mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-17 10:04:26 +00:00

On the Agilex5 platform when cold reset is issued via CLI application in the OS, it is received in the BL31 via a SMC call and handled accordingly like flush/invalidate the caches. However, when the cold reset is issued via an external switch these handlings are missed. This patch addresses those missed cache operations. Also, this patch is to restoring SCR_EL3 NS bit to its previous value in order to avoid unintended behavior especially if subsequent code expects the SCR_EL3 register to be in its original configuration. Change-Id: I9737f2db649e483ba61fffa6eeb0b56a9d15074a Signed-off-by: Girisha Dengi <girisha.dengi@intel.com> Signed-off-by: Sieu Mun Tang <sieu.mun.tang@intel.com>
288 lines
8.6 KiB
C
288 lines
8.6 KiB
C
/*
|
|
* Copyright (c) 2019-2024, ARM Limited and Contributors. All rights reserved.
|
|
* Copyright (c) 2019-2023, Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2024, Altera Corporation. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <common/bl_common.h>
|
|
#include <drivers/arm/gic_common.h>
|
|
#include <drivers/arm/gicv3.h>
|
|
#include <drivers/ti/uart/uart_16550.h>
|
|
#include <lib/mmio.h>
|
|
#include <lib/xlat_tables/xlat_mmu_helpers.h>
|
|
#include <lib/xlat_tables/xlat_tables_v2.h>
|
|
#include <plat/common/platform.h>
|
|
|
|
#include "agilex5_cache.h"
|
|
#include "agilex5_power_manager.h"
|
|
#include "ccu/ncore_ccu.h"
|
|
#include "socfpga_mailbox.h"
|
|
#include "socfpga_private.h"
|
|
#include "socfpga_reset_manager.h"
|
|
|
|
/* Get non-secure SPSR for BL33. Zephyr and Linux */
|
|
uint32_t arm_get_spsr_for_bl33_entry(void);
|
|
|
|
static entry_point_info_t bl32_image_ep_info;
|
|
static entry_point_info_t bl33_image_ep_info;
|
|
|
|
/* The GICv3 driver only needs to be initialized in EL3 */
|
|
static uintptr_t rdistif_base_addrs[PLATFORM_CORE_COUNT];
|
|
|
|
#define SMMU_SDMMC
|
|
|
|
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
|
|
{
|
|
entry_point_info_t *next_image_info;
|
|
|
|
next_image_info = (type == NON_SECURE) ?
|
|
&bl33_image_ep_info : &bl32_image_ep_info;
|
|
|
|
/* None of the images on this platform can have 0x0 as the entrypoint */
|
|
if (next_image_info->pc)
|
|
return next_image_info;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
|
|
u_register_t arg2, u_register_t arg3)
|
|
{
|
|
static console_t console;
|
|
|
|
mmio_write_64(PLAT_SEC_ENTRY, PLAT_SEC_WARM_ENTRY);
|
|
|
|
console_16550_register(PLAT_INTEL_UART_BASE, PLAT_UART_CLOCK,
|
|
PLAT_BAUDRATE, &console);
|
|
|
|
setup_smmu_stream_id();
|
|
|
|
/*
|
|
* Check params passed from BL31 should not be NULL,
|
|
*/
|
|
void *from_bl2 = (void *) arg0;
|
|
|
|
#if RESET_TO_BL31
|
|
/* There are no parameters from BL2 if BL31 is a reset vector */
|
|
assert(from_bl2 == NULL);
|
|
void *plat_params_from_bl2 = (void *) arg3;
|
|
|
|
assert(plat_params_from_bl2 == NULL);
|
|
|
|
/* Populate entry point information for BL33 */
|
|
SET_PARAM_HEAD(&bl33_image_ep_info,
|
|
PARAM_EP,
|
|
VERSION_1,
|
|
0);
|
|
|
|
# if ARM_LINUX_KERNEL_AS_BL33
|
|
/*
|
|
* According to the file ``Documentation/arm64/booting.txt`` of the
|
|
* Linux kernel tree, Linux expects the physical address of the device
|
|
* tree blob (DTB) in x0, while x1-x3 are reserved for future use and
|
|
* must be 0.
|
|
*/
|
|
bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
|
|
bl33_image_ep_info.args.arg1 = 0U;
|
|
bl33_image_ep_info.args.arg2 = 0U;
|
|
bl33_image_ep_info.args.arg3 = 0U;
|
|
# endif
|
|
|
|
#else /* RESET_TO_BL31 */
|
|
bl_params_t *params_from_bl2 = (bl_params_t *)from_bl2;
|
|
|
|
assert(params_from_bl2 != NULL);
|
|
|
|
/*
|
|
* Copy BL32 (if populated by BL31) and BL33 entry point information.
|
|
* They are stored in Secure RAM, in BL31's address space.
|
|
*/
|
|
|
|
if (params_from_bl2->h.type == PARAM_BL_PARAMS &&
|
|
params_from_bl2->h.version >= VERSION_2) {
|
|
|
|
bl_params_node_t *bl_params = params_from_bl2->head;
|
|
|
|
while (bl_params) {
|
|
if (bl_params->image_id == BL33_IMAGE_ID) {
|
|
bl33_image_ep_info = *bl_params->ep_info;
|
|
}
|
|
bl_params = bl_params->next_params_info;
|
|
}
|
|
} else {
|
|
struct socfpga_bl31_params *arg_from_bl2 =
|
|
(struct socfpga_bl31_params *) from_bl2;
|
|
|
|
assert(arg_from_bl2->h.type == PARAM_BL31);
|
|
assert(arg_from_bl2->h.version >= VERSION_1);
|
|
|
|
bl32_image_ep_info = *arg_from_bl2->bl32_ep_info;
|
|
bl33_image_ep_info = *arg_from_bl2->bl33_ep_info;
|
|
}
|
|
|
|
bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
|
|
bl33_image_ep_info.args.arg1 = 0U;
|
|
bl33_image_ep_info.args.arg2 = 0U;
|
|
bl33_image_ep_info.args.arg3 = 0U;
|
|
#endif
|
|
|
|
/*
|
|
* Tell BL31 where the non-trusted software image
|
|
* is located and the entry state information
|
|
*/
|
|
bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
|
|
bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry();
|
|
|
|
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
|
|
}
|
|
|
|
static const interrupt_prop_t agx5_interrupt_props[] = {
|
|
PLAT_INTEL_SOCFPGA_G1S_IRQ_PROPS(INTR_GROUP1S),
|
|
PLAT_INTEL_SOCFPGA_G0_IRQ_PROPS(INTR_GROUP0)
|
|
};
|
|
|
|
static const gicv3_driver_data_t plat_gicv3_gic_data = {
|
|
.gicd_base = PLAT_INTEL_SOCFPGA_GICD_BASE,
|
|
.gicr_base = PLAT_INTEL_SOCFPGA_GICR_BASE,
|
|
.interrupt_props = agx5_interrupt_props,
|
|
.interrupt_props_num = ARRAY_SIZE(agx5_interrupt_props),
|
|
.rdistif_num = PLATFORM_CORE_COUNT,
|
|
.rdistif_base_addrs = rdistif_base_addrs,
|
|
};
|
|
|
|
/*******************************************************************************
|
|
* Perform any BL3-1 platform setup code
|
|
******************************************************************************/
|
|
void bl31_platform_setup(void)
|
|
{
|
|
socfpga_delay_timer_init();
|
|
|
|
/* Initialize the gic cpu and distributor interfaces */
|
|
gicv3_driver_init(&plat_gicv3_gic_data);
|
|
gicv3_distif_init();
|
|
gicv3_rdistif_init(plat_my_core_pos());
|
|
gicv3_cpuif_enable(plat_my_core_pos());
|
|
mailbox_hps_stage_notify(HPS_EXECUTION_STATE_SSBL);
|
|
}
|
|
|
|
const mmap_region_t plat_agilex_mmap[] = {
|
|
MAP_REGION_FLAT(DRAM_BASE, DRAM_SIZE, MT_MEMORY | MT_RW | MT_NS),
|
|
MAP_REGION_FLAT(PSS_BASE, PSS_SIZE, MT_DEVICE | MT_RW | MT_NS),
|
|
MAP_REGION_FLAT(MPFE_BASE, MPFE_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
|
|
MAP_REGION_FLAT(OCRAM_BASE, OCRAM_SIZE, MT_NON_CACHEABLE | MT_RW | MT_SECURE),
|
|
MAP_REGION_FLAT(CCU_BASE, CCU_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
|
|
MAP_REGION_FLAT(MEM64_BASE, MEM64_SIZE, MT_DEVICE | MT_RW | MT_NS),
|
|
MAP_REGION_FLAT(GIC_BASE, GIC_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
|
|
{0}
|
|
};
|
|
|
|
/*******************************************************************************
|
|
* Perform the very early platform specific architectural setup here. At the
|
|
* moment this is only initializes the mmu in a quick and dirty way.
|
|
******************************************************************************/
|
|
void bl31_plat_arch_setup(void)
|
|
{
|
|
uint32_t boot_core = 0x00;
|
|
uint32_t cpuid = 0x00;
|
|
|
|
cpuid = MPIDR_AFFLVL1_VAL(read_mpidr());
|
|
boot_core = ((mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00) >> 10);
|
|
NOTICE("BL31: Boot Core = %x\n", boot_core);
|
|
NOTICE("BL31: CPU ID = %x\n", cpuid);
|
|
INFO("BL31: Invalidate Data cache\n");
|
|
invalidate_dcache_all();
|
|
|
|
/* Invalidate for NS EL2 and EL1 */
|
|
invalidate_cache_low_el();
|
|
}
|
|
|
|
/* Get non-secure image entrypoint for BL33. Zephyr and Linux */
|
|
uintptr_t plat_get_ns_image_entrypoint(void)
|
|
{
|
|
#ifdef PRELOADED_BL33_BASE
|
|
return PRELOADED_BL33_BASE;
|
|
#else
|
|
return PLAT_NS_IMAGE_OFFSET;
|
|
#endif
|
|
}
|
|
|
|
/* Get non-secure SPSR for BL33. Zephyr and Linux */
|
|
uint32_t arm_get_spsr_for_bl33_entry(void)
|
|
{
|
|
unsigned int mode;
|
|
uint32_t spsr;
|
|
|
|
/* Figure out what mode we enter the non-secure world in */
|
|
mode = (el_implemented(2) != EL_IMPL_NONE) ? MODE_EL2 : MODE_EL1;
|
|
|
|
/*
|
|
* TODO: Consider the possibility of specifying the SPSR in
|
|
* the FIP ToC and allowing the platform to have a say as
|
|
* well.
|
|
*/
|
|
spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
|
|
return spsr;
|
|
}
|
|
|
|
/* SMP: Secondary cores BL31 setup reset vector */
|
|
void bl31_plat_set_secondary_cpu_entrypoint(unsigned int cpu_id)
|
|
{
|
|
unsigned int pch_cpu = 0x00;
|
|
unsigned int pchctlr_old = 0x00;
|
|
unsigned int pchctlr_new = 0x00;
|
|
uint32_t boot_core = 0x00;
|
|
|
|
/* Store magic number for SMP secondary cores boot */
|
|
mmio_write_32(L2_RESET_DONE_REG, SMP_SEC_CORE_BOOT_REQ);
|
|
|
|
boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00);
|
|
/* Update the p-channel based on cpu id */
|
|
pch_cpu = 1 << cpu_id;
|
|
|
|
if (boot_core == 0x00) {
|
|
/* Update reset vector to 0x00 */
|
|
mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU2,
|
|
(uint64_t) plat_secondary_cpus_bl31_entry >> 2);
|
|
} else {
|
|
/* Update reset vector to 0x00 */
|
|
mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU0,
|
|
(uint64_t) plat_secondary_cpus_bl31_entry >> 2);
|
|
}
|
|
|
|
/* Update reset vector to 0x00 */
|
|
mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU1, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
|
|
mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU3, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
|
|
|
|
/* On all cores - temporary */
|
|
pchctlr_old = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
|
|
pchctlr_new = pchctlr_old | (pch_cpu<<1);
|
|
mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pchctlr_new);
|
|
|
|
/* We will only release the target secondary CPUs */
|
|
/* Bit mask for each CPU BIT0-3 */
|
|
mmio_write_32(RSTMGR_CPUSTRELEASE_CPUx, pch_cpu);
|
|
}
|
|
|
|
void bl31_plat_set_secondary_cpu_off(void)
|
|
{
|
|
unsigned int pch_cpu = 0x00;
|
|
unsigned int pch_cpu_off = 0x00;
|
|
unsigned int cpu_id = plat_my_core_pos();
|
|
|
|
pch_cpu_off = 1 << cpu_id;
|
|
|
|
pch_cpu = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
|
|
pch_cpu = pch_cpu & ~(pch_cpu_off << 1);
|
|
|
|
mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pch_cpu);
|
|
}
|
|
|
|
void bl31_plat_enable_mmu(uint32_t flags)
|
|
{
|
|
/* TODO: Enable mmu when needed */
|
|
}
|