mirror of
https://github.com/u-boot/u-boot.git
synced 2025-04-16 01:44:34 +00:00

It is confusing to have both "$(PHASE_)" and "$(XPL_)" be used in our Makefiles as part of the macros to determine when to do something in our Makefiles based on what phase of the build we are in. For consistency, bring this down to a single macro and use "$(PHASE_)" only. Signed-off-by: Tom Rini <trini@konsulko.com>
380 lines
14 KiB
ReStructuredText
380 lines
14 KiB
ReStructuredText
.. SPDX-License-Identifier: GPL-2.0+
|
|
.. Copyright 2021 Google LLC
|
|
.. sectionauthor:: Simon Glass <sjg@chromium.org>
|
|
|
|
Writing Tests
|
|
=============
|
|
|
|
This describes how to write tests in U-Boot and describes the possible options.
|
|
|
|
Test types
|
|
----------
|
|
|
|
There are two basic types of test in U-Boot:
|
|
|
|
- Python tests, in test/py/tests
|
|
- C tests, in test/ and its subdirectories
|
|
|
|
(there are also UEFI tests in lib/efi_selftest/ not considered here.)
|
|
|
|
Python tests talk to U-Boot via the command line. They support both sandbox and
|
|
real hardware. They typically do not require building test code into U-Boot
|
|
itself. They are fairly slow to run, due to the command-line interface and there
|
|
being two separate processes. Python tests are fairly easy to write. They can
|
|
be a little tricky to debug sometimes due to the voluminous output of pytest.
|
|
|
|
C tests are written directly in U-Boot. While they can be used on boards, they
|
|
are more commonly used with sandbox, as they obviously add to U-Boot code size.
|
|
C tests are easy to write so long as the required facilities exist. Where they
|
|
do not it can involve refactoring or adding new features to sandbox. They are
|
|
fast to run and easy to debug.
|
|
|
|
Regardless of which test type is used, all tests are collected and run by the
|
|
pytest framework, so there is typically no need to run them separately. This
|
|
means that C tests can be used when it makes sense, and Python tests when it
|
|
doesn't.
|
|
|
|
|
|
This table shows how to decide whether to write a C or Python test:
|
|
|
|
===================== =========================== =============================
|
|
Attribute C test Python test
|
|
===================== =========================== =============================
|
|
Fast to run? Yes No (two separate processes)
|
|
Easy to write? Yes, if required test Yes
|
|
features exist in sandbox
|
|
or the target system
|
|
Needs code in U-Boot? Yes No, provided the test can be
|
|
executed and the result
|
|
determined using the command
|
|
line
|
|
Easy to debug? Yes No, since access to the U-Boot
|
|
state is not available and the
|
|
amount of output can
|
|
sometimes require a bit of
|
|
digging
|
|
Can use gdb? Yes, directly Yes, with --gdbserver
|
|
Can run on boards? Some can, but only if Some
|
|
compiled in and not
|
|
dependent on sandboxau
|
|
===================== =========================== =============================
|
|
|
|
|
|
Python or C
|
|
-----------
|
|
|
|
Typically in U-Boot we encourage C test using sandbox for all features. This
|
|
allows fast testing, easy development and allows contributors to make changes
|
|
without needing dozens of boards to test with.
|
|
|
|
When a test requires setup or interaction with the running host (such as to
|
|
generate images and then running U-Boot to check that they can be loaded), or
|
|
cannot be run on sandbox, Python tests should be used. These should typically
|
|
NOT rely on running with sandbox, but instead should function correctly on any
|
|
board supported by U-Boot.
|
|
|
|
|
|
Mixing Python and C
|
|
-------------------
|
|
|
|
The best of both worlds is sometimes to have a Python test set things up and
|
|
perform some operations, with a 'checker' C unit test doing the checks
|
|
afterwards. This can be achieved with these steps:
|
|
|
|
- Add the `UTF_MANUAL` flag to the checker test so that the `ut` command
|
|
does not run it by default
|
|
- Add a `_norun` suffix to the name so that pytest knows to skip it too
|
|
|
|
In your Python test use the `-f` flag to the `ut` command to force the checker
|
|
test to run it, e.g.::
|
|
|
|
# Do the Python part
|
|
host load ...
|
|
bootm ...
|
|
|
|
# Run the checker to make sure that everything worked
|
|
ut -f bootstd vbe_test_fixup_norun
|
|
|
|
Note that apart from the `UTF_MANUAL` flag, the code in a 'manual' C test
|
|
is just like any other C test. It still uses ut_assert...() and other such
|
|
constructs, in this case to check that the expected things happened in the
|
|
Python test.
|
|
|
|
|
|
How slow are Python tests?
|
|
--------------------------
|
|
|
|
Under the hood, when running on sandbox, Python tests work by starting a sandbox
|
|
test and connecting to it via a pipe. Each interaction with the U-Boot process
|
|
requires at least a context switch to handle the pipe interaction. The test
|
|
sends a command to U-Boot, which then reacts and shows some output, then the
|
|
test sees that and continues. Of course on real hardware, communications delays
|
|
(e.g. with a serial console) make this slower.
|
|
|
|
For comparison, consider a test that checks the 'md' (memory dump). All times
|
|
below are approximate, as measured on an AMD 2950X system. Here is is the test
|
|
in Python::
|
|
|
|
@pytest.mark.buildconfigspec('cmd_memory')
|
|
def test_md(ubman):
|
|
"""Test that md reads memory as expected, and that memory can be modified
|
|
using the mw command."""
|
|
|
|
ram_base = utils.find_ram_base(ubman)
|
|
addr = '%08x' % ram_base
|
|
val = 'a5f09876'
|
|
expected_response = addr + ': ' + val
|
|
ubman.run_command('mw ' + addr + ' 0 10')
|
|
response = ubman.run_command('md ' + addr + ' 10')
|
|
assert(not (expected_response in response))
|
|
ubman.run_command('mw ' + addr + ' ' + val)
|
|
response = ubman.run_command('md ' + addr + ' 10')
|
|
assert(expected_response in response)
|
|
|
|
This runs a few commands and checks the output. Note that it runs a command,
|
|
waits for the response and then checks it agains what is expected. If run by
|
|
itself it takes around 800ms, including test collection. For 1000 runs it takes
|
|
19 seconds, or 19ms per run. Of course 1000 runs it not that useful since we
|
|
only want to run it once.
|
|
|
|
There is no exactly equivalent C test, but here is a similar one that tests 'ms'
|
|
(memory search)::
|
|
|
|
/* Test 'ms' command with bytes */
|
|
static int mem_test_ms_b(struct unit_test_state *uts)
|
|
{
|
|
u8 *buf;
|
|
|
|
buf = map_sysmem(0, BUF_SIZE + 1);
|
|
memset(buf, '\0', BUF_SIZE);
|
|
buf[0x0] = 0x12;
|
|
buf[0x31] = 0x12;
|
|
buf[0xff] = 0x12;
|
|
buf[0x100] = 0x12;
|
|
run_command("ms.b 1 ff 12", 0);
|
|
ut_assert_nextline("00000030: 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................");
|
|
ut_assert_nextline("--");
|
|
ut_assert_nextline("000000f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 12 ................");
|
|
ut_assert_nextline("2 matches");
|
|
ut_assert_console_end();
|
|
|
|
ut_asserteq(2, env_get_hex("memmatches", 0));
|
|
ut_asserteq(0xff, env_get_hex("memaddr", 0));
|
|
ut_asserteq(0xfe, env_get_hex("mempos", 0));
|
|
|
|
unmap_sysmem(buf);
|
|
|
|
return 0;
|
|
}
|
|
MEM_TEST(mem_test_ms_b, UTF_CONSOLE);
|
|
|
|
This runs the command directly in U-Boot, then checks the console output, also
|
|
directly in U-Boot. If run by itself this takes 100ms. For 1000 runs it takes
|
|
660ms, or 0.66ms per run.
|
|
|
|
So overall running a C test is perhaps 8 times faster individually and the
|
|
interactions are perhaps 25 times faster.
|
|
|
|
It should also be noted that the C test is fairly easy to debug. You can set a
|
|
breakpoint on do_mem_search(), which is what implements the 'ms' command,
|
|
single step to see what might be wrong, etc. That is also possible with the
|
|
pytest, but requires two terminals and --gdbserver.
|
|
|
|
|
|
Why does speed matter?
|
|
----------------------
|
|
|
|
Many development activities rely on running tests:
|
|
|
|
- 'git bisect run make qcheck' can be used to find a failing commit
|
|
- test-driven development relies on quick iteration of build/test
|
|
- U-Boot's continuous integration (CI) systems make use of tests. Running
|
|
all sandbox tests typically takes 90 seconds and running each qemu test
|
|
takes about 30 seconds. This is currently dwarfed by the time taken to
|
|
build all boards
|
|
|
|
As U-Boot continues to grow its feature set, fast and reliable tests are a
|
|
critical factor factor in developer productivity and happiness.
|
|
|
|
|
|
Writing C tests
|
|
---------------
|
|
|
|
C tests are arranged into suites which are typically executed by the 'ut'
|
|
command. Each suite is in its own file. This section describes how to accomplish
|
|
some common test tasks.
|
|
|
|
(there are also UEFI C tests in lib/efi_selftest/ not considered here.)
|
|
|
|
Add a new driver model test
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Use this when adding a test for a new or existing uclass, adding new operations
|
|
or features to a uclass, adding new ofnode or dev_read_() functions, or anything
|
|
else related to driver model.
|
|
|
|
Find a suitable place for your test, perhaps near other test functions in
|
|
existing code, or in a new file. Each uclass should have its own test file.
|
|
|
|
Declare the test with::
|
|
|
|
/* Test that ... */
|
|
static int dm_test_uclassname_what(struct unit_test_state *uts)
|
|
{
|
|
/* test code here */
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclassname_what, UTF_SCAN_FDT);
|
|
|
|
Note that the convention is to NOT add a blank line before the macro, so that
|
|
the function it relates to is more obvious.
|
|
|
|
Replace 'uclassname' with the name of your uclass, if applicable. Replace 'what'
|
|
with what you are testing.
|
|
|
|
The flags for DM_TEST() are defined in test/test.h and you typically want
|
|
UTF_SCAN_FDT so that the devicetree is scanned and all devices are bound
|
|
and ready for use. The DM_TEST macro adds UTF_DM automatically so that
|
|
the test runner knows it is a driver model test.
|
|
|
|
Driver model tests are special in that the entire driver model state is
|
|
recreated anew for each test. This ensures that if a previous test deletes a
|
|
device, for example, it does not affect subsequent tests. Driver model tests
|
|
also run both with livetree and flattree, to ensure that both devicetree
|
|
implementations work as expected.
|
|
|
|
Example commit: c48cb7ebfb4 ("sandbox: add ADC unit tests") [1]
|
|
|
|
[1] https://gitlab.denx.de/u-boot/u-boot/-/commit/c48cb7ebfb4
|
|
|
|
|
|
Add a C test to an existing suite
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Use this when you are adding to or modifying an existing feature outside driver
|
|
model. An example is bloblist.
|
|
|
|
Add a new function in the same file as the rest of the suite and register it
|
|
with the suite. For example, to add a new mem_search test::
|
|
|
|
/* Test 'ms' command with 32-bit values */
|
|
static int mem_test_ms_new_thing(struct unit_test_state *uts)
|
|
{
|
|
/* test code here */
|
|
|
|
return 0;
|
|
}
|
|
MEM_TEST(mem_test_ms_new_thing, UTF_CONSOLE);
|
|
|
|
Note that the MEM_TEST() macros is defined at the top of the file.
|
|
|
|
Example commit: 9fe064646d2 ("bloblist: Support relocating to a larger space") [1]
|
|
|
|
[1] https://gitlab.denx.de/u-boot/u-boot/-/commit/9fe064646d2
|
|
|
|
|
|
Add a new test suite
|
|
~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Each suite should focus on one feature or subsystem, so if you are writing a
|
|
new one of those, you should add a new suite.
|
|
|
|
Create a new file in test/ or a subdirectory and define a macro to register the
|
|
suite. For example::
|
|
|
|
#include <console.h>
|
|
#include <mapmem.h>
|
|
#include <dm/test.h>
|
|
#include <test/ut.h>
|
|
|
|
/* Declare a new wibble test */
|
|
#define WIBBLE_TEST(_name, _flags) UNIT_TEST(_name, _flags, wibble_test)
|
|
|
|
/* Tests go here */
|
|
|
|
Then add new tests to it as above.
|
|
|
|
Register this new suite in test/cmd_ut.c by adding to cmd_ut_sub[]::
|
|
|
|
/* with the other SUITE_DECL() declarations */
|
|
SUITE_DECL(wibble);
|
|
|
|
/* Within suites[]... */
|
|
SUITE(wibble, "my test of wibbles");
|
|
|
|
If your feature is conditional on a particular Kconfig, you do not need to add
|
|
an #ifdef since the suite will automatically be compiled out in that case.
|
|
|
|
Finally, add the test to the build by adding to the Makefile in the same
|
|
directory::
|
|
|
|
obj-$(CONFIG_$(PHASE_)CMDLINE) += wibble.o
|
|
|
|
Note that CMDLINE is never enabled in SPL, so this test will only be present in
|
|
U-Boot proper. See below for how to do SPL tests.
|
|
|
|
You can add an extra Kconfig check if needed::
|
|
|
|
ifneq ($(CONFIG_$(PHASE_)WIBBLE),)
|
|
obj-$(CONFIG_$(PHASE_)CMDLINE) += wibble.o
|
|
endif
|
|
|
|
Each suite can have an optional init and uninit function. These are run before
|
|
and after any suite tests, respectively::
|
|
|
|
#define WIBBLE_TEST_INIT(_name, _flags) UNIT_TEST_INIT(_name, _flags, wibble_test)
|
|
#define WIBBLE_TEST_UNINIT(_name, _flags) UNIT_TEST_UNINIT(_name, _flags, wibble_test)
|
|
|
|
static int wibble_test_init(struct unit_test_state *uts)
|
|
{
|
|
/* init code here */
|
|
|
|
return 0;
|
|
}
|
|
WIBBLE_TEST_INIT(wibble_test_init, 0);
|
|
|
|
static int wibble_test_uninit(struct unit_test_state *uts)
|
|
{
|
|
/* uninit code here */
|
|
|
|
return 0;
|
|
}
|
|
WIBBLE_TEST_INIT(wibble_test_uninit, 0);
|
|
|
|
Both functions are included in the totals for each suite.
|
|
|
|
Making the test run from pytest
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
All C tests must run from pytest. Typically this is automatic, since pytest
|
|
scans the U-Boot executable for available tests to run. So long as you have a
|
|
'ut' subcommand for your test suite, it will run. The same applies for driver
|
|
model tests since they use the 'ut dm' subcommand.
|
|
|
|
See test/py/tests/test_ut.py for how unit tests are run.
|
|
|
|
|
|
Add a C test for SPL
|
|
~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Note: C tests are only available for sandbox_spl at present. There is currently
|
|
no mechanism in other boards to existing SPL tests even if they are built into
|
|
the image.
|
|
|
|
SPL tests cannot be run from the 'ut' command since there are no commands
|
|
available in SPL. Instead, sandbox (only) calls ut_run_list() on start-up, when
|
|
the -u flag is given. This runs the available unit tests, no matter what suite
|
|
they are in.
|
|
|
|
To create a new SPL test, follow the same rules as above, either adding to an
|
|
existing suite or creating a new one.
|
|
|
|
An example SPL test is spl_test_load().
|
|
|
|
|
|
Writing Python tests
|
|
--------------------
|
|
|
|
See :doc:`py_testing` for brief notes how to write Python tests. You
|
|
should be able to use the existing tests in test/py/tests as examples.
|