// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2018 Simon Goldschmidt */ #include #include #include #include #include #include #include #include #include static inline bool lmb_is_nomap(struct lmb_region *m) { return m->flags & LMB_NOMAP; } static int check_lmb(struct unit_test_state *uts, struct alist *mem_lst, struct alist *used_lst, phys_addr_t ram_base, phys_size_t ram_size, unsigned long num_reserved, phys_addr_t base1, phys_size_t size1, phys_addr_t base2, phys_size_t size2, phys_addr_t base3, phys_size_t size3) { struct lmb_region *mem, *used; mem = mem_lst->data; used = used_lst->data; if (ram_size) { ut_asserteq(mem_lst->count, 1); ut_asserteq(mem[0].base, ram_base); ut_asserteq(mem[0].size, ram_size); } ut_asserteq(used_lst->count, num_reserved); if (num_reserved > 0) { ut_asserteq(used[0].base, base1); ut_asserteq(used[0].size, size1); } if (num_reserved > 1) { ut_asserteq(used[1].base, base2); ut_asserteq(used[1].size, size2); } if (num_reserved > 2) { ut_asserteq(used[2].base, base3); ut_asserteq(used[2].size, size3); } return 0; } #define ASSERT_LMB(mem_lst, used_lst, ram_base, ram_size, num_reserved, base1, size1, \ base2, size2, base3, size3) \ ut_assert(!check_lmb(uts, mem_lst, used_lst, ram_base, ram_size, \ num_reserved, base1, size1, base2, size2, base3, \ size3)) static int setup_lmb_test(struct unit_test_state *uts, struct lmb *store, struct alist **mem_lstp, struct alist **used_lstp) { struct lmb *lmb; ut_assertok(lmb_push(store)); lmb = lmb_get(); *mem_lstp = &lmb->free_mem; *used_lstp = &lmb->used_mem; return 0; } static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram, const phys_size_t ram_size, const phys_addr_t ram0, const phys_size_t ram0_size, const phys_addr_t alloc_64k_addr) { const phys_addr_t ram_end = ram + ram_size; const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000; long ret; struct alist *mem_lst, *used_lst; struct lmb_region *mem, *used; phys_addr_t a, a2, b, b2, c, d; struct lmb store; /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); ut_assert(alloc_64k_end > alloc_64k_addr); /* check input addresses + size */ ut_assert(alloc_64k_addr >= ram + 8); ut_assert(alloc_64k_end <= ram_end - 8); ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); mem = mem_lst->data; used = used_lst->data; if (ram0_size) { ret = lmb_add(ram0, ram0_size); ut_asserteq(ret, 0); } ret = lmb_add(ram, ram_size); ut_asserteq(ret, 0); if (ram0_size) { ut_asserteq(mem_lst->count, 2); ut_asserteq(mem[0].base, ram0); ut_asserteq(mem[0].size, ram0_size); ut_asserteq(mem[1].base, ram); ut_asserteq(mem[1].size, ram_size); } else { ut_asserteq(mem_lst->count, 1); ut_asserteq(mem[0].base, ram); ut_asserteq(mem[0].size, ram_size); } /* reserve 64KiB somewhere */ ret = lmb_reserve(alloc_64k_addr, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, 0, 0, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); /* allocate somewhere, should be at the end of RAM */ a = lmb_alloc(4, 1); ut_asserteq(a, ram_end - 4); ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr, 0x10000, ram_end - 4, 4, 0, 0); /* alloc below end of reserved region -> below reserved region */ b = lmb_alloc_base(4, 1, alloc_64k_end); ut_asserteq(b, alloc_64k_addr - 4); ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0); /* 2nd time */ c = lmb_alloc(4, 1); ut_asserteq(c, ram_end - 8); ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0); d = lmb_alloc_base(4, 1, alloc_64k_end); ut_asserteq(d, alloc_64k_addr - 8); ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); ret = lmb_free(a, 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); /* allocate again to ensure we get the same address */ a2 = lmb_alloc(4, 1); ut_asserteq(a, a2); ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); ret = lmb_free(a2, 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); ret = lmb_free(b, 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, 0, 0, 3, alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, ram_end - 8, 4); /* allocate again to ensure we get the same address */ b2 = lmb_alloc_base(4, 1, alloc_64k_end); ut_asserteq(b, b2); ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); ret = lmb_free(b2, 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, 0, 0, 3, alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, ram_end - 8, 4); ret = lmb_free(c, 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0); ret = lmb_free(d, 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, 0, 0, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); if (ram0_size) { ut_asserteq(mem_lst->count, 2); ut_asserteq(mem[0].base, ram0); ut_asserteq(mem[0].size, ram0_size); ut_asserteq(mem[1].base, ram); ut_asserteq(mem[1].size, ram_size); } else { ut_asserteq(mem_lst->count, 1); ut_asserteq(mem[0].base, ram); ut_asserteq(mem[0].size, ram_size); } lmb_pop(&store); return 0; } static int test_multi_alloc_512mb(struct unit_test_state *uts, const phys_addr_t ram) { return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000); } static int test_multi_alloc_512mb_x2(struct unit_test_state *uts, const phys_addr_t ram, const phys_addr_t ram0) { return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000, ram + 0x10000000); } /* Create a memory region with one reserved region and allocate */ static int lib_test_lmb_simple(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_multi_alloc_512mb(uts, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_multi_alloc_512mb(uts, 0xE0000000); } LIB_TEST(lib_test_lmb_simple, 0); /* Create two memory regions with one reserved region and allocate */ static int lib_test_lmb_simple_x2(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */ ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */ return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000); } LIB_TEST(lib_test_lmb_simple_x2, 0); /* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */ static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram) { const phys_size_t ram_size = 0x20000000; const phys_size_t big_block_size = 0x10000000; const phys_addr_t ram_end = ram + ram_size; const phys_addr_t alloc_64k_addr = ram + 0x10000000; struct alist *mem_lst, *used_lst; long ret; phys_addr_t a, b; struct lmb store; /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); ret = lmb_add(ram, ram_size); ut_asserteq(ret, 0); /* reserve 64KiB in the middle of RAM */ ret = lmb_reserve(alloc_64k_addr, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); /* allocate a big block, should be below reserved */ a = lmb_alloc(big_block_size, 1); ut_asserteq(a, ram); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, big_block_size + 0x10000, 0, 0, 0, 0); /* allocate 2nd big block */ /* This should fail, printing an error */ b = lmb_alloc(big_block_size, 1); ut_asserteq(b, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, big_block_size + 0x10000, 0, 0, 0, 0); ret = lmb_free(a, big_block_size); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); /* allocate too big block */ /* This should fail, printing an error */ a = lmb_alloc(ram_size, 1); ut_asserteq(a, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); lmb_pop(&store); return 0; } static int lib_test_lmb_big(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_bigblock(uts, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_bigblock(uts, 0xE0000000); } LIB_TEST(lib_test_lmb_big, 0); /* Simulate 512 MiB RAM, allocate a block without previous reservation */ static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram, const phys_addr_t alloc_size, const ulong align) { const phys_size_t ram_size = 0x20000000; const phys_addr_t ram_end = ram + ram_size; long ret; phys_addr_t a, b; struct lmb store; struct alist *mem_lst, *used_lst; const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) & ~(align - 1); /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); ret = lmb_add(ram, ram_size); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); /* allocate a block */ a = lmb_alloc(alloc_size, align); ut_assert(a != 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, alloc_size, 0, 0, 0, 0); /* allocate another block */ b = lmb_alloc(alloc_size, align); ut_assert(b != 0); if (alloc_size == alloc_size_aligned) { ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + ram_size - (alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0, 0); } else { ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram + ram_size - (alloc_size_aligned * 2), alloc_size, ram + ram_size - alloc_size_aligned, alloc_size, 0, 0); } /* and free them */ ret = lmb_free(b, alloc_size); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, alloc_size, 0, 0, 0, 0); ret = lmb_free(a, alloc_size); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); /* allocate a block with base*/ b = lmb_alloc_base(alloc_size, align, ram_end); ut_assert(a == b); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, alloc_size, 0, 0, 0, 0); /* and free it */ ret = lmb_free(b, alloc_size); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); lmb_pop(&store); return 0; } static int lib_test_lmb_noreserved(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_noreserved(uts, 0x40000000, 4, 1); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_noreserved(uts, 0xE0000000, 4, 1); } LIB_TEST(lib_test_lmb_noreserved, 0); static int lib_test_lmb_unaligned_size(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_noreserved(uts, 0x40000000, 5, 8); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_noreserved(uts, 0xE0000000, 5, 8); } LIB_TEST(lib_test_lmb_unaligned_size, 0); /* * Simulate a RAM that starts at 0 and allocate down to address 0, which must * fail as '0' means failure for the lmb_alloc functions. */ static int lib_test_lmb_at_0(struct unit_test_state *uts) { const phys_addr_t ram = 0; const phys_size_t ram_size = 0x20000000; struct lmb store; struct alist *mem_lst, *used_lst; long ret; phys_addr_t a, b; ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); ret = lmb_add(ram, ram_size); ut_asserteq(ret, 0); /* allocate nearly everything */ a = lmb_alloc(ram_size - 4, 1); ut_asserteq(a, ram + 4); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4, 0, 0, 0, 0); /* allocate the rest */ /* This should fail as the allocated address would be 0 */ b = lmb_alloc(4, 1); ut_asserteq(b, 0); /* check that this was an error by checking lmb */ ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4, 0, 0, 0, 0); /* check that this was an error by freeing b */ ret = lmb_free(b, 4); ut_asserteq(ret, -1); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4, 0, 0, 0, 0); ret = lmb_free(a, ram_size - 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); lmb_pop(&store); return 0; } LIB_TEST(lib_test_lmb_at_0, 0); /* Check that calling lmb_reserve with overlapping regions fails. */ static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts) { const phys_addr_t ram = 0x40000000; const phys_size_t ram_size = 0x20000000; struct lmb store; struct alist *mem_lst, *used_lst; long ret; ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); ret = lmb_add(ram, ram_size); ut_asserteq(ret, 0); ret = lmb_reserve(0x40010000, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000, 0, 0, 0, 0); /* allocate overlapping region should return the coalesced count */ ret = lmb_reserve(0x40011000, 0x10000); ut_asserteq(ret, 1); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x11000, 0, 0, 0, 0); /* allocate 3nd region */ ret = lmb_reserve(0x40030000, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40010000, 0x11000, 0x40030000, 0x10000, 0, 0); /* allocate 2nd region , This should coalesced all region into one */ ret = lmb_reserve(0x40020000, 0x10000); ut_assert(ret >= 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x30000, 0, 0, 0, 0); /* allocate 2nd region, which should be added as first region */ ret = lmb_reserve(0x40000000, 0x8000); ut_assert(ret >= 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x8000, 0x40010000, 0x30000, 0, 0); /* allocate 3rd region, coalesce with first and overlap with second */ ret = lmb_reserve(0x40008000, 0x10000); ut_assert(ret >= 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40000000, 0x40000, 0, 0, 0, 0); lmb_pop(&store); return 0; } LIB_TEST(lib_test_lmb_overlapping_reserve, 0); /* * Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between. * Expect addresses outside the memory range to fail. */ static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram) { struct lmb store; struct alist *mem_lst, *used_lst; const phys_size_t ram_size = 0x20000000; const phys_addr_t ram_end = ram + ram_size; const phys_size_t alloc_addr_a = ram + 0x8000000; const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; long ret; phys_addr_t a, b, c, d, e; /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); ret = lmb_add(ram, ram_size); ut_asserteq(ret, 0); /* reserve 3 blocks */ ret = lmb_reserve(alloc_addr_a, 0x10000); ut_asserteq(ret, 0); ret = lmb_reserve(alloc_addr_b, 0x10000); ut_asserteq(ret, 0); ret = lmb_reserve(alloc_addr_c, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, alloc_addr_a, 0x10000, alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); /* allocate blocks */ a = lmb_alloc_addr(ram, alloc_addr_a - ram); ut_asserteq(a, ram); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, ram, 0x8010000, alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); b = lmb_alloc_addr(alloc_addr_a + 0x10000, alloc_addr_b - alloc_addr_a - 0x10000); ut_asserteq(b, alloc_addr_a + 0x10000); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x10010000, alloc_addr_c, 0x10000, 0, 0); c = lmb_alloc_addr(alloc_addr_b + 0x10000, alloc_addr_c - alloc_addr_b - 0x10000); ut_asserteq(c, alloc_addr_b + 0x10000); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000, 0, 0, 0, 0); d = lmb_alloc_addr(alloc_addr_c + 0x10000, ram_end - alloc_addr_c - 0x10000); ut_asserteq(d, alloc_addr_c + 0x10000); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, ram_size, 0, 0, 0, 0); /* allocating anything else should fail */ e = lmb_alloc(1, 1); ut_asserteq(e, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, ram_size, 0, 0, 0, 0); ret = lmb_free(d, ram_end - alloc_addr_c - 0x10000); ut_asserteq(ret, 0); /* allocate at 3 points in free range */ d = lmb_alloc_addr(ram_end - 4, 4); ut_asserteq(d, ram_end - 4); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x18010000, d, 4, 0, 0); ret = lmb_free(d, 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000, 0, 0, 0, 0); d = lmb_alloc_addr(ram_end - 128, 4); ut_asserteq(d, ram_end - 128); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x18010000, d, 4, 0, 0); ret = lmb_free(d, 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000, 0, 0, 0, 0); d = lmb_alloc_addr(alloc_addr_c + 0x10000, 4); ut_asserteq(d, alloc_addr_c + 0x10000); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010004, 0, 0, 0, 0); ret = lmb_free(d, 4); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000, 0, 0, 0, 0); /* allocate at the bottom */ ret = lmb_free(a, alloc_addr_a - ram); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + 0x8000000, 0x10010000, 0, 0, 0, 0); d = lmb_alloc_addr(ram, 4); ut_asserteq(d, ram); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, d, 4, ram + 0x8000000, 0x10010000, 0, 0); /* check that allocating outside memory fails */ if (ram_end != 0) { ret = lmb_alloc_addr(ram_end, 1); ut_asserteq(ret, 0); } if (ram != 0) { ret = lmb_alloc_addr(ram - 1, 1); ut_asserteq(ret, 0); } lmb_pop(&store); return 0; } static int lib_test_lmb_alloc_addr(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_alloc_addr(uts, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_alloc_addr(uts, 0xE0000000); } LIB_TEST(lib_test_lmb_alloc_addr, 0); /* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */ static int test_get_unreserved_size(struct unit_test_state *uts, const phys_addr_t ram) { struct lmb store; struct alist *mem_lst, *used_lst; const phys_size_t ram_size = 0x20000000; const phys_addr_t ram_end = ram + ram_size; const phys_size_t alloc_addr_a = ram + 0x8000000; const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; long ret; phys_size_t s; /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); ret = lmb_add(ram, ram_size); ut_asserteq(ret, 0); /* reserve 3 blocks */ ret = lmb_reserve(alloc_addr_a, 0x10000); ut_asserteq(ret, 0); ret = lmb_reserve(alloc_addr_b, 0x10000); ut_asserteq(ret, 0); ret = lmb_reserve(alloc_addr_c, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, alloc_addr_a, 0x10000, alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); /* check addresses in between blocks */ s = lmb_get_free_size(ram); ut_asserteq(s, alloc_addr_a - ram); s = lmb_get_free_size(ram + 0x10000); ut_asserteq(s, alloc_addr_a - ram - 0x10000); s = lmb_get_free_size(alloc_addr_a - 4); ut_asserteq(s, 4); s = lmb_get_free_size(alloc_addr_a + 0x10000); ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000); s = lmb_get_free_size(alloc_addr_a + 0x20000); ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000); s = lmb_get_free_size(alloc_addr_b - 4); ut_asserteq(s, 4); s = lmb_get_free_size(alloc_addr_c + 0x10000); ut_asserteq(s, ram_end - alloc_addr_c - 0x10000); s = lmb_get_free_size(alloc_addr_c + 0x20000); ut_asserteq(s, ram_end - alloc_addr_c - 0x20000); s = lmb_get_free_size(ram_end - 4); ut_asserteq(s, 4); lmb_pop(&store); return 0; } static int lib_test_lmb_get_free_size(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_get_unreserved_size(uts, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_get_unreserved_size(uts, 0xE0000000); } LIB_TEST(lib_test_lmb_get_free_size, 0); static int lib_test_lmb_flags(struct unit_test_state *uts) { struct lmb store; struct lmb_region *mem, *used; struct alist *mem_lst, *used_lst; const phys_addr_t ram = 0x40000000; const phys_size_t ram_size = 0x20000000; long ret; ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst)); mem = mem_lst->data; used = used_lst->data; ret = lmb_add(ram, ram_size); ut_asserteq(ret, 0); /* reserve, same flag */ ret = lmb_reserve_flags(0x40010000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000, 0, 0, 0, 0); /* reserve again, same flag */ ret = lmb_reserve_flags(0x40010000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000, 0, 0, 0, 0); /* reserve again, new flag */ ret = lmb_reserve_flags(0x40010000, 0x10000, LMB_NONE); ut_asserteq(ret, -1); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000, 0, 0, 0, 0); ut_asserteq(lmb_is_nomap(&used[0]), 1); /* merge after */ ret = lmb_reserve_flags(0x40020000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 1); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x20000, 0, 0, 0, 0); /* merge before */ ret = lmb_reserve_flags(0x40000000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 1); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40000000, 0x30000, 0, 0, 0, 0); ut_asserteq(lmb_is_nomap(&used[0]), 1); ret = lmb_reserve_flags(0x40030000, 0x10000, LMB_NONE); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x30000, 0x40030000, 0x10000, 0, 0); ut_asserteq(lmb_is_nomap(&used[0]), 1); ut_asserteq(lmb_is_nomap(&used[1]), 0); /* test that old API use LMB_NONE */ ret = lmb_reserve(0x40040000, 0x10000); ut_asserteq(ret, 1); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x30000, 0x40030000, 0x20000, 0, 0); ut_asserteq(lmb_is_nomap(&used[0]), 1); ut_asserteq(lmb_is_nomap(&used[1]), 0); ret = lmb_reserve_flags(0x40070000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, 0x40000000, 0x30000, 0x40030000, 0x20000, 0x40070000, 0x10000); ret = lmb_reserve_flags(0x40050000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 0); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 4, 0x40000000, 0x30000, 0x40030000, 0x20000, 0x40050000, 0x10000); /* merge with 2 adjacent regions */ ret = lmb_reserve_flags(0x40060000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 2); ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, 0x40000000, 0x30000, 0x40030000, 0x20000, 0x40050000, 0x30000); ut_asserteq(lmb_is_nomap(&used[0]), 1); ut_asserteq(lmb_is_nomap(&used[1]), 0); ut_asserteq(lmb_is_nomap(&used[2]), 1); lmb_pop(&store); return 0; } LIB_TEST(lib_test_lmb_flags, 0);