcpm_pd_receive(struct udevice *dev, const struct pd_message *msg) { tcpm_reset_event_cnt(dev); tcpm_pd_rx_handler(dev, msg); } static int tcpm_pd_send_control(struct udevice *dev, enum pd_ctrl_msg_type type) { struct tcpm_port *port = dev_get_uclass_plat(dev); struct pd_message msg; memset(&msg, 0, sizeof(msg)); msg.header = PD_HEADER_LE(type, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg); } /* * Send queued message without affecting state. * Return true if state machine should go back to sleep, * false otherwise. */ static bool tcpm_send_queued_message(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); enum pd_msg_request queued_message; int max_messages = 100; do { queued_message = port->queued_message; port->queued_message = PD_MSG_NONE; max_messages--; switch (queued_message) { case PD_MSG_CTRL_WAIT: tcpm_pd_send_control(dev, PD_CTRL_WAIT); break; case PD_MSG_CTRL_REJECT: tcpm_pd_send_control(dev, PD_CTRL_REJECT); break; case PD_MSG_CTRL_NOT_SUPP: tcpm_pd_send_control(dev, PD_CTRL_NOT_SUPP); break; case PD_MSG_DATA_SINK_CAP: tcpm_pd_send_sink_caps(dev); break; case PD_MSG_DATA_SOURCE_CAP: tcpm_pd_send_source_caps(dev); break; default: break; } } while (max_messages > 0 && port->queued_message != PD_MSG_NONE); if (!max_messages) dev_err(dev, "Aborted sending of too many queued messages\n"); return false; } static int tcpm_pd_check_request(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); u32 pdo, rdo = port->sink_request; unsigned int max, op, pdo_max, index; enum pd_pdo_type type; index = rdo_index(rdo); if (!index || index > port->nr_src_pdo) return -EINVAL; pdo = port->src_pdo[index - 1]; type = pdo_type(pdo); switch (type) { case PDO_TYPE_FIXED: case PDO_TYPE_VAR: max = rdo_max_current(rdo); op = rdo_op_current(rdo); pdo_max = pdo_max_current(pdo); if (op > pdo_max) return -EINVAL; if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH)) return -EINVAL; if (type == PDO_TYPE_FIXED) dev_dbg(dev, "TCPM: Requested %u mV, %u mA for %u / %u mA\n", pdo_fixed_voltage(pdo), pdo_max, op, max); else dev_dbg(dev, "TCPM: Requested %u -> %u mV, %u mA for %u / %u mA\n", pdo_min_voltage(pdo), pdo_max_voltage(pdo), pdo_max, op, max); break; case PDO_TYPE_BATT: max = rdo_max_power(rdo); op = rdo_op_power(rdo); pdo_max = pdo_max_power(pdo); if (op > pdo_max) return -EINVAL; if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH)) return -EINVAL; dev_info(dev, "TCPM: Requested %u -> %u mV, %u mW for %u / %u mW\n", pdo_min_voltage(pdo), pdo_max_voltage(pdo), pdo_max, op, max); break; default: return -EINVAL; } return 0; } #define min_power(x, y) min(pdo_max_power(x), pdo_max_power(y)) #define min_current(x, y) min(pdo_max_current(x), pdo_max_current(y)) static int tcpm_pd_select_pdo(struct udevice *dev, int *sink_pdo, int *src_pdo) { struct tcpm_port *port = dev_get_uclass_plat(dev); unsigned int i, j, max_src_mv = 0, min_src_mv = 0, max_mw = 0, max_mv = 0, src_mw = 0, src_ma = 0, max_snk_mv = 0, min_snk_mv = 0; int ret = -EINVAL; /* * Select the source PDO providing the most power which has a * matchig sink cap. */ for (i = 0; i < port->nr_source_caps; i++) { u32 pdo = port->source_caps[i]; enum pd_pdo_type type = pdo_type(pdo); switch (type) { case PDO_TYPE_FIXED: max_src_mv = pdo_fixed_voltage(pdo); min_src_mv = max_src_mv; break; case PDO_TYPE_BATT: case PDO_TYPE_VAR: max_src_mv = pdo_max_voltage(pdo); min_src_mv = pdo_min_voltage(pdo); break; case PDO_TYPE_APDO: continue; default: dev_err(dev, "TCPM: Invalid source PDO type, ignoring\n"); continue; } switch (type) { case PDO_TYPE_FIXED: case PDO_TYPE_VAR: src_ma = pdo_max_current(pdo); src_mw = src_ma * min_src_mv / 1000; break; case PDO_TYPE_BATT: src_mw = pdo_max_power(pdo); break; case PDO_TYPE_APDO: continue; default: dev_err(dev, "TCPM: Invalid source PDO type, ignoring\n"); continue; } for (j = 0; j < port->nr_snk_pdo; j++) { pdo = port->snk_pdo[j]; switch (pdo_type(pdo)) { case PDO_TYPE_FIXED: max_snk_mv = pdo_fixed_voltage(pdo); min_snk_mv = max_snk_mv; break; case PDO_TYPE_BATT: case PDO_TYPE_VAR: max_snk_mv = pdo_max_voltage(pdo); min_snk_mv = pdo_min_voltage(pdo); break; case PDO_TYPE_APDO: continue; default: dev_err(dev, "TCPM: Invalid sink PDO type, ignoring\n"); continue; } if (max_src_mv <= max_snk_mv && min_src_mv >= min_snk_mv) { /* Prefer higher voltages if available */ if ((src_mw == max_mw && min_src_mv > max_mv) || src_mw > max_mw) { *src_pdo = i; *sink_pdo = j; max_mw = src_mw; max_mv = min_src_mv; ret = 0; } } } } return ret; } static int tcpm_pd_build_request(struct udevice *dev, u32 *rdo) { struct tcpm_port *port = dev_get_uclass_plat(dev); unsigned int mv, ma, mw, flags; unsigned int max_ma, max_mw; enum pd_pdo_type type; u32 pdo, matching_snk_pdo; int src_pdo_index = 0; int snk_pdo_index = 0; int ret; ret = tcpm_pd_select_pdo(dev, &snk_pdo_index, &src_pdo_index); if (ret < 0) return ret; pdo = port->source_caps[src_pdo_index]; matching_snk_pdo = port->snk_pdo[snk_pdo_index]; type = pdo_type(pdo); switch (type) { case PDO_TYPE_FIXED: mv = pdo_fixed_voltage(pdo); break; case PDO_TYPE_BATT: case PDO_TYPE_VAR: mv = pdo_min_voltage(pdo); break; default: dev_err(dev, "TCPM: Invalid PDO selected!\n"); return -EINVAL; } /* Select maximum available current within the sink pdo's limit */ if (type == PDO_TYPE_BATT) { mw = min_power(pdo, matching_snk_pdo); ma = 1000 * mw / mv; } else { ma = min_current(pdo, matching_snk_pdo); mw = ma * mv / 1000; } flags = RDO_USB_COMM | RDO_NO_SUSPEND; /* Set mismatch bit if offered power is less than operating power */ max_ma = ma; max_mw = mw; if (mw < port->operating_snk_mw) { flags |= RDO_CAP_MISMATCH; if (type == PDO_TYPE_BATT && (pdo_max_power(matching_snk_pdo) > pdo_max_power(pdo))) max_mw = pdo_max_power(matching_snk_pdo); else if (pdo_max_current(matching_snk_pdo) > pdo_max_current(pdo)) max_ma = pdo_max_current(matching_snk_pdo); } dev_dbg(dev, "TCPM: cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d\n", port->cc_req, port->cc1, port->cc2, port->vbus_source, port->vconn_role == TYPEC_SOURCE ? "source" : "sink", port->polarity); if (type == PDO_TYPE_BATT) { *rdo = RDO_BATT(src_pdo_index + 1, mw, max_mw, flags); dev_info(dev, "TCPM: requesting PDO %d: %u mV, %u mW%s\n", src_pdo_index, mv, mw, flags & RDO_CAP_MISMATCH ? " [mismatch]" : ""); } else { *rdo = RDO_FIXED(src_pdo_index + 1, ma, max_ma, flags); dev_info(dev, "TCPM: requesting PDO %d: %u mV, %u mA%s\n", src_pdo_index, mv, ma, flags & RDO_CAP_MISMATCH ? " [mismatch]" : ""); } port->req_current_limit = ma; port->req_supply_voltage = mv; return 0; } static int tcpm_pd_send_request(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); struct pd_message msg; int ret; u32 rdo; ret = tcpm_pd_build_request(dev, &rdo); if (ret < 0) return ret; memset(&msg, 0, sizeof(msg)); msg.header = PD_HEADER_LE(PD_DATA_REQUEST, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 1); msg.payload[0] = cpu_to_le32(rdo); return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg); } static int tcpm_set_vbus(struct udevice *dev, bool enable) { struct tcpm_port *port = dev_get_uclass_plat(dev); const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); int ret; if (enable && port->vbus_charge) return -EINVAL; dev_dbg(dev, "TCPM: set vbus = %d charge = %d\n", enable, port->vbus_charge); ret = drvops->set_vbus(dev, enable, port->vbus_charge); if (ret < 0) return ret; port->vbus_source = enable; return 0; } static int tcpm_set_charge(struct udevice *dev, bool charge) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); int ret; if (charge && port->vbus_source) return -EINVAL; if (charge != port->vbus_charge) { dev_dbg(dev, "TCPM: set vbus = %d charge = %d\n", port->vbus_source, charge); ret = drvops->set_vbus(dev, port->vbus_source, charge); if (ret < 0) return ret; } port->vbus_charge = charge; return 0; } static bool tcpm_start_toggling(struct udevice *dev, enum typec_cc_status cc) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); int ret; if (!drvops->start_toggling) return false; dev_dbg(dev, "TCPM: Start toggling\n"); ret = drvops->start_toggling(dev, port->port_type, cc); return ret == 0; } static int tcpm_init_vbus(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); int ret; ret = drvops->set_vbus(dev, false, false); port->vbus_source = false; port->vbus_charge = false; return ret; } static int tcpm_init_vconn(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); int ret; ret = drvops->set_vconn(dev, false); port->vconn_role = TYPEC_SINK; return ret; } static inline void tcpm_typec_connect(struct tcpm_port *port) { if (!port->connected) port->connected = true; } static int tcpm_src_attach(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); enum typec_cc_polarity polarity = port->cc2 == TYPEC_CC_RD ? TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1; int ret; if (port->attached) return 0; ret = tcpm_set_polarity(dev, polarity); if (ret < 0) return ret; ret = tcpm_set_roles(dev, true, TYPEC_SOURCE, TYPEC_HOST); if (ret < 0) return ret; ret = drvops->set_pd_rx(dev, true); if (ret < 0) goto out_disable_mux; /* * USB Type-C specification, version 1.2, * chapter 4.5.2.2.8.1 (Attached.SRC Requirements) * Enable VCONN only if the non-RD port is set to RA. */ if ((polarity == TYPEC_POLARITY_CC1 && port->cc2 == TYPEC_CC_RA) || (polarity == TYPEC_POLARITY_CC2 && port->cc1 == TYPEC_CC_RA)) { ret = tcpm_set_vconn(dev, true); if (ret < 0) goto out_disable_pd; } ret = tcpm_set_vbus(dev, true); if (ret < 0) goto out_disable_vconn; port->pd_capable = false; port->partner = NULL; port->attached = true; return 0; out_disable_vconn: tcpm_set_vconn(dev, false); out_disable_pd: drvops->set_pd_rx(dev, false); out_disable_mux: dev_err(dev, "TCPM: CC connected in %s as DFP\n", polarity ? "CC2" : "CC1"); return 0; } static inline void tcpm_typec_disconnect(struct tcpm_port *port) { if (port->connected) { port->partner = NULL; port->connected = false; } } static void tcpm_reset_port(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); tcpm_timer_uninit(dev); tcpm_typec_disconnect(port); tcpm_reset_event_cnt(dev); port->wait_dr_swap_message = false; port->attached = false; port->pd_capable = false; /* * First Rx ID should be 0; set this to a sentinel of -1 so that * we can check tcpm_pd_rx_handler() if we had seen it before. */ port->rx_msgid = -1; drvops->set_pd_rx(dev, false); tcpm_init_vbus(dev); /* also disables charging */ tcpm_init_vconn(dev); tcpm_set_current_limit(dev, 0, 0); tcpm_set_polarity(dev, TYPEC_POLARITY_CC1); tcpm_set_attached_state(dev, false); port->nr_sink_caps = 0; } static void tcpm_detach(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); if (tcpm_port_is_disconnected(port)) port->hard_reset_count = 0; if (!port->attached) return; tcpm_reset_port(dev); } static void tcpm_src_detach(struct udevice *dev) { tcpm_detach(dev); } static int tcpm_snk_attach(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); int ret; if (port->attached) return 0; ret = tcpm_set_polarity(dev, port->cc2 != TYPEC_CC_OPEN ? TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1); if (ret < 0) return ret; ret = tcpm_set_roles(dev, true, TYPEC_SINK, TYPEC_DEVICE); if (ret < 0) return ret; port->pd_capable = false; port->partner = NULL; port->attached = true; dev_info(dev, "TCPM: CC connected in %s as UFP\n", port->cc1 != TYPEC_CC_OPEN ? "CC1" : "CC2"); return 0; } static void tcpm_snk_detach(struct udevice *dev) { tcpm_detach(dev); } static inline enum tcpm_state hard_reset_state(struct tcpm_port *port) { if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) return HARD_RESET_SEND; if (port->pd_capable) return ERROR_RECOVERY; if (port->pwr_role == TYPEC_SOURCE) return SRC_UNATTACHED; if (port->state == SNK_WAIT_CAPABILITIES) return SNK_READY; return SNK_UNATTACHED; } static inline enum tcpm_state unattached_state(struct tcpm_port *port) { if (port->port_type == TYPEC_PORT_DRP) { if (port->pwr_role == TYPEC_SOURCE) return SRC_UNATTACHED; else return SNK_UNATTACHED; } else if (port->port_type == TYPEC_PORT_SRC) { return SRC_UNATTACHED; } return SNK_UNATTACHED; } static void run_state_machine(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); int ret; port->enter_state = port->state; switch (port->state) { case TOGGLING: break; /* SRC states */ case SRC_UNATTACHED: tcpm_src_detach(dev); if (tcpm_start_toggling(dev, tcpm_rp_cc(port))) { tcpm_set_state(dev, TOGGLING, 0); break; } tcpm_set_cc(dev, tcpm_rp_cc(port)); if (port->port_type == TYPEC_PORT_DRP) tcpm_set_state(dev, SNK_UNATTACHED, PD_T_DRP_SNK); break; case SRC_ATTACH_WAIT: if (tcpm_port_is_source(port)) tcpm_set_state(dev, SRC_ATTACHED, PD_T_CC_DEBOUNCE); break; case SRC_ATTACHED: ret = tcpm_src_attach(dev); /* * Currently, vbus control is not implemented, * and the SRC detection process cannot be fully implemented. */ tcpm_set_state(dev, SRC_READY, 0); break; case SRC_STARTUP: port->caps_count = 0; port->negotiated_rev = PD_MAX_REV; port->message_id = 0; port->rx_msgid = -1; port->explicit_contract = false; tcpm_set_state(dev, SRC_SEND_CAPABILITIES, 0); break; case SRC_SEND_CAPABILITIES: port->caps_count++; if (port->caps_count > PD_N_CAPS_COUNT) { tcpm_set_state(dev, SRC_READY, 0); break; } ret = tcpm_pd_send_source_caps(dev); if (ret < 0) { tcpm_set_state(dev, SRC_SEND_CAPABILITIES, PD_T_SEND_SOURCE_CAP); } else { /* * Per standard, we should clear the reset counter here. * However, that can result in state machine hang-ups. * Reset it only in READY state to improve stability. */ /* port->hard_reset_count = 0; */ port->caps_count = 0; port->pd_capable = true; tcpm_set_state_cond(dev, SRC_SEND_CAPABILITIES_TIMEOUT, PD_T_SEND_SOURCE_CAP); } break; case SRC_SEND_CAPABILITIES_TIMEOUT: /* * Error recovery for a PD_DATA_SOURCE_CAP reply timeout. * * PD 2.0 sinks are supposed to accept src-capabilities with a * 3.0 header and simply ignore any src PDOs which the sink does * not understand such as PPS but some 2.0 sinks instead ignore * the entire PD_DATA_SOURCE_CAP message, causing contract * negotiation to fail. * * After PD_N_HARD_RESET_COUNT hard-reset attempts, we try * sending src-capabilities with a lower PD revision to * make these broken sinks work. */ if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) { tcpm_set_state(dev, HARD_RESET_SEND, 0); } else if (port->negotiated_rev > PD_REV20) { port->negotiated_rev--; port->hard_reset_count = 0; tcpm_set_state(dev, SRC_SEND_CAPABILITIES, 0); } else { tcpm_set_state(dev, hard_reset_state(port), 0); } break; case SRC_NEGOTIATE_CAPABILITIES: ret = tcpm_pd_check_request(dev); if (ret < 0) { tcpm_pd_send_control(dev, PD_CTRL_REJECT); if (!port->explicit_contract) { tcpm_set_state(dev, SRC_WAIT_NEW_CAPABILITIES, 0); } else { tcpm_set_state(dev, SRC_READY, 0); } } else { tcpm_pd_send_control(dev, PD_CTRL_ACCEPT); tcpm_set_state(dev, SRC_TRANSITION_SUPPLY, PD_T_SRC_TRANSITION); } break; case SRC_TRANSITION_SUPPLY: /* XXX: regulator_set_voltage(vbus, ...) */ tcpm_pd_send_control(dev, PD_CTRL_PS_RDY); port->explicit_contract = true; tcpm_set_state_cond(dev, SRC_READY, 0); break; case SRC_READY: port->hard_reset_count = 0; tcpm_typec_connect(port); break; case SRC_WAIT_NEW_CAPABILITIES: /* Nothing to do... */ break; /* SNK states */ case SNK_UNATTACHED: tcpm_snk_detach(dev); if (tcpm_start_toggling(dev, TYPEC_CC_RD)) { tcpm_set_state(dev, TOGGLING, 0); break; } tcpm_set_cc(dev, TYPEC_CC_RD); if (port->port_type == TYPEC_PORT_DRP) tcpm_set_state(dev, SRC_UNATTACHED, PD_T_DRP_SRC); break; case SNK_ATTACH_WAIT: if ((port->cc1 == TYPEC_CC_OPEN && port->cc2 != TYPEC_CC_OPEN) || (port->cc1 != TYPEC_CC_OPEN && port->cc2 == TYPEC_CC_OPEN)) tcpm_set_state(dev, SNK_DEBOUNCED, PD_T_CC_DEBOUNCE); else if (tcpm_port_is_disconnected(port)) tcpm_set_state(dev, SNK_UNATTACHED, PD_T_CC_DEBOUNCE); break; case SNK_DEBOUNCED: if (tcpm_port_is_disconnected(port)) tcpm_set_state(dev, SNK_UNATTACHED, PD_T_PD_DEBOUNCE); else if (port->vbus_present) tcpm_set_state(dev, SNK_ATTACHED, 0); else /* Wait for VBUS, but not forever */ tcpm_set_state(dev, PORT_RESET, PD_T_PS_SOURCE_ON); break; case SNK_ATTACHED: ret = tcpm_snk_attach(dev); if (ret < 0) tcpm_set_state(dev, SNK_UNATTACHED, 0); else tcpm_set_state(dev, SNK_STARTUP, 0); break; case SNK_STARTUP: port->negotiated_rev = PD_MAX_REV; port->message_id = 0; port->rx_msgid = -1; port->explicit_contract = false; tcpm_set_state(dev, SNK_DISCOVERY, 0); break; case SNK_DISCOVERY: if (port->vbus_present) { tcpm_set_current_limit(dev, tcpm_get_current_limit(port), 5000); tcpm_set_charge(dev, true); tcpm_set_state(dev, SNK_WAIT_CAPABILITIES, 0); break; } /* * For DRP, timeouts differ. Also, handling is supposed to be * different and much more complex (dead battery detection; * see USB power delivery specification, section 8.3.3.6.1.5.1). */ tcpm_set_state(dev, hard_reset_state(port), port->port_type == TYPEC_PORT_DRP ? PD_T_DB_DETECT : PD_T_NO_RESPONSE); break; case SNK_DISCOVERY_DEBOUNCE: tcpm_set_state(dev, SNK_DISCOVERY_DEBOUNCE_DONE, PD_T_CC_DEBOUNCE); break; case SNK_DISCOVERY_DEBOUNCE_DONE: tcpm_set_state(dev, unattached_state(port), 0); break; case SNK_WAIT_CAPABILITIES: ret = drvops->set_pd_rx(dev, true); if (ret < 0) { tcpm_set_state(dev, SNK_READY, 0); break; } /* * If VBUS has never been low, and we time out waiting * for source cap, try a soft reset first, in case we * were already in a stable contract before this boot. * Do this only once. */ if (port->vbus_never_low) { port->vbus_never_low = false; tcpm_set_state(dev, SOFT_RESET_SEND, PD_T_SINK_WAIT_CAP); } else { tcpm_set_state(dev, hard_reset_state(port), PD_T_SINK_WAIT_CAP); } break; case SNK_NEGOTIATE_CAPABILITIES: port->pd_capable = true; port->hard_reset_count = 0; ret = tcpm_pd_send_request(dev); if (ret < 0) { /* Let the Source send capabilities again. */ tcpm_set_state(dev, SNK_WAIT_CAPABILITIES, 0); } else { tcpm_set_state_cond(dev, hard_reset_state(port), PD_T_SENDER_RESPONSE); } break; case SNK_TRANSITION_SINK: case SNK_TRANSITION_SINK_VBUS: tcpm_set_state(dev, hard_reset_state(port), PD_T_PS_TRANSITION); break; case SNK_READY: port->update_sink_caps = false; tcpm_typec_connect(port); /* * Here poll_event_cnt is cleared, waiting for self-powered Type-C devices * to send DR_swap Messge until 1s (TCPM_POLL_EVENT_TIME_OUT * 500us)timeout */ if (port->wait_dr_swap_message) tcpm_reset_event_cnt(dev); break; /* Hard_Reset states */ case HARD_RESET_SEND: tcpm_pd_transmit(dev, TCPC_TX_HARD_RESET, NULL); tcpm_set_state(dev, HARD_RESET_START, 0); port->wait_dr_swap_message = false; break; case HARD_RESET_START: port->hard_reset_count++; drvops->set_pd_rx(dev, false); port->nr_sink_caps = 0; if (port->pwr_role == TYPEC_SOURCE) tcpm_set_state(dev, SRC_HARD_RESET_VBUS_OFF, PD_T_PS_HARD_RESET); else tcpm_set_state(dev, SNK_HARD_RESET_SINK_OFF, 0); break; case SRC_HARD_RESET_VBUS_OFF: tcpm_set_vconn(dev, true); tcpm_set_vbus(dev, false); tcpm_set_roles(dev, port->self_powered, TYPEC_SOURCE, TYPEC_HOST); tcpm_set_state(dev, SRC_HARD_RESET_VBUS_ON, PD_T_SRC_RECOVER); break; case SRC_HARD_RESET_VBUS_ON: tcpm_set_vconn(dev, true); tcpm_set_vbus(dev, true); drvops->set_pd_rx(dev, true); tcpm_set_attached_state(dev, true); tcpm_set_state(dev, SRC_UNATTACHED, PD_T_PS_SOURCE_ON); break; case SNK_HARD_RESET_SINK_OFF: tcpm_set_vconn(dev, false); if (port->pd_capable) tcpm_set_charge(dev, false); tcpm_set_roles(dev, port->self_powered, TYPEC_SINK, TYPEC_DEVICE); /* * VBUS may or may not toggle, depending on the adapter. * If it doesn't toggle, transition to SNK_HARD_RESET_SINK_ON * directly after timeout. */ tcpm_set_state(dev, SNK_HARD_RESET_SINK_ON, PD_T_SAFE_0V); break; case SNK_HARD_RESET_WAIT_VBUS: /* Assume we're disconnected if VBUS doesn't come back. */ tcpm_set_state(dev, SNK_UNATTACHED, PD_T_SRC_RECOVER_MAX + PD_T_SRC_TURN_ON); break; case SNK_HARD_RESET_SINK_ON: /* Note: There is no guarantee that VBUS is on in this state */ /* * XXX: * The specification suggests that dual mode ports in sink * mode should transition to state PE_SRC_Transition_to_default. * See USB power delivery specification chapter 8.3.3.6.1.3. * This would mean to * - turn off VCONN, reset power supply * - request hardware reset * - turn on VCONN * - Transition to state PE_Src_Startup * SNK only ports shall transition to state Snk_Startup * (see chapter 8.3.3.3.8). * Similar, dual-mode ports in source mode should transition * to PE_SNK_Transition_to_default. */ if (port->pd_capable) { tcpm_set_current_limit(dev, tcpm_get_current_limit(port), 5000); tcpm_set_charge(dev, true); } tcpm_set_attached_state(dev, true); tcpm_set_state(dev, SNK_STARTUP, 0); break; /* Soft_Reset states */ case SOFT_RESET: port->message_id = 0; port->rx_msgid = -1; tcpm_pd_send_control(dev, PD_CTRL_ACCEPT); if (port->pwr_role == TYPEC_SOURCE) tcpm_set_state(dev, SRC_SEND_CAPABILITIES, 0); else tcpm_set_state(dev, SNK_WAIT_CAPABILITIES, 0); break; case SOFT_RESET_SEND: port->message_id = 0; port->rx_msgid = -1; if (tcpm_pd_send_control(dev, PD_CTRL_SOFT_RESET)) tcpm_set_state_cond(dev, hard_reset_state(port), 0); else tcpm_set_state_cond(dev, hard_reset_state(port), PD_T_SENDER_RESPONSE); break; /* DR_Swap states */ case DR_SWAP_ACCEPT: tcpm_pd_send_control(dev, PD_CTRL_ACCEPT); tcpm_set_state_cond(dev, DR_SWAP_CHANGE_DR, 0); break; case DR_SWAP_CHANGE_DR: if (port->data_role == TYPEC_HOST) { tcpm_set_roles(dev, true, port->pwr_role, TYPEC_DEVICE); } else { tcpm_set_roles(dev, true, port->pwr_role, TYPEC_HOST); } /* DR_swap process complete, wait_dr_swap_message is cleared */ port->wait_dr_swap_message = false; tcpm_set_state(dev, ready_state(port), 0); break; case ERROR_RECOVERY: tcpm_set_state(dev, PORT_RESET, 0); break; case PORT_RESET: tcpm_reset_port(dev); if (port->self_powered) tcpm_set_cc(dev, TYPEC_CC_OPEN); else tcpm_set_cc(dev, tcpm_default_state(port) == SNK_UNATTACHED ? TYPEC_CC_RD : tcpm_rp_cc(port)); tcpm_set_state(dev, PORT_RESET_WAIT_OFF, PD_T_ERROR_RECOVERY); break; case PORT_RESET_WAIT_OFF: tcpm_set_state(dev, tcpm_default_state(port), port->vbus_present ? PD_T_PS_SOURCE_OFF : 0); break; default: dev_err(dev, "TCPM: Unexpected port state %d\n", port->state); break; } } static void tcpm_state_machine(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); enum tcpm_state prev_state; mutex_lock(&port->lock); port->state_machine_running = true; if (port->queued_message && tcpm_send_queued_message(dev)) goto done; /* If we were queued due to a delayed state change, update it now */ if (port->delayed_state) { dev_dbg(dev, "TCPM: state change %s -> %s [delayed %ld ms]\n", tcpm_states[port->state], tcpm_states[port->delayed_state], port->delay_ms); port->prev_state = port->state; port->state = port->delayed_state; port->delayed_state = INVALID_STATE; } /* * Continue running as long as we have (non-delayed) state changes * to make. */ do { prev_state = port->state; run_state_machine(dev); if (port->queued_message) tcpm_send_queued_message(dev); } while (port->state != prev_state && !port->delayed_state); done: port->state_machine_running = false; mutex_unlock(&port->lock); } static void _tcpm_cc_change(struct udevice *dev, enum typec_cc_status cc1, enum typec_cc_status cc2) { struct tcpm_port *port = dev_get_uclass_plat(dev); enum typec_cc_status old_cc1, old_cc2; enum tcpm_state new_state; old_cc1 = port->cc1; old_cc2 = port->cc2; port->cc1 = cc1; port->cc2 = cc2; dev_dbg(dev, "TCPM: CC1: %u -> %u, CC2: %u -> %u [state %s, polarity %d, %s]\n", old_cc1, cc1, old_cc2, cc2, tcpm_states[port->state], port->polarity, tcpm_port_is_disconnected(port) ? "disconnected" : "connected"); switch (port->state) { case TOGGLING: if (tcpm_port_is_source(port)) tcpm_set_state(dev, SRC_ATTACH_WAIT, 0); else if (tcpm_port_is_sink(port)) tcpm_set_state(dev, SNK_ATTACH_WAIT, 0); break; case SRC_UNATTACHED: case SRC_ATTACH_WAIT: if (tcpm_port_is_disconnected(port)) tcpm_set_state(dev, SRC_UNATTACHED, 0); else if (cc1 != old_cc1 || cc2 != old_cc2) tcpm_set_state(dev, SRC_ATTACH_WAIT, 0); break; case SRC_ATTACHED: case SRC_SEND_CAPABILITIES: case SRC_READY: if (tcpm_port_is_disconnected(port) || !tcpm_port_is_source(port)) tcpm_set_state(dev, SRC_UNATTACHED, 0); break; case SNK_UNATTACHED: if (tcpm_port_is_sink(port)) tcpm_set_state(dev, SNK_ATTACH_WAIT, 0); break; case SNK_ATTACH_WAIT: if ((port->cc1 == TYPEC_CC_OPEN && port->cc2 != TYPEC_CC_OPEN) || (port->cc1 != TYPEC_CC_OPEN && port->cc2 == TYPEC_CC_OPEN)) new_state = SNK_DEBOUNCED; else if (tcpm_port_is_disconnected(port)) new_state = SNK_UNATTACHED; else break; if (new_state != port->delayed_state) tcpm_set_state(dev, SNK_ATTACH_WAIT, 0); break; case SNK_DEBOUNCED: if (tcpm_port_is_disconnected(port)) new_state = SNK_UNATTACHED; else if (port->vbus_present) new_state = tcpm_try_src(port) ? INVALID_STATE : SNK_ATTACHED; else new_state = SNK_UNATTACHED; if (new_state != port->delayed_state) tcpm_set_state(dev, SNK_DEBOUNCED, 0); break; case SNK_READY: if (tcpm_port_is_disconnected(port)) tcpm_set_state(dev, unattached_state(port), 0); else if (!port->pd_capable && (cc1 != old_cc1 || cc2 != old_cc2)) tcpm_set_current_limit(dev, tcpm_get_current_limit(port), 5000); break; case SNK_DISCOVERY: /* CC line is unstable, wait for debounce */ if (tcpm_port_is_disconnected(port)) tcpm_set_state(dev, SNK_DISCOVERY_DEBOUNCE, 0); break; case SNK_DISCOVERY_DEBOUNCE: break; case PORT_RESET: case PORT_RESET_WAIT_OFF: /* * State set back to default mode once the timer completes. * Ignore CC changes here. */ break; default: /* * While acting as sink and auto vbus discharge is enabled, Allow disconnect * to be driven by vbus disconnect. */ if (tcpm_port_is_disconnected(port)) tcpm_set_state(dev, unattached_state(port), 0); break; } } static void _tcpm_pd_vbus_on(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); dev_dbg(dev, "TCPM: VBUS on event\n"); port->vbus_present = true; /* * When vbus_present is true i.e. Voltage at VBUS is greater than VSAFE5V implicitly * states that vbus is not at VSAFE0V, hence clear the vbus_vsafe0v flag here. */ port->vbus_vsafe0v = false; switch (port->state) { case SNK_TRANSITION_SINK_VBUS: port->explicit_contract = true; tcpm_set_state(dev, SNK_READY, 0); break; case SNK_DISCOVERY: tcpm_set_state(dev, SNK_DISCOVERY, 0); break; case SNK_DEBOUNCED: tcpm_set_state(dev, SNK_ATTACHED, 0); break; case SNK_HARD_RESET_WAIT_VBUS: tcpm_set_state(dev, SNK_HARD_RESET_SINK_ON, 0); break; case SRC_ATTACHED: tcpm_set_state(dev, SRC_STARTUP, 0); break; case SRC_HARD_RESET_VBUS_ON: tcpm_set_state(dev, SRC_STARTUP, 0); break; case PORT_RESET: case PORT_RESET_WAIT_OFF: /* * State set back to default mode once the timer completes. * Ignore vbus changes here. */ break; default: break; } } static void _tcpm_pd_vbus_off(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); dev_dbg(dev, "TCPM: VBUS off event\n"); port->vbus_present = false; port->vbus_never_low = false; switch (port->state) { case SNK_HARD_RESET_SINK_OFF: tcpm_set_state(dev, SNK_HARD_RESET_WAIT_VBUS, 0); break; case HARD_RESET_SEND: break; case SNK_ATTACH_WAIT: tcpm_set_state(dev, SNK_UNATTACHED, 0); break; case SNK_NEGOTIATE_CAPABILITIES: break; case PORT_RESET_WAIT_OFF: tcpm_set_state(dev, tcpm_default_state(port), 0); break; case PORT_RESET: /* * State set back to default mode once the timer completes. * Ignore vbus changes here. */ break; default: if (port->pwr_role == TYPEC_SINK && port->attached) tcpm_set_state(dev, SNK_UNATTACHED, 0); break; } } void tcpm_cc_change(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); enum typec_cc_status cc1, cc2; tcpm_reset_event_cnt(dev); if (drvops->get_cc(dev, &cc1, &cc2) == 0) _tcpm_cc_change(dev, cc1, cc2); } void tcpm_vbus_change(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); bool vbus; tcpm_reset_event_cnt(dev); vbus = drvops->get_vbus(dev); if (vbus) _tcpm_pd_vbus_on(dev); else _tcpm_pd_vbus_off(dev); } void tcpm_pd_hard_reset(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); tcpm_reset_event_cnt(dev); dev_dbg(dev, "TCPM: Received hard reset\n"); /* If a hard reset message is received during the port reset process, * we should ignore it, that is, do not set port->state to HARD_RESET_START. */ if (port->state == PORT_RESET || port->state == PORT_RESET_WAIT_OFF) return; /* * If we keep receiving hard reset requests, executing the hard reset * must have failed. Revert to error recovery if that happens. */ tcpm_set_state(dev, port->hard_reset_count < PD_N_HARD_RESET_COUNT ? HARD_RESET_START : ERROR_RECOVERY, 0); } static void tcpm_init(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); enum typec_cc_status cc1, cc2; drvops->init(dev); tcpm_reset_port(dev); /* * XXX * Should possibly wait for VBUS to settle if it was enabled locally * since tcpm_reset_port() will disable VBUS. */ port->vbus_present = drvops->get_vbus(dev); if (port->vbus_present) port->vbus_never_low = true; /* * 1. When vbus_present is true, voltage on VBUS is already at VSAFE5V. * So implicitly vbus_vsafe0v = false. * * 2. When vbus_present is false and TCPC does NOT support querying * vsafe0v status, then, it's best to assume vbus is at VSAFE0V i.e. * vbus_vsafe0v is true. * * 3. When vbus_present is false and TCPC does support querying vsafe0v, * then, query tcpc for vsafe0v status. */ if (port->vbus_present) port->vbus_vsafe0v = false; else port->vbus_vsafe0v = true; tcpm_set_state(dev, tcpm_default_state(port), 0); if (drvops->get_cc(dev, &cc1, &cc2) == 0) _tcpm_cc_change(dev, cc1, cc2); } static int tcpm_fw_get_caps(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); ofnode node; const char *cap_str; int ret; u32 mw; ret = drvops->get_connector_node(dev, &node); if (ret) return ret; cap_str = ofnode_read_string(node, "power-role"); if (!cap_str) return -EINVAL; if (!strcmp("dual", cap_str)) port->typec_type = TYPEC_PORT_DRP; else if (!strcmp("source", cap_str)) port->typec_type = TYPEC_PORT_SRC; else if (!strcmp("sink", cap_str)) port->typec_type = TYPEC_PORT_SNK; else return -EINVAL; port->port_type = port->typec_type; if (port->port_type == TYPEC_PORT_SNK) goto sink; /* Get source pdos */ ret = ofnode_read_size(node, "source-pdos") / sizeof(u32); if (ret <= 0) return -EINVAL; port->nr_src_pdo = min(ret, PDO_MAX_OBJECTS); ret = ofnode_read_u32_array(node, "source-pdos", port->src_pdo, port->nr_src_pdo); if (ret || tcpm_validate_caps(dev, port->src_pdo, port->nr_src_pdo)) return -EINVAL; if (port->port_type == TYPEC_PORT_SRC) return 0; /* Get the preferred power role for DRP */ cap_str = ofnode_read_string(node, "try-power-role"); if (!cap_str) return -EINVAL; if (!strcmp("sink", cap_str)) port->typec_prefer_role = TYPEC_SINK; else if (!strcmp("source", cap_str)) port->typec_prefer_role = TYPEC_SOURCE; else return -EINVAL; if (port->typec_prefer_role < 0) return -EINVAL; sink: /* Get sink pdos */ ret = ofnode_read_size(node, "sink-pdos") / sizeof(u32); if (ret <= 0) return -EINVAL; port->nr_snk_pdo = min(ret, PDO_MAX_OBJECTS); ret = ofnode_read_u32_array(node, "sink-pdos", port->snk_pdo, port->nr_snk_pdo); if (ret || tcpm_validate_caps(dev, port->snk_pdo, port->nr_snk_pdo)) return -EINVAL; if (ofnode_read_u32_array(node, "op-sink-microwatt", &mw, 1)) return -EINVAL; port->operating_snk_mw = mw / 1000; port->self_powered = ofnode_read_bool(node, "self-powered"); return 0; } static int tcpm_port_init(struct udevice *dev) { struct tcpm_port *port = dev_get_uclass_plat(dev); int err; err = tcpm_fw_get_caps(dev); if (err < 0) { dev_err(dev, "TCPM: please check the dts config: %d\n", err); return err; } port->try_role = port->typec_prefer_role; port->port_type = port->typec_type; tcpm_init(dev); dev_info(dev, "TCPM: init finished\n"); return 0; } static void tcpm_poll_event(struct udevice *dev) { const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev); struct tcpm_port *port = dev_get_uclass_plat(dev); if (!drvops->get_vbus(dev)) return; while (port->poll_event_cnt < TCPM_POLL_EVENT_TIME_OUT) { if (!port->wait_dr_swap_message && (port->state == SNK_READY || port->state == SRC_READY)) break; drvops->poll_event(dev); port->poll_event_cnt++; udelay(500); tcpm_check_and_run_delayed_work(dev); } if (port->state != SNK_READY && port->state != SRC_READY) dev_warn(dev, "TCPM: exit in state %s\n", tcpm_states[port->state]); /* * At this time, call the callback function of the respective pd chip * to enter the low-power mode. In order to reduce the time spent on * the PD chip driver as much as possible, the tcpm framework does not * fully process the communication initiated by the device,so it should * be noted that we can disable the internal oscillator, etc., but do * not turn off the power of the transceiver module, otherwise the * self-powered Type-C device will initiate a Message(eg: self-powered * Type-C hub initiates a SINK capability request(PD_CTRL_GET_SINK_CAP)) * and the pd chip cannot reply to GoodCRC, causing the self-powered Type-C * device to switch vbus to vSafe5v, or even turn off vbus. */ if (!drvops->enter_low_power_mode) return; if (drvops->enter_low_power_mode(dev, port->attached, port->pd_capable)) dev_err(dev, "TCPM: failed to enter low power\n"); else dev_info(dev, "TCPM: PD chip enter low power mode\n"); } int tcpm_post_probe(struct udevice *dev) { int ret = tcpm_port_init(dev); if (ret < 0) { dev_err(dev, "failed to tcpm port init\n"); return ret; } tcpm_poll_event(dev); return 0; }