arm-trusted-firmware/plat/qemu/common/qemu_bl31_setup.c
Jean-Philippe Brucker a32a77f9c7 fix(qemu): statically allocate bitlocks array
gpt_runtime_init() now takes the bitlock array's address and size as
argument. Rather than reserving space at the end of the L0 GPT for
storing bitlocks, allocate a static array and pass its address to
gpt_runtime_init(). This frees up a little bit of space formerly
reserved for alignment of the GPT.

Change-Id: I48a1a2bc230f64e13e3ed08b18ebdc2d387d77d0
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
2025-02-11 15:12:27 +00:00

362 lines
9 KiB
C

/*
* Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <common/bl_common.h>
#include <drivers/arm/pl061_gpio.h>
#include <lib/gpt_rme/gpt_rme.h>
#include <lib/transfer_list.h>
#include <plat/common/platform.h>
#if ENABLE_RME
#ifdef PLAT_qemu
#include <qemu_pas_def.h>
#elif PLAT_qemu_sbsa
#include <qemu_sbsa_pas_def.h>
#endif /* PLAT_qemu */
#endif /* ENABLE_RME */
#ifdef PLAT_qemu_sbsa
#include <sbsa_platform.h>
#endif
#include "qemu_private.h"
#define MAP_BL31_TOTAL MAP_REGION_FLAT( \
BL31_BASE, \
BL31_END - BL31_BASE, \
MT_MEMORY | MT_RW | EL3_PAS)
#define MAP_BL31_RO MAP_REGION_FLAT( \
BL_CODE_BASE, \
BL_CODE_END - BL_CODE_BASE, \
MT_CODE | EL3_PAS), \
MAP_REGION_FLAT( \
BL_RO_DATA_BASE, \
BL_RO_DATA_END \
- BL_RO_DATA_BASE, \
MT_RO_DATA | EL3_PAS)
#if USE_COHERENT_MEM
#define MAP_BL_COHERENT_RAM MAP_REGION_FLAT( \
BL_COHERENT_RAM_BASE, \
BL_COHERENT_RAM_END \
- BL_COHERENT_RAM_BASE, \
MT_DEVICE | MT_RW | EL3_PAS)
#endif
#if ENABLE_RME
#if (RME_GPT_BITLOCK_BLOCK == 0)
#define BITLOCK_BASE UL(0)
#define BITLOCK_SIZE UL(0)
#else
/*
* Number of bitlock_t entries in the gpt_bitlock array for this platform's
* Protected Physical Size. One 8-bit bitlock_t entry covers
* 8 * RME_GPT_BITLOCK_BLOCK * 512MB.
*/
#if (PLAT_QEMU_PPS > (RME_GPT_BITLOCK_BLOCK * SZ_512M * UL(8)))
#define BITLOCKS_NUM (PLAT_QEMU_PPS / \
(RME_GPT_BITLOCK_BLOCK * SZ_512M * UL(8)))
#else
#define BITLOCKS_NUM 1
#endif
static bitlock_t gpt_bitlock[BITLOCKS_NUM];
#define BITLOCK_BASE (uintptr_t)gpt_bitlock
#define BITLOCK_SIZE sizeof(gpt_bitlock)
#endif /* RME_GPT_BITLOCK_BLOCK */
#endif /* ENABLE_RME */
/*
* Placeholder variables for copying the arguments that have been passed to
* BL3-1 from BL2.
*/
static entry_point_info_t bl32_image_ep_info;
static entry_point_info_t bl33_image_ep_info;
#if ENABLE_RME
static entry_point_info_t rmm_image_ep_info;
#endif
static struct transfer_list_header *bl31_tl;
/*******************************************************************************
* Perform any BL3-1 early platform setup. Here is an opportunity to copy
* parameters passed by the calling EL (S-EL1 in BL2 & EL3 in BL1) before
* they are lost (potentially). This needs to be done before the MMU is
* initialized so that the memory layout can be used while creating page
* tables. BL2 has flushed this information to memory, so we are guaranteed
* to pick up good data.
******************************************************************************/
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
u_register_t arg2, u_register_t arg3)
{
bool is64 = false;
uint64_t hval;
/* Initialize the console to provide early debug support */
qemu_console_init();
/* Platform names have to be lowercase. */
#ifdef PLAT_qemu_sbsa
sbsa_platform_init();
#endif
/*
* Check params passed from BL2
*/
bl_params_t *params_from_bl2 = (bl_params_t *)arg0;
assert(params_from_bl2);
assert(params_from_bl2->h.type == PARAM_BL_PARAMS);
assert(params_from_bl2->h.version >= VERSION_2);
bl_params_node_t *bl_params = params_from_bl2->head;
/*
* Copy BL33, BL32 and RMM (if present), entry point information.
* They are stored in Secure RAM, in BL2's address space.
*/
while (bl_params) {
#ifdef __aarch64__
if (bl_params->image_id == BL31_IMAGE_ID &&
GET_RW(bl_params->ep_info->spsr) == MODE_RW_64)
is64 = true;
#endif
if (bl_params->image_id == BL32_IMAGE_ID)
bl32_image_ep_info = *bl_params->ep_info;
#if ENABLE_RME
if (bl_params->image_id == RMM_IMAGE_ID)
rmm_image_ep_info = *bl_params->ep_info;
#endif
if (bl_params->image_id == BL33_IMAGE_ID)
bl33_image_ep_info = *bl_params->ep_info;
bl_params = bl_params->next_params_info;
}
if (!bl33_image_ep_info.pc)
panic();
#if ENABLE_RME
if (!rmm_image_ep_info.pc)
panic();
#endif
if (!TRANSFER_LIST ||
!transfer_list_check_header((void *)arg3))
return;
if (is64)
hval = TRANSFER_LIST_HANDOFF_X1_VALUE(REGISTER_CONVENTION_VERSION);
else
hval = TRANSFER_LIST_HANDOFF_R1_VALUE(REGISTER_CONVENTION_VERSION);
if (arg1 != hval)
return;
bl31_tl = (void *)arg3; /* saved TL address from BL2 */
}
#if ENABLE_RME
#if PLAT_qemu
/*
* The GPT library might modify the gpt regions structure to optimize
* the layout, so the array cannot be constant.
*/
static pas_region_t pas_regions[] = {
QEMU_PAS_ROOT,
QEMU_PAS_SECURE,
QEMU_PAS_GPTS,
QEMU_PAS_NS0,
QEMU_PAS_REALM,
QEMU_PAS_NS1,
};
static inline void bl31_adjust_pas_regions(void) {}
#elif PLAT_qemu_sbsa
/*
* The GPT library might modify the gpt regions structure to optimize
* the layout, so the array cannot be constant.
*/
static pas_region_t pas_regions[] = {
QEMU_PAS_ROOT,
QEMU_PAS_SECURE,
QEMU_PAS_GPTS,
QEMU_PAS_REALM,
QEMU_PAS_NS0,
};
static void bl31_adjust_pas_regions(void)
{
uint64_t base_addr = 0, total_size = 0;
struct platform_memory_data data;
uint32_t node;
/*
* The amount of memory supported by the SBSA platform is dynamic
* and dependent on user input. Since the configuration of the GPT
* needs to reflect the system memory, QEMU_PAS_NS0 needs to be set
* based on the information found in the device tree.
*/
for (node = 0; node < sbsa_platform_num_memnodes(); node++) {
data = sbsa_platform_memory_node(node);
if (data.nodeid == 0) {
base_addr = data.addr_base;
}
total_size += data.addr_size;
}
/* Index '4' correspond to QEMU_PAS_NS0, see pas_regions[] above */
pas_regions[4].base_pa = base_addr;
pas_regions[4].size = total_size;
}
#endif /* PLAT_qemu */
static void bl31_plat_gpt_setup(void)
{
/*
* Initialize entire protected space to GPT_GPI_ANY. With each L0 entry
* covering 1GB (currently the only supported option), then covering
* 256TB of RAM (48-bit PA) would require a 2MB L0 region. At the
* moment we use a 8KB table, which covers 1TB of RAM (40-bit PA).
*/
if (gpt_init_l0_tables(PLAT_QEMU_GPCCR_PPS, PLAT_QEMU_L0_GPT_BASE,
PLAT_QEMU_L0_GPT_SIZE) < 0) {
ERROR("gpt_init_l0_tables() failed!\n");
panic();
}
bl31_adjust_pas_regions();
/* Carve out defined PAS ranges. */
if (gpt_init_pas_l1_tables(GPCCR_PGS_4K,
PLAT_QEMU_L1_GPT_BASE,
PLAT_QEMU_L1_GPT_SIZE,
pas_regions,
(unsigned int)(sizeof(pas_regions) /
sizeof(pas_region_t))) < 0) {
ERROR("gpt_init_pas_l1_tables() failed!\n");
panic();
}
INFO("Enabling Granule Protection Checks\n");
if (gpt_enable() < 0) {
ERROR("gpt_enable() failed!\n");
panic();
}
}
#endif
void bl31_plat_arch_setup(void)
{
const mmap_region_t bl_regions[] = {
MAP_BL31_TOTAL,
MAP_BL31_RO,
#if USE_COHERENT_MEM
MAP_BL_COHERENT_RAM,
#endif
#if ENABLE_RME
MAP_GPT_L0_REGION,
MAP_GPT_L1_REGION,
MAP_RMM_SHARED_MEM,
#endif
{0}
};
setup_page_tables(bl_regions, plat_qemu_get_mmap());
enable_mmu_el3(0);
#if ENABLE_RME
/* Initialise and enable granule protection after MMU. */
bl31_plat_gpt_setup();
/*
* Initialise Granule Protection library and enable GPC for the primary
* processor. The tables have already been initialized by a previous BL
* stage, so there is no need to provide any PAS here. This function
* sets up pointers to those tables.
*/
if (gpt_runtime_init(BITLOCK_BASE, BITLOCK_SIZE) < 0) {
ERROR("gpt_runtime_init() failed!\n");
panic();
}
#endif /* ENABLE_RME */
}
static void qemu_gpio_init(void)
{
#ifdef SECURE_GPIO_BASE
pl061_gpio_init();
pl061_gpio_register(SECURE_GPIO_BASE, 0);
#endif
}
void bl31_platform_setup(void)
{
plat_qemu_gic_init();
qemu_gpio_init();
}
unsigned int plat_get_syscnt_freq2(void)
{
return read_cntfrq_el0();
}
/*******************************************************************************
* Return a pointer to the 'entry_point_info' structure of the next image
* for the security state specified. BL3-3 corresponds to the non-secure
* image type while BL3-2 corresponds to the secure image type. A NULL
* pointer is returned if the image does not exist.
******************************************************************************/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *next_image_info;
assert(sec_state_is_valid(type));
if (type == NON_SECURE) {
next_image_info = &bl33_image_ep_info;
}
#if ENABLE_RME
else if (type == REALM) {
next_image_info = &rmm_image_ep_info;
}
#endif
else {
next_image_info = &bl32_image_ep_info;
}
/*
* None of the images on the ARM development platforms can have 0x0
* as the entrypoint
*/
if (next_image_info->pc)
return next_image_info;
else
return NULL;
}
void bl31_plat_runtime_setup(void)
{
#if TRANSFER_LIST
if (bl31_tl) {
/*
* Relocate the TL from S to NS memory before EL3 exit
* to reflect all changes in TL done by BL32
*/
if (!transfer_list_relocate(bl31_tl, (void *)FW_NS_HANDOFF_BASE,
bl31_tl->max_size))
ERROR("Relocate TL to NS memory failed\n");
}
#endif
console_flush();
console_switch_state(CONSOLE_FLAG_RUNTIME);
}