arm-trusted-firmware/plat/arm/css/sgi/sgi_plat_v2.c
Manish Pandey f87e54f73c fix(ras): remove RAS_FFH_SUPPORT and introduce FFH_SUPPORT
This patch removes RAS_FFH_SUPPORT macro which is the combination of
ENABLE_FEAT_RAS and HANDLE_EA_EL3_FIRST_NS. Instead introduce an
internal macro FFH_SUPPORT which gets enabled when platforms wants
to enable lower EL EA handling at EL3. The internal macro FFH_SUPPORT
will be automatically enabled if HANDLE_EA_EL3_FIRST_NS is enabled.
FFH_SUPPORT along with ENABLE_FEAT_RAS will be used in source files
to provide equivalent check which was provided by RAS_FFH_SUPPORT
earlier. In generic code we needed a macro which could abstract both
HANDLE_EA_EL3_FIRST_NS and RAS_FFH_SUPPORT macros that had limitations.
Former was tied up with NS world only while the latter was tied to RAS
feature.

This is to allow Secure/Realm world to have their own FFH macros
in future.

Signed-off-by: Manish Pandey <manish.pandey2@arm.com>
Change-Id: Ie5692ccbf462f5dcc3f005a5beea5aa35124ac73
2023-11-01 17:45:56 +00:00

178 lines
4.2 KiB
C

/*
* Copyright (c) 2021-2023, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <platform_def.h>
#include <plat/arm/common/plat_arm.h>
#include <plat/common/platform.h>
#include <drivers/arm/sbsa.h>
#if SPM_MM
#include <services/spm_mm_partition.h>
#endif
/*
* Table of regions for different BL stages to map using the MMU.
*/
#if IMAGE_BL1
const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_SHARED_RAM,
SGI_MAP_FLASH0_RO,
CSS_SGI_MAP_DEVICE,
SOC_PLATFORM_PERIPH_MAP_DEVICE,
SOC_SYSTEM_PERIPH_MAP_DEVICE,
{0}
};
#endif
#if IMAGE_BL2
const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_SHARED_RAM,
SGI_MAP_FLASH0_RO,
#ifdef PLAT_ARM_MEM_PROT_ADDR
ARM_V2M_MAP_MEM_PROTECT,
#endif
CSS_SGI_MAP_DEVICE,
SOC_MEMCNTRL_MAP_DEVICE,
SOC_PLATFORM_PERIPH_MAP_DEVICE,
SOC_SYSTEM_PERIPH_MAP_DEVICE,
ARM_MAP_NS_DRAM1,
#if CSS_SGI_CHIP_COUNT > 1
SOC_MEMCNTRL_MAP_DEVICE_REMOTE_CHIP(1),
#endif
#if CSS_SGI_CHIP_COUNT > 2
SOC_MEMCNTRL_MAP_DEVICE_REMOTE_CHIP(2),
#endif
#if CSS_SGI_CHIP_COUNT > 3
SOC_MEMCNTRL_MAP_DEVICE_REMOTE_CHIP(3),
#endif
#if ARM_BL31_IN_DRAM
ARM_MAP_BL31_SEC_DRAM,
#endif
#if SPM_MM || (SPMC_AT_EL3 && SPMC_AT_EL3_SEL0_SP)
ARM_SP_IMAGE_MMAP,
#endif
#if TRUSTED_BOARD_BOOT && !RESET_TO_BL2
ARM_MAP_BL1_RW,
#endif
{0}
};
#endif
#if IMAGE_BL31
const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_SHARED_RAM,
#ifdef PLAT_ARM_MEM_PROT_ADDR
ARM_V2M_MAP_MEM_PROTECT,
#endif
CSS_SGI_MAP_DEVICE,
SOC_PLATFORM_PERIPH_MAP_DEVICE,
SOC_SYSTEM_PERIPH_MAP_DEVICE,
#if SPM_MM || (SPMC_AT_EL3 && SPMC_AT_EL3_SEL0_SP)
ARM_SPM_BUF_EL3_MMAP,
#endif
{0}
};
#if SPM_MM && defined(IMAGE_BL31)
const mmap_region_t plat_arm_secure_partition_mmap[] = {
PLAT_ARM_SECURE_MAP_SYSTEMREG,
PLAT_ARM_SECURE_MAP_NOR2,
SOC_PLATFORM_SECURE_UART,
SOC_PLATFORM_PERIPH_MAP_DEVICE_USER,
ARM_SP_IMAGE_MMAP,
ARM_SP_IMAGE_NS_BUF_MMAP,
#if ENABLE_FEAT_RAS && FFH_SUPPORT
CSS_SGI_SP_CPER_BUF_MMAP,
#endif
ARM_SP_IMAGE_RW_MMAP,
ARM_SPM_BUF_EL0_MMAP,
{0}
};
#endif /* SPM_MM && defined(IMAGE_BL31) */
#endif
ARM_CASSERT_MMAP
#if SPM_MM && defined(IMAGE_BL31)
/*
* Boot information passed to a secure partition during initialisation. Linear
* indices in MP information will be filled at runtime.
*/
static spm_mm_mp_info_t sp_mp_info[] = {
[0] = {0x81000000, 0},
[1] = {0x81010000, 0},
[2] = {0x81020000, 0},
[3] = {0x81030000, 0},
[4] = {0x81040000, 0},
[5] = {0x81050000, 0},
[6] = {0x81060000, 0},
[7] = {0x81070000, 0},
[8] = {0x81080000, 0},
[9] = {0x81090000, 0},
[10] = {0x810a0000, 0},
[11] = {0x810b0000, 0},
[12] = {0x810c0000, 0},
[13] = {0x810d0000, 0},
[14] = {0x810e0000, 0},
[15] = {0x810f0000, 0},
};
const spm_mm_boot_info_t plat_arm_secure_partition_boot_info = {
.h.type = PARAM_SP_IMAGE_BOOT_INFO,
.h.version = VERSION_1,
.h.size = sizeof(spm_mm_boot_info_t),
.h.attr = 0,
.sp_mem_base = ARM_SP_IMAGE_BASE,
.sp_mem_limit = ARM_SP_IMAGE_LIMIT,
.sp_image_base = ARM_SP_IMAGE_BASE,
.sp_stack_base = PLAT_SP_IMAGE_STACK_BASE,
.sp_heap_base = ARM_SP_IMAGE_HEAP_BASE,
.sp_ns_comm_buf_base = PLAT_SP_IMAGE_NS_BUF_BASE,
.sp_shared_buf_base = PLAT_SPM_BUF_BASE,
.sp_image_size = ARM_SP_IMAGE_SIZE,
.sp_pcpu_stack_size = PLAT_SP_IMAGE_STACK_PCPU_SIZE,
.sp_heap_size = ARM_SP_IMAGE_HEAP_SIZE,
.sp_ns_comm_buf_size = PLAT_SP_IMAGE_NS_BUF_SIZE,
.sp_shared_buf_size = PLAT_SPM_BUF_SIZE,
.num_sp_mem_regions = ARM_SP_IMAGE_NUM_MEM_REGIONS,
.num_cpus = PLATFORM_CORE_COUNT,
.mp_info = &sp_mp_info[0],
};
const struct mmap_region *plat_get_secure_partition_mmap(void *cookie)
{
return plat_arm_secure_partition_mmap;
}
const struct spm_mm_boot_info *plat_get_secure_partition_boot_info(
void *cookie)
{
return &plat_arm_secure_partition_boot_info;
}
#endif /* SPM_MM && defined(IMAGE_BL31) */
#if TRUSTED_BOARD_BOOT
int plat_get_mbedtls_heap(void **heap_addr, size_t *heap_size)
{
assert(heap_addr != NULL);
assert(heap_size != NULL);
return arm_get_mbedtls_heap(heap_addr, heap_size);
}
#endif
void plat_arm_secure_wdt_start(void)
{
sbsa_wdog_start(SBSA_SECURE_WDOG_BASE, SBSA_SECURE_WDOG_TIMEOUT);
}
void plat_arm_secure_wdt_stop(void)
{
sbsa_wdog_stop(SBSA_SECURE_WDOG_BASE);
}