mirror of
https://github.com/u-boot/u-boot.git
synced 2025-04-22 12:54:37 +00:00

Sughosh Ganu <sughosh.ganu@linaro.org> says: This is a follow-up from an earlier RFC series [1] for making the LMB and EFI memory allocations work together. This is a non-rfc version with only the LMB part of the patches, for making the LMB memory map global and persistent. This is part one of a set of patches which aim to have the LMB and EFI memory allocations work together. This requires making the LMB memory map global and persistent, instead of having local, caller specific maps. This is being done keeping in mind the usage of LMB memory by platforms where the same memory region can be used to load multiple different images. What is not allowed is to overwrite memory that has been allocated by the other module, currently the EFI memory module. This is being achieved by introducing a new flag, LMB_NOOVERWRITE, which represents memory which cannot be re-requested once allocated. The data structures (alloced lists) required for maintaining the LMB map are initialised during board init. The LMB module is enabled by default for the main U-Boot image, while it needs to be enabled for SPL. This version also uses a stack implementation, as suggested by Simon Glass to temporarily store the lmb structure instance which is used during normal operation when running lmb tests. This does away with the need to run the lmb tests separately. The tests have been tweaked where needed because of these changes. The second part of the patches, to be sent subsequently, would work on having the EFI allocations work with the LMB API's. [1] - https://lore.kernel.org/u-boot/20240704073544.670249-1-sughosh.ganu@linaro.org/T/#t Notes: 1) These patches are on next, as the alist patches have been applied to that branch. 2) I have tested the boot on the ST DK2 board, but it would be good to get a T-b/R-b from the ST maintainers. 3) It will be good to test these changes on a PowerPC platform (ideally an 85xx, as I do not have one).
804 lines
23 KiB
C
804 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2018 Simon Goldschmidt
|
|
*/
|
|
|
|
#include <alist.h>
|
|
#include <dm.h>
|
|
#include <lmb.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <dm/test.h>
|
|
#include <test/lib.h>
|
|
#include <test/test.h>
|
|
#include <test/ut.h>
|
|
|
|
static inline bool lmb_is_nomap(struct lmb_region *m)
|
|
{
|
|
return m->flags & LMB_NOMAP;
|
|
}
|
|
|
|
static int check_lmb(struct unit_test_state *uts, struct alist *mem_lst,
|
|
struct alist *used_lst, phys_addr_t ram_base,
|
|
phys_size_t ram_size, unsigned long num_reserved,
|
|
phys_addr_t base1, phys_size_t size1,
|
|
phys_addr_t base2, phys_size_t size2,
|
|
phys_addr_t base3, phys_size_t size3)
|
|
{
|
|
struct lmb_region *mem, *used;
|
|
|
|
mem = mem_lst->data;
|
|
used = used_lst->data;
|
|
|
|
if (ram_size) {
|
|
ut_asserteq(mem_lst->count, 1);
|
|
ut_asserteq(mem[0].base, ram_base);
|
|
ut_asserteq(mem[0].size, ram_size);
|
|
}
|
|
|
|
ut_asserteq(used_lst->count, num_reserved);
|
|
if (num_reserved > 0) {
|
|
ut_asserteq(used[0].base, base1);
|
|
ut_asserteq(used[0].size, size1);
|
|
}
|
|
if (num_reserved > 1) {
|
|
ut_asserteq(used[1].base, base2);
|
|
ut_asserteq(used[1].size, size2);
|
|
}
|
|
if (num_reserved > 2) {
|
|
ut_asserteq(used[2].base, base3);
|
|
ut_asserteq(used[2].size, size3);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define ASSERT_LMB(mem_lst, used_lst, ram_base, ram_size, num_reserved, base1, size1, \
|
|
base2, size2, base3, size3) \
|
|
ut_assert(!check_lmb(uts, mem_lst, used_lst, ram_base, ram_size, \
|
|
num_reserved, base1, size1, base2, size2, base3, \
|
|
size3))
|
|
|
|
static int setup_lmb_test(struct unit_test_state *uts, struct lmb *store,
|
|
struct alist **mem_lstp, struct alist **used_lstp)
|
|
{
|
|
struct lmb *lmb;
|
|
|
|
ut_assertok(lmb_push(store));
|
|
lmb = lmb_get();
|
|
*mem_lstp = &lmb->free_mem;
|
|
*used_lstp = &lmb->used_mem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram,
|
|
const phys_size_t ram_size, const phys_addr_t ram0,
|
|
const phys_size_t ram0_size,
|
|
const phys_addr_t alloc_64k_addr)
|
|
{
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000;
|
|
|
|
long ret;
|
|
struct alist *mem_lst, *used_lst;
|
|
struct lmb_region *mem, *used;
|
|
phys_addr_t a, a2, b, b2, c, d;
|
|
struct lmb store;
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
ut_assert(alloc_64k_end > alloc_64k_addr);
|
|
/* check input addresses + size */
|
|
ut_assert(alloc_64k_addr >= ram + 8);
|
|
ut_assert(alloc_64k_end <= ram_end - 8);
|
|
|
|
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
|
|
mem = mem_lst->data;
|
|
used = used_lst->data;
|
|
|
|
if (ram0_size) {
|
|
ret = lmb_add(ram0, ram0_size);
|
|
ut_asserteq(ret, 0);
|
|
}
|
|
|
|
ret = lmb_add(ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
if (ram0_size) {
|
|
ut_asserteq(mem_lst->count, 2);
|
|
ut_asserteq(mem[0].base, ram0);
|
|
ut_asserteq(mem[0].size, ram0_size);
|
|
ut_asserteq(mem[1].base, ram);
|
|
ut_asserteq(mem[1].size, ram_size);
|
|
} else {
|
|
ut_asserteq(mem_lst->count, 1);
|
|
ut_asserteq(mem[0].base, ram);
|
|
ut_asserteq(mem[0].size, ram_size);
|
|
}
|
|
|
|
/* reserve 64KiB somewhere */
|
|
ret = lmb_reserve(alloc_64k_addr, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate somewhere, should be at the end of RAM */
|
|
a = lmb_alloc(4, 1);
|
|
ut_asserteq(a, ram_end - 4);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr, 0x10000,
|
|
ram_end - 4, 4, 0, 0);
|
|
/* alloc below end of reserved region -> below reserved region */
|
|
b = lmb_alloc_base(4, 1, alloc_64k_end);
|
|
ut_asserteq(b, alloc_64k_addr - 4);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
|
|
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
|
|
|
|
/* 2nd time */
|
|
c = lmb_alloc(4, 1);
|
|
ut_asserteq(c, ram_end - 8);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
|
|
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
|
|
d = lmb_alloc_base(4, 1, alloc_64k_end);
|
|
ut_asserteq(d, alloc_64k_addr - 8);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
|
|
|
|
ret = lmb_free(a, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
|
|
/* allocate again to ensure we get the same address */
|
|
a2 = lmb_alloc(4, 1);
|
|
ut_asserteq(a, a2);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
|
|
ret = lmb_free(a2, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
|
|
|
|
ret = lmb_free(b, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 3,
|
|
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
|
|
ram_end - 8, 4);
|
|
/* allocate again to ensure we get the same address */
|
|
b2 = lmb_alloc_base(4, 1, alloc_64k_end);
|
|
ut_asserteq(b, b2);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
|
|
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
|
|
ret = lmb_free(b2, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 3,
|
|
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
|
|
ram_end - 8, 4);
|
|
|
|
ret = lmb_free(c, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
|
|
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
|
|
ret = lmb_free(d, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, 0, 0, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
if (ram0_size) {
|
|
ut_asserteq(mem_lst->count, 2);
|
|
ut_asserteq(mem[0].base, ram0);
|
|
ut_asserteq(mem[0].size, ram0_size);
|
|
ut_asserteq(mem[1].base, ram);
|
|
ut_asserteq(mem[1].size, ram_size);
|
|
} else {
|
|
ut_asserteq(mem_lst->count, 1);
|
|
ut_asserteq(mem[0].base, ram);
|
|
ut_asserteq(mem[0].size, ram_size);
|
|
}
|
|
|
|
lmb_pop(&store);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_multi_alloc_512mb(struct unit_test_state *uts,
|
|
const phys_addr_t ram)
|
|
{
|
|
return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000);
|
|
}
|
|
|
|
static int test_multi_alloc_512mb_x2(struct unit_test_state *uts,
|
|
const phys_addr_t ram,
|
|
const phys_addr_t ram0)
|
|
{
|
|
return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000,
|
|
ram + 0x10000000);
|
|
}
|
|
|
|
/* Create a memory region with one reserved region and allocate */
|
|
static int lib_test_lmb_simple(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_multi_alloc_512mb(uts, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_multi_alloc_512mb(uts, 0xE0000000);
|
|
}
|
|
LIB_TEST(lib_test_lmb_simple, 0);
|
|
|
|
/* Create two memory regions with one reserved region and allocate */
|
|
static int lib_test_lmb_simple_x2(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */
|
|
ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */
|
|
return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000);
|
|
}
|
|
LIB_TEST(lib_test_lmb_simple_x2, 0);
|
|
|
|
/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
|
|
static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
|
|
{
|
|
const phys_size_t ram_size = 0x20000000;
|
|
const phys_size_t big_block_size = 0x10000000;
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
const phys_addr_t alloc_64k_addr = ram + 0x10000000;
|
|
struct alist *mem_lst, *used_lst;
|
|
long ret;
|
|
phys_addr_t a, b;
|
|
struct lmb store;
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
|
|
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
|
|
|
|
ret = lmb_add(ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* reserve 64KiB in the middle of RAM */
|
|
ret = lmb_reserve(alloc_64k_addr, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate a big block, should be below reserved */
|
|
a = lmb_alloc(big_block_size, 1);
|
|
ut_asserteq(a, ram);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a,
|
|
big_block_size + 0x10000, 0, 0, 0, 0);
|
|
/* allocate 2nd big block */
|
|
/* This should fail, printing an error */
|
|
b = lmb_alloc(big_block_size, 1);
|
|
ut_asserteq(b, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a,
|
|
big_block_size + 0x10000, 0, 0, 0, 0);
|
|
|
|
ret = lmb_free(a, big_block_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate too big block */
|
|
/* This should fail, printing an error */
|
|
a = lmb_alloc(ram_size, 1);
|
|
ut_asserteq(a, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
lmb_pop(&store);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lib_test_lmb_big(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_bigblock(uts, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_bigblock(uts, 0xE0000000);
|
|
}
|
|
LIB_TEST(lib_test_lmb_big, 0);
|
|
|
|
/* Simulate 512 MiB RAM, allocate a block without previous reservation */
|
|
static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram,
|
|
const phys_addr_t alloc_size, const ulong align)
|
|
{
|
|
const phys_size_t ram_size = 0x20000000;
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
long ret;
|
|
phys_addr_t a, b;
|
|
struct lmb store;
|
|
struct alist *mem_lst, *used_lst;
|
|
const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) &
|
|
~(align - 1);
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
|
|
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
|
|
|
|
ret = lmb_add(ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
/* allocate a block */
|
|
a = lmb_alloc(alloc_size, align);
|
|
ut_assert(a != 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1,
|
|
ram + ram_size - alloc_size_aligned, alloc_size, 0, 0, 0, 0);
|
|
|
|
/* allocate another block */
|
|
b = lmb_alloc(alloc_size, align);
|
|
ut_assert(b != 0);
|
|
if (alloc_size == alloc_size_aligned) {
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + ram_size -
|
|
(alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0,
|
|
0);
|
|
} else {
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram + ram_size -
|
|
(alloc_size_aligned * 2), alloc_size, ram + ram_size
|
|
- alloc_size_aligned, alloc_size, 0, 0);
|
|
}
|
|
/* and free them */
|
|
ret = lmb_free(b, alloc_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1,
|
|
ram + ram_size - alloc_size_aligned,
|
|
alloc_size, 0, 0, 0, 0);
|
|
ret = lmb_free(a, alloc_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
/* allocate a block with base*/
|
|
b = lmb_alloc_base(alloc_size, align, ram_end);
|
|
ut_assert(a == b);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1,
|
|
ram + ram_size - alloc_size_aligned,
|
|
alloc_size, 0, 0, 0, 0);
|
|
/* and free it */
|
|
ret = lmb_free(b, alloc_size);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
lmb_pop(&store);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lib_test_lmb_noreserved(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_noreserved(uts, 0x40000000, 4, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_noreserved(uts, 0xE0000000, 4, 1);
|
|
}
|
|
LIB_TEST(lib_test_lmb_noreserved, 0);
|
|
|
|
static int lib_test_lmb_unaligned_size(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_noreserved(uts, 0x40000000, 5, 8);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_noreserved(uts, 0xE0000000, 5, 8);
|
|
}
|
|
LIB_TEST(lib_test_lmb_unaligned_size, 0);
|
|
|
|
/*
|
|
* Simulate a RAM that starts at 0 and allocate down to address 0, which must
|
|
* fail as '0' means failure for the lmb_alloc functions.
|
|
*/
|
|
static int lib_test_lmb_at_0(struct unit_test_state *uts)
|
|
{
|
|
const phys_addr_t ram = 0;
|
|
const phys_size_t ram_size = 0x20000000;
|
|
struct lmb store;
|
|
struct alist *mem_lst, *used_lst;
|
|
long ret;
|
|
phys_addr_t a, b;
|
|
|
|
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
|
|
|
|
ret = lmb_add(ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* allocate nearly everything */
|
|
a = lmb_alloc(ram_size - 4, 1);
|
|
ut_asserteq(a, ram + 4);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4,
|
|
0, 0, 0, 0);
|
|
/* allocate the rest */
|
|
/* This should fail as the allocated address would be 0 */
|
|
b = lmb_alloc(4, 1);
|
|
ut_asserteq(b, 0);
|
|
/* check that this was an error by checking lmb */
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4,
|
|
0, 0, 0, 0);
|
|
/* check that this was an error by freeing b */
|
|
ret = lmb_free(b, 4);
|
|
ut_asserteq(ret, -1);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4,
|
|
0, 0, 0, 0);
|
|
|
|
ret = lmb_free(a, ram_size - 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
lmb_pop(&store);
|
|
|
|
return 0;
|
|
}
|
|
LIB_TEST(lib_test_lmb_at_0, 0);
|
|
|
|
/* Check that calling lmb_reserve with overlapping regions fails. */
|
|
static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts)
|
|
{
|
|
const phys_addr_t ram = 0x40000000;
|
|
const phys_size_t ram_size = 0x20000000;
|
|
struct lmb store;
|
|
struct alist *mem_lst, *used_lst;
|
|
long ret;
|
|
|
|
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
|
|
|
|
ret = lmb_add(ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
ret = lmb_reserve(0x40010000, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate overlapping region should return the coalesced count */
|
|
ret = lmb_reserve(0x40011000, 0x10000);
|
|
ut_asserteq(ret, 1);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x11000,
|
|
0, 0, 0, 0);
|
|
/* allocate 3nd region */
|
|
ret = lmb_reserve(0x40030000, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40010000, 0x11000,
|
|
0x40030000, 0x10000, 0, 0);
|
|
/* allocate 2nd region , This should coalesced all region into one */
|
|
ret = lmb_reserve(0x40020000, 0x10000);
|
|
ut_assert(ret >= 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x30000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate 2nd region, which should be added as first region */
|
|
ret = lmb_reserve(0x40000000, 0x8000);
|
|
ut_assert(ret >= 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x8000,
|
|
0x40010000, 0x30000, 0, 0);
|
|
|
|
/* allocate 3rd region, coalesce with first and overlap with second */
|
|
ret = lmb_reserve(0x40008000, 0x10000);
|
|
ut_assert(ret >= 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40000000, 0x40000,
|
|
0, 0, 0, 0);
|
|
|
|
lmb_pop(&store);
|
|
|
|
return 0;
|
|
}
|
|
LIB_TEST(lib_test_lmb_overlapping_reserve, 0);
|
|
|
|
/*
|
|
* Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between.
|
|
* Expect addresses outside the memory range to fail.
|
|
*/
|
|
static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram)
|
|
{
|
|
struct lmb store;
|
|
struct alist *mem_lst, *used_lst;
|
|
const phys_size_t ram_size = 0x20000000;
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
const phys_size_t alloc_addr_a = ram + 0x8000000;
|
|
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
|
|
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
|
|
long ret;
|
|
phys_addr_t a, b, c, d, e;
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
|
|
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
|
|
|
|
ret = lmb_add(ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* reserve 3 blocks */
|
|
ret = lmb_reserve(alloc_addr_a, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ret = lmb_reserve(alloc_addr_b, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ret = lmb_reserve(alloc_addr_c, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, alloc_addr_a, 0x10000,
|
|
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
|
|
|
|
/* allocate blocks */
|
|
a = lmb_alloc_addr(ram, alloc_addr_a - ram);
|
|
ut_asserteq(a, ram);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, ram, 0x8010000,
|
|
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
|
|
b = lmb_alloc_addr(alloc_addr_a + 0x10000,
|
|
alloc_addr_b - alloc_addr_a - 0x10000);
|
|
ut_asserteq(b, alloc_addr_a + 0x10000);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x10010000,
|
|
alloc_addr_c, 0x10000, 0, 0);
|
|
c = lmb_alloc_addr(alloc_addr_b + 0x10000,
|
|
alloc_addr_c - alloc_addr_b - 0x10000);
|
|
ut_asserteq(c, alloc_addr_b + 0x10000);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000,
|
|
0, 0, 0, 0);
|
|
d = lmb_alloc_addr(alloc_addr_c + 0x10000,
|
|
ram_end - alloc_addr_c - 0x10000);
|
|
ut_asserteq(d, alloc_addr_c + 0x10000);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, ram_size,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocating anything else should fail */
|
|
e = lmb_alloc(1, 1);
|
|
ut_asserteq(e, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, ram_size,
|
|
0, 0, 0, 0);
|
|
|
|
ret = lmb_free(d, ram_end - alloc_addr_c - 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* allocate at 3 points in free range */
|
|
|
|
d = lmb_alloc_addr(ram_end - 4, 4);
|
|
ut_asserteq(d, ram_end - 4);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x18010000,
|
|
d, 4, 0, 0);
|
|
ret = lmb_free(d, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000,
|
|
0, 0, 0, 0);
|
|
|
|
d = lmb_alloc_addr(ram_end - 128, 4);
|
|
ut_asserteq(d, ram_end - 128);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x18010000,
|
|
d, 4, 0, 0);
|
|
ret = lmb_free(d, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000,
|
|
0, 0, 0, 0);
|
|
|
|
d = lmb_alloc_addr(alloc_addr_c + 0x10000, 4);
|
|
ut_asserteq(d, alloc_addr_c + 0x10000);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010004,
|
|
0, 0, 0, 0);
|
|
ret = lmb_free(d, 4);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000,
|
|
0, 0, 0, 0);
|
|
|
|
/* allocate at the bottom */
|
|
ret = lmb_free(a, alloc_addr_a - ram);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + 0x8000000,
|
|
0x10010000, 0, 0, 0, 0);
|
|
|
|
d = lmb_alloc_addr(ram, 4);
|
|
ut_asserteq(d, ram);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, d, 4,
|
|
ram + 0x8000000, 0x10010000, 0, 0);
|
|
|
|
/* check that allocating outside memory fails */
|
|
if (ram_end != 0) {
|
|
ret = lmb_alloc_addr(ram_end, 1);
|
|
ut_asserteq(ret, 0);
|
|
}
|
|
if (ram != 0) {
|
|
ret = lmb_alloc_addr(ram - 1, 1);
|
|
ut_asserteq(ret, 0);
|
|
}
|
|
|
|
lmb_pop(&store);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lib_test_lmb_alloc_addr(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_alloc_addr(uts, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_alloc_addr(uts, 0xE0000000);
|
|
}
|
|
LIB_TEST(lib_test_lmb_alloc_addr, 0);
|
|
|
|
/* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */
|
|
static int test_get_unreserved_size(struct unit_test_state *uts,
|
|
const phys_addr_t ram)
|
|
{
|
|
struct lmb store;
|
|
struct alist *mem_lst, *used_lst;
|
|
const phys_size_t ram_size = 0x20000000;
|
|
const phys_addr_t ram_end = ram + ram_size;
|
|
const phys_size_t alloc_addr_a = ram + 0x8000000;
|
|
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
|
|
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
|
|
long ret;
|
|
phys_size_t s;
|
|
|
|
/* check for overflow */
|
|
ut_assert(ram_end == 0 || ram_end > ram);
|
|
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
|
|
|
|
ret = lmb_add(ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* reserve 3 blocks */
|
|
ret = lmb_reserve(alloc_addr_a, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ret = lmb_reserve(alloc_addr_b, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ret = lmb_reserve(alloc_addr_c, 0x10000);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, alloc_addr_a, 0x10000,
|
|
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
|
|
|
|
/* check addresses in between blocks */
|
|
s = lmb_get_free_size(ram);
|
|
ut_asserteq(s, alloc_addr_a - ram);
|
|
s = lmb_get_free_size(ram + 0x10000);
|
|
ut_asserteq(s, alloc_addr_a - ram - 0x10000);
|
|
s = lmb_get_free_size(alloc_addr_a - 4);
|
|
ut_asserteq(s, 4);
|
|
|
|
s = lmb_get_free_size(alloc_addr_a + 0x10000);
|
|
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000);
|
|
s = lmb_get_free_size(alloc_addr_a + 0x20000);
|
|
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000);
|
|
s = lmb_get_free_size(alloc_addr_b - 4);
|
|
ut_asserteq(s, 4);
|
|
|
|
s = lmb_get_free_size(alloc_addr_c + 0x10000);
|
|
ut_asserteq(s, ram_end - alloc_addr_c - 0x10000);
|
|
s = lmb_get_free_size(alloc_addr_c + 0x20000);
|
|
ut_asserteq(s, ram_end - alloc_addr_c - 0x20000);
|
|
s = lmb_get_free_size(ram_end - 4);
|
|
ut_asserteq(s, 4);
|
|
|
|
lmb_pop(&store);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lib_test_lmb_get_free_size(struct unit_test_state *uts)
|
|
{
|
|
int ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1GiB */
|
|
ret = test_get_unreserved_size(uts, 0x40000000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* simulate 512 MiB RAM beginning at 1.5GiB */
|
|
return test_get_unreserved_size(uts, 0xE0000000);
|
|
}
|
|
LIB_TEST(lib_test_lmb_get_free_size, 0);
|
|
|
|
static int lib_test_lmb_flags(struct unit_test_state *uts)
|
|
{
|
|
struct lmb store;
|
|
struct lmb_region *mem, *used;
|
|
struct alist *mem_lst, *used_lst;
|
|
const phys_addr_t ram = 0x40000000;
|
|
const phys_size_t ram_size = 0x20000000;
|
|
long ret;
|
|
|
|
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
|
|
mem = mem_lst->data;
|
|
used = used_lst->data;
|
|
|
|
ret = lmb_add(ram, ram_size);
|
|
ut_asserteq(ret, 0);
|
|
|
|
/* reserve, same flag */
|
|
ret = lmb_reserve_flags(0x40010000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* reserve again, same flag */
|
|
ret = lmb_reserve_flags(0x40010000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
/* reserve again, new flag */
|
|
ret = lmb_reserve_flags(0x40010000, 0x10000, LMB_NONE);
|
|
ut_asserteq(ret, -1);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000,
|
|
0, 0, 0, 0);
|
|
|
|
ut_asserteq(lmb_is_nomap(&used[0]), 1);
|
|
|
|
/* merge after */
|
|
ret = lmb_reserve_flags(0x40020000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 1);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x20000,
|
|
0, 0, 0, 0);
|
|
|
|
/* merge before */
|
|
ret = lmb_reserve_flags(0x40000000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 1);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40000000, 0x30000,
|
|
0, 0, 0, 0);
|
|
|
|
ut_asserteq(lmb_is_nomap(&used[0]), 1);
|
|
|
|
ret = lmb_reserve_flags(0x40030000, 0x10000, LMB_NONE);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x30000,
|
|
0x40030000, 0x10000, 0, 0);
|
|
|
|
ut_asserteq(lmb_is_nomap(&used[0]), 1);
|
|
ut_asserteq(lmb_is_nomap(&used[1]), 0);
|
|
|
|
/* test that old API use LMB_NONE */
|
|
ret = lmb_reserve(0x40040000, 0x10000);
|
|
ut_asserteq(ret, 1);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x30000,
|
|
0x40030000, 0x20000, 0, 0);
|
|
|
|
ut_asserteq(lmb_is_nomap(&used[0]), 1);
|
|
ut_asserteq(lmb_is_nomap(&used[1]), 0);
|
|
|
|
ret = lmb_reserve_flags(0x40070000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, 0x40000000, 0x30000,
|
|
0x40030000, 0x20000, 0x40070000, 0x10000);
|
|
|
|
ret = lmb_reserve_flags(0x40050000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 0);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 4, 0x40000000, 0x30000,
|
|
0x40030000, 0x20000, 0x40050000, 0x10000);
|
|
|
|
/* merge with 2 adjacent regions */
|
|
ret = lmb_reserve_flags(0x40060000, 0x10000, LMB_NOMAP);
|
|
ut_asserteq(ret, 2);
|
|
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, 0x40000000, 0x30000,
|
|
0x40030000, 0x20000, 0x40050000, 0x30000);
|
|
|
|
ut_asserteq(lmb_is_nomap(&used[0]), 1);
|
|
ut_asserteq(lmb_is_nomap(&used[1]), 0);
|
|
ut_asserteq(lmb_is_nomap(&used[2]), 1);
|
|
|
|
lmb_pop(&store);
|
|
|
|
return 0;
|
|
}
|
|
LIB_TEST(lib_test_lmb_flags, 0);
|