arm-trusted-firmware/lib/gpt_rme/gpt_rme.c
Olivier Deprez 62d6465213 fix(gpt): use DC CIGDPAPA when MTE2 is implemented
Use cache clean and invalidate of data and allocation tags by PA to PoPA
maintenance instruction (dc cigdpapa) in the GPT library upon changing
the PAS for a memory region. This is required to flush allocation tags
when MTE2 (and above) is implemented.

Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
Change-Id: I4b70afb297f693b1d446839607922c47111ce063
2024-02-12 17:38:00 +01:00

1281 lines
37 KiB
C

/*
* Copyright (c) 2022, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include "gpt_rme_private.h"
#include <lib/gpt_rme/gpt_rme.h>
#include <lib/smccc.h>
#include <lib/spinlock.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#if !ENABLE_RME
#error "ENABLE_RME must be enabled to use the GPT library."
#endif
/*
* Lookup T from PPS
*
* PPS Size T
* 0b000 4GB 32
* 0b001 64GB 36
* 0b010 1TB 40
* 0b011 4TB 42
* 0b100 16TB 44
* 0b101 256TB 48
* 0b110 4PB 52
*
* See section 15.1.27 of the RME specification.
*/
static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T,
PPS_1TB_T, PPS_4TB_T,
PPS_16TB_T, PPS_256TB_T,
PPS_4PB_T};
/*
* Lookup P from PGS
*
* PGS Size P
* 0b00 4KB 12
* 0b10 16KB 14
* 0b01 64KB 16
*
* Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
*
* See section 15.1.27 of the RME specification.
*/
static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P};
/*
* This structure contains GPT configuration data.
*/
typedef struct {
uintptr_t plat_gpt_l0_base;
gpccr_pps_e pps;
gpt_t_val_e t;
gpccr_pgs_e pgs;
gpt_p_val_e p;
} gpt_config_t;
static gpt_config_t gpt_config;
/* These variables are used during initialization of the L1 tables. */
static unsigned int gpt_next_l1_tbl_idx;
static uintptr_t gpt_l1_tbl;
/*
* This function checks to see if a GPI value is valid.
*
* These are valid GPI values.
* GPT_GPI_NO_ACCESS U(0x0)
* GPT_GPI_SECURE U(0x8)
* GPT_GPI_NS U(0x9)
* GPT_GPI_ROOT U(0xA)
* GPT_GPI_REALM U(0xB)
* GPT_GPI_ANY U(0xF)
*
* Parameters
* gpi GPI to check for validity.
*
* Return
* true for a valid GPI, false for an invalid one.
*/
static bool gpt_is_gpi_valid(unsigned int gpi)
{
if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) ||
((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) {
return true;
}
return false;
}
/*
* This function checks to see if two PAS regions overlap.
*
* Parameters
* base_1: base address of first PAS
* size_1: size of first PAS
* base_2: base address of second PAS
* size_2: size of second PAS
*
* Return
* True if PAS regions overlap, false if they do not.
*/
static bool gpt_check_pas_overlap(uintptr_t base_1, size_t size_1,
uintptr_t base_2, size_t size_2)
{
if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) {
return true;
}
return false;
}
/*
* This helper function checks to see if a PAS region from index 0 to
* (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table.
*
* Parameters
* l0_idx: Index of the L0 entry to check
* pas_regions: PAS region array
* pas_idx: Upper bound of the PAS array index.
*
* Return
* True if a PAS region occupies the L0 region in question, false if not.
*/
static bool gpt_does_previous_pas_exist_here(unsigned int l0_idx,
pas_region_t *pas_regions,
unsigned int pas_idx)
{
/* Iterate over PAS regions up to pas_idx. */
for (unsigned int i = 0U; i < pas_idx; i++) {
if (gpt_check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx),
GPT_L0GPTSZ_ACTUAL_SIZE,
pas_regions[i].base_pa, pas_regions[i].size)) {
return true;
}
}
return false;
}
/*
* This function iterates over all of the PAS regions and checks them to ensure
* proper alignment of base and size, that the GPI is valid, and that no regions
* overlap. As a part of the overlap checks, this function checks existing L0
* mappings against the new PAS regions in the event that gpt_init_pas_l1_tables
* is called multiple times to place L1 tables in different areas of memory. It
* also counts the number of L1 tables needed and returns it on success.
*
* Parameters
* *pas_regions Pointer to array of PAS region structures.
* pas_region_cnt Total number of PAS regions in the array.
*
* Return
* Negative Linux error code in the event of a failure, number of L1 regions
* required when successful.
*/
static int gpt_validate_pas_mappings(pas_region_t *pas_regions,
unsigned int pas_region_cnt)
{
unsigned int idx;
unsigned int l1_cnt = 0U;
unsigned int pas_l1_cnt;
uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base;
assert(pas_regions != NULL);
assert(pas_region_cnt != 0U);
for (idx = 0U; idx < pas_region_cnt; idx++) {
/* Check for arithmetic overflow in region. */
if ((ULONG_MAX - pas_regions[idx].base_pa) <
pas_regions[idx].size) {
ERROR("[GPT] Address overflow in PAS[%u]!\n", idx);
return -EOVERFLOW;
}
/* Initial checks for PAS validity. */
if (((pas_regions[idx].base_pa + pas_regions[idx].size) >
GPT_PPS_ACTUAL_SIZE(gpt_config.t)) ||
!gpt_is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) {
ERROR("[GPT] PAS[%u] is invalid!\n", idx);
return -EFAULT;
}
/*
* Make sure this PAS does not overlap with another one. We
* start from idx + 1 instead of 0 since prior PAS mappings will
* have already checked themselves against this one.
*/
for (unsigned int i = idx + 1; i < pas_region_cnt; i++) {
if (gpt_check_pas_overlap(pas_regions[idx].base_pa,
pas_regions[idx].size,
pas_regions[i].base_pa,
pas_regions[i].size)) {
ERROR("[GPT] PAS[%u] overlaps with PAS[%u]\n",
i, idx);
return -EFAULT;
}
}
/*
* Since this function can be called multiple times with
* separate L1 tables we need to check the existing L0 mapping
* to see if this PAS would fall into one that has already been
* initialized.
*/
for (unsigned int i = GPT_L0_IDX(pas_regions[idx].base_pa);
i <= GPT_L0_IDX(pas_regions[idx].base_pa + pas_regions[idx].size - 1);
i++) {
if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) &&
(GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) {
/* This descriptor is unused so continue. */
continue;
}
/*
* This descriptor has been initialized in a previous
* call to this function so cannot be initialized again.
*/
ERROR("[GPT] PAS[%u] overlaps with previous L0[%d]!\n",
idx, i);
return -EFAULT;
}
/* Check for block mapping (L0) type. */
if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
/* Make sure base and size are block-aligned. */
if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) ||
!GPT_IS_L0_ALIGNED(pas_regions[idx].size)) {
ERROR("[GPT] PAS[%u] is not block-aligned!\n",
idx);
return -EFAULT;
}
continue;
}
/* Check for granule mapping (L1) type. */
if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
GPT_PAS_ATTR_MAP_TYPE_GRANULE) {
/* Make sure base and size are granule-aligned. */
if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) ||
!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) {
ERROR("[GPT] PAS[%u] is not granule-aligned!\n",
idx);
return -EFAULT;
}
/* Find how many L1 tables this PAS occupies. */
pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa +
pas_regions[idx].size - 1) -
GPT_L0_IDX(pas_regions[idx].base_pa) + 1);
/*
* This creates a situation where, if multiple PAS
* regions occupy the same table descriptor, we can get
* an artificially high total L1 table count. The way we
* handle this is by checking each PAS against those
* before it in the array, and if they both occupy the
* same PAS we subtract from pas_l1_cnt and only the
* first PAS in the array gets to count it.
*/
/*
* If L1 count is greater than 1 we know the start and
* end PAs are in different L0 regions so we must check
* both for overlap against other PAS.
*/
if (pas_l1_cnt > 1) {
if (gpt_does_previous_pas_exist_here(
GPT_L0_IDX(pas_regions[idx].base_pa +
pas_regions[idx].size - 1),
pas_regions, idx)) {
pas_l1_cnt = pas_l1_cnt - 1;
}
}
if (gpt_does_previous_pas_exist_here(
GPT_L0_IDX(pas_regions[idx].base_pa),
pas_regions, idx)) {
pas_l1_cnt = pas_l1_cnt - 1;
}
l1_cnt += pas_l1_cnt;
continue;
}
/* If execution reaches this point, mapping type is invalid. */
ERROR("[GPT] PAS[%u] has invalid mapping type 0x%x.\n", idx,
GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
return -EINVAL;
}
return l1_cnt;
}
/*
* This function validates L0 initialization parameters.
*
* Parameters
* l0_mem_base Base address of memory used for L0 tables.
* l1_mem_size Size of memory available for L0 tables.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
static int gpt_validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base,
size_t l0_mem_size)
{
size_t l0_alignment;
/*
* Make sure PPS is valid and then store it since macros need this value
* to work.
*/
if (pps > GPT_PPS_MAX) {
ERROR("[GPT] Invalid PPS: 0x%x\n", pps);
return -EINVAL;
}
gpt_config.pps = pps;
gpt_config.t = gpt_t_lookup[pps];
/* Alignment must be the greater of 4k or l0 table size. */
l0_alignment = PAGE_SIZE_4KB;
if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) {
l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t);
}
/* Check base address. */
if ((l0_mem_base == 0U) || ((l0_mem_base & (l0_alignment - 1)) != 0U)) {
ERROR("[GPT] Invalid L0 base address: 0x%lx\n", l0_mem_base);
return -EFAULT;
}
/* Check size. */
if (l0_mem_size < GPT_L0_TABLE_SIZE(gpt_config.t)) {
ERROR("[GPT] Inadequate L0 memory: need 0x%lx, have 0x%lx)\n",
GPT_L0_TABLE_SIZE(gpt_config.t),
l0_mem_size);
return -ENOMEM;
}
return 0;
}
/*
* In the event that L1 tables are needed, this function validates
* the L1 table generation parameters.
*
* Parameters
* l1_mem_base Base address of memory used for L1 table allocation.
* l1_mem_size Total size of memory available for L1 tables.
* l1_gpt_cnt Number of L1 tables needed.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
static int gpt_validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size,
unsigned int l1_gpt_cnt)
{
size_t l1_gpt_mem_sz;
/* Check if the granularity is supported */
if (!xlat_arch_is_granule_size_supported(
GPT_PGS_ACTUAL_SIZE(gpt_config.p))) {
return -EPERM;
}
/* Make sure L1 tables are aligned to their size. */
if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1)) != 0U) {
ERROR("[GPT] Unaligned L1 GPT base address: 0x%lx\n",
l1_mem_base);
return -EFAULT;
}
/* Get total memory needed for L1 tables. */
l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p);
/* Check for overflow. */
if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) {
ERROR("[GPT] Overflow calculating L1 memory size.\n");
return -ENOMEM;
}
/* Make sure enough space was supplied. */
if (l1_mem_size < l1_gpt_mem_sz) {
ERROR("[GPT] Inadequate memory for L1 GPTs. ");
ERROR(" Expected 0x%lx bytes. Got 0x%lx bytes\n",
l1_gpt_mem_sz, l1_mem_size);
return -ENOMEM;
}
VERBOSE("[GPT] Requested 0x%lx bytes for L1 GPTs.\n", l1_gpt_mem_sz);
return 0;
}
/*
* This function initializes L0 block descriptors (regions that cannot be
* transitioned at the granule level) according to the provided PAS.
*
* Parameters
* *pas Pointer to the structure defining the PAS region to
* initialize.
*/
static void gpt_generate_l0_blk_desc(pas_region_t *pas)
{
uint64_t gpt_desc;
unsigned int end_idx;
unsigned int idx;
uint64_t *l0_gpt_arr;
assert(gpt_config.plat_gpt_l0_base != 0U);
assert(pas != NULL);
/*
* Checking of PAS parameters has already been done in
* gpt_validate_pas_mappings so no need to check the same things again.
*/
l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base;
/* Create the GPT Block descriptor for this PAS region */
gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs));
/* Start index of this region in L0 GPTs */
idx = GPT_L0_IDX(pas->base_pa);
/*
* Determine number of L0 GPT descriptors covered by
* this PAS region and use the count to populate these
* descriptors.
*/
end_idx = GPT_L0_IDX(pas->base_pa + pas->size);
/* Generate the needed block descriptors. */
for (; idx < end_idx; idx++) {
l0_gpt_arr[idx] = gpt_desc;
VERBOSE("[GPT] L0 entry (BLOCK) index %u [%p]: GPI = 0x%" PRIx64 " (0x%" PRIx64 ")\n",
idx, &l0_gpt_arr[idx],
(gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) &
GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]);
}
}
/*
* Helper function to determine if the end physical address lies in the same L0
* region as the current physical address. If true, the end physical address is
* returned else, the start address of the next region is returned.
*
* Parameters
* cur_pa Physical address of the current PA in the loop through
* the range.
* end_pa Physical address of the end PA in a PAS range.
*
* Return
* The PA of the end of the current range.
*/
static uintptr_t gpt_get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
{
uintptr_t cur_idx;
uintptr_t end_idx;
cur_idx = GPT_L0_IDX(cur_pa);
end_idx = GPT_L0_IDX(end_pa);
assert(cur_idx <= end_idx);
if (cur_idx == end_idx) {
return end_pa;
}
return (cur_idx + 1U) << GPT_L0_IDX_SHIFT;
}
/*
* Helper function to fill out GPI entries in a single L1 table. This function
* fills out entire L1 descriptors at a time to save memory writes.
*
* Parameters
* gpi GPI to set this range to
* l1 Pointer to L1 table to fill out
* first Address of first granule in range.
* last Address of last granule in range (inclusive).
*/
static void gpt_fill_l1_tbl(uint64_t gpi, uint64_t *l1, uintptr_t first,
uintptr_t last)
{
uint64_t gpi_field = GPT_BUILD_L1_DESC(gpi);
uint64_t gpi_mask = 0xFFFFFFFFFFFFFFFF;
assert(first <= last);
assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
assert(GPT_L0_IDX(first) == GPT_L0_IDX(last));
assert(l1 != NULL);
/* Shift the mask if we're starting in the middle of an L1 entry. */
gpi_mask = gpi_mask << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2);
/* Fill out each L1 entry for this region. */
for (unsigned int i = GPT_L1_IDX(gpt_config.p, first);
i <= GPT_L1_IDX(gpt_config.p, last); i++) {
/* Account for stopping in the middle of an L1 entry. */
if (i == GPT_L1_IDX(gpt_config.p, last)) {
gpi_mask &= (gpi_mask >> ((15 -
GPT_L1_GPI_IDX(gpt_config.p, last)) << 2));
}
/* Write GPI values. */
assert((l1[i] & gpi_mask) ==
(GPT_BUILD_L1_DESC(GPT_GPI_ANY) & gpi_mask));
l1[i] = (l1[i] & ~gpi_mask) | (gpi_mask & gpi_field);
/* Reset mask. */
gpi_mask = 0xFFFFFFFFFFFFFFFF;
}
}
/*
* This function finds the next available unused L1 table and initializes all
* granules descriptor entries to GPI_ANY. This ensures that there are no chunks
* of GPI_NO_ACCESS (0b0000) memory floating around in the system in the
* event that a PAS region stops midway through an L1 table, thus guaranteeing
* that all memory not explicitly assigned is GPI_ANY. This function does not
* check for overflow conditions, that should be done by the caller.
*
* Return
* Pointer to the next available L1 table.
*/
static uint64_t *gpt_get_new_l1_tbl(void)
{
/* Retrieve the next L1 table. */
uint64_t *l1 = (uint64_t *)((uint64_t)(gpt_l1_tbl) +
(GPT_L1_TABLE_SIZE(gpt_config.p) *
gpt_next_l1_tbl_idx));
/* Increment L1 counter. */
gpt_next_l1_tbl_idx++;
/* Initialize all GPIs to GPT_GPI_ANY */
for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) {
l1[i] = GPT_BUILD_L1_DESC(GPT_GPI_ANY);
}
return l1;
}
/*
* When L1 tables are needed, this function creates the necessary L0 table
* descriptors and fills out the L1 table entries according to the supplied
* PAS range.
*
* Parameters
* *pas Pointer to the structure defining the PAS region.
*/
static void gpt_generate_l0_tbl_desc(pas_region_t *pas)
{
uintptr_t end_pa;
uintptr_t cur_pa;
uintptr_t last_gran_pa;
uint64_t *l0_gpt_base;
uint64_t *l1_gpt_arr;
unsigned int l0_idx;
assert(gpt_config.plat_gpt_l0_base != 0U);
assert(pas != NULL);
/*
* Checking of PAS parameters has already been done in
* gpt_validate_pas_mappings so no need to check the same things again.
*/
end_pa = pas->base_pa + pas->size;
l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
/* We start working from the granule at base PA */
cur_pa = pas->base_pa;
/* Iterate over each L0 region in this memory range. */
for (l0_idx = GPT_L0_IDX(pas->base_pa);
l0_idx <= GPT_L0_IDX(end_pa - 1U);
l0_idx++) {
/*
* See if the L0 entry is already a table descriptor or if we
* need to create one.
*/
if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) {
/* Get the L1 array from the L0 entry. */
l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]);
} else {
/* Get a new L1 table from the L1 memory space. */
l1_gpt_arr = gpt_get_new_l1_tbl();
/* Fill out the L0 descriptor and flush it. */
l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr);
}
VERBOSE("[GPT] L0 entry (TABLE) index %u [%p] ==> L1 Addr 0x%llx (0x%" PRIx64 ")\n",
l0_idx, &l0_gpt_base[l0_idx],
(unsigned long long)(l1_gpt_arr),
l0_gpt_base[l0_idx]);
/*
* Determine the PA of the last granule in this L0 descriptor.
*/
last_gran_pa = gpt_get_l1_end_pa(cur_pa, end_pa) -
GPT_PGS_ACTUAL_SIZE(gpt_config.p);
/*
* Fill up L1 GPT entries between these two addresses. This
* function needs the addresses of the first granule and last
* granule in the range.
*/
gpt_fill_l1_tbl(GPT_PAS_ATTR_GPI(pas->attrs), l1_gpt_arr,
cur_pa, last_gran_pa);
/* Advance cur_pa to first granule in next L0 region. */
cur_pa = gpt_get_l1_end_pa(cur_pa, end_pa);
}
}
/*
* This function flushes a range of L0 descriptors used by a given PAS region
* array. There is a chance that some unmodified L0 descriptors would be flushed
* in the case that there are "holes" in an array of PAS regions but overall
* this should be faster than individually flushing each modified L0 descriptor
* as they are created.
*
* Parameters
* *pas Pointer to an array of PAS regions.
* pas_count Number of entries in the PAS array.
*/
static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count)
{
unsigned int idx;
unsigned int start_idx;
unsigned int end_idx;
uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base;
assert(pas != NULL);
assert(pas_count > 0);
/* Initial start and end values. */
start_idx = GPT_L0_IDX(pas[0].base_pa);
end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1);
/* Find lowest and highest L0 indices used in this PAS array. */
for (idx = 1; idx < pas_count; idx++) {
if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) {
start_idx = GPT_L0_IDX(pas[idx].base_pa);
}
if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1) > end_idx) {
end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1);
}
}
/*
* Flush all covered L0 descriptors, add 1 because we need to include
* the end index value.
*/
flush_dcache_range((uintptr_t)&l0[start_idx],
((end_idx + 1) - start_idx) * sizeof(uint64_t));
}
/*
* Public API to enable granule protection checks once the tables have all been
* initialized. This function is called at first initialization and then again
* later during warm boots of CPU cores.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_enable(void)
{
u_register_t gpccr_el3;
/*
* Granule tables must be initialised before enabling
* granule protection.
*/
if (gpt_config.plat_gpt_l0_base == 0U) {
ERROR("[GPT] Tables have not been initialized!\n");
return -EPERM;
}
/* Write the base address of the L0 tables into GPTBR */
write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT)
>> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK);
/* GPCCR_EL3.PPS */
gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps);
/* GPCCR_EL3.PGS */
gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs);
/*
* Since EL3 maps the L1 region as Inner shareable, use the same
* shareability attribute for GPC as well so that
* GPC fetches are visible to PEs
*/
gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_IS);
/* Outer and Inner cacheability set to Normal memory, WB, RA, WA. */
gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);
/* Prepopulate GPCCR_EL3 but don't enable GPC yet */
write_gpccr_el3(gpccr_el3);
isb();
/* Invalidate any stale TLB entries and any cached register fields */
tlbipaallos();
dsb();
isb();
/* Enable GPT */
gpccr_el3 |= GPCCR_GPC_BIT;
/* TODO: Configure GPCCR_EL3_GPCP for Fault control. */
write_gpccr_el3(gpccr_el3);
isb();
tlbipaallos();
dsb();
isb();
return 0;
}
/*
* Public API to disable granule protection checks.
*/
void gpt_disable(void)
{
u_register_t gpccr_el3 = read_gpccr_el3();
write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT);
dsbsy();
isb();
}
/*
* Public API that initializes the entire protected space to GPT_GPI_ANY using
* the L0 tables (block descriptors). Ideally, this function is invoked prior
* to DDR discovery and initialization. The MMU must be initialized before
* calling this function.
*
* Parameters
* pps PPS value to use for table generation
* l0_mem_base Base address of L0 tables in memory.
* l0_mem_size Total size of memory available for L0 tables.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_init_l0_tables(gpccr_pps_e pps, uintptr_t l0_mem_base,
size_t l0_mem_size)
{
int ret;
uint64_t gpt_desc;
/* Ensure that MMU and Data caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
/* Validate other parameters. */
ret = gpt_validate_l0_params(pps, l0_mem_base, l0_mem_size);
if (ret != 0) {
return ret;
}
/* Create the descriptor to initialize L0 entries with. */
gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY);
/* Iterate through all L0 entries */
for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) {
((uint64_t *)l0_mem_base)[i] = gpt_desc;
}
/* Flush updated L0 tables to memory. */
flush_dcache_range((uintptr_t)l0_mem_base,
(size_t)GPT_L0_TABLE_SIZE(gpt_config.t));
/* Stash the L0 base address once initial setup is complete. */
gpt_config.plat_gpt_l0_base = l0_mem_base;
return 0;
}
/*
* Public API that carves out PAS regions from the L0 tables and builds any L1
* tables that are needed. This function ideally is run after DDR discovery and
* initialization. The L0 tables must have already been initialized to GPI_ANY
* when this function is called.
*
* This function can be called multiple times with different L1 memory ranges
* and PAS regions if it is desirable to place L1 tables in different locations
* in memory. (ex: you have multiple DDR banks and want to place the L1 tables
* in the DDR bank that they control)
*
* Parameters
* pgs PGS value to use for table generation.
* l1_mem_base Base address of memory used for L1 tables.
* l1_mem_size Total size of memory available for L1 tables.
* *pas_regions Pointer to PAS regions structure array.
* pas_count Total number of PAS regions.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base,
size_t l1_mem_size, pas_region_t *pas_regions,
unsigned int pas_count)
{
int ret;
int l1_gpt_cnt;
/* Ensure that MMU and Data caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
/* PGS is needed for gpt_validate_pas_mappings so check it now. */
if (pgs > GPT_PGS_MAX) {
ERROR("[GPT] Invalid PGS: 0x%x\n", pgs);
return -EINVAL;
}
gpt_config.pgs = pgs;
gpt_config.p = gpt_p_lookup[pgs];
/* Make sure L0 tables have been initialized. */
if (gpt_config.plat_gpt_l0_base == 0U) {
ERROR("[GPT] L0 tables must be initialized first!\n");
return -EPERM;
}
/* Check if L1 GPTs are required and how many. */
l1_gpt_cnt = gpt_validate_pas_mappings(pas_regions, pas_count);
if (l1_gpt_cnt < 0) {
return l1_gpt_cnt;
}
VERBOSE("[GPT] %u L1 GPTs requested.\n", l1_gpt_cnt);
/* If L1 tables are needed then validate the L1 parameters. */
if (l1_gpt_cnt > 0) {
ret = gpt_validate_l1_params(l1_mem_base, l1_mem_size,
l1_gpt_cnt);
if (ret != 0) {
return ret;
}
/* Set up parameters for L1 table generation. */
gpt_l1_tbl = l1_mem_base;
gpt_next_l1_tbl_idx = 0U;
}
INFO("[GPT] Boot Configuration\n");
INFO(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t);
INFO(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p);
INFO(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
INFO(" PAS count: 0x%x\n", pas_count);
INFO(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base);
/* Generate the tables in memory. */
for (unsigned int idx = 0U; idx < pas_count; idx++) {
INFO("[GPT] PAS[%u]: base 0x%lx, size 0x%lx, GPI 0x%x, type 0x%x\n",
idx, pas_regions[idx].base_pa, pas_regions[idx].size,
GPT_PAS_ATTR_GPI(pas_regions[idx].attrs),
GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
/* Check if a block or table descriptor is required */
if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
gpt_generate_l0_blk_desc(&pas_regions[idx]);
} else {
gpt_generate_l0_tbl_desc(&pas_regions[idx]);
}
}
/* Flush modified L0 tables. */
flush_l0_for_pas_array(pas_regions, pas_count);
/* Flush L1 tables if needed. */
if (l1_gpt_cnt > 0) {
flush_dcache_range(l1_mem_base,
GPT_L1_TABLE_SIZE(gpt_config.p) *
l1_gpt_cnt);
}
/* Make sure that all the entries are written to the memory. */
dsbishst();
tlbipaallos();
dsb();
isb();
return 0;
}
/*
* Public API to initialize the runtime gpt_config structure based on the values
* present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization
* typically happens in a bootloader stage prior to setting up the EL3 runtime
* environment for the granule transition service so this function detects the
* initialization from a previous stage. Granule protection checks must be
* enabled already or this function will return an error.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_runtime_init(void)
{
u_register_t reg;
/* Ensure that MMU and Data caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
/* Ensure GPC are already enabled. */
if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) {
ERROR("[GPT] Granule protection checks are not enabled!\n");
return -EPERM;
}
/*
* Read the L0 table address from GPTBR, we don't need the L1 base
* address since those are included in the L0 tables as needed.
*/
reg = read_gptbr_el3();
gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) &
GPTBR_BADDR_MASK) <<
GPTBR_BADDR_VAL_SHIFT;
/* Read GPCCR to get PGS and PPS values. */
reg = read_gpccr_el3();
gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK;
gpt_config.t = gpt_t_lookup[gpt_config.pps];
gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK;
gpt_config.p = gpt_p_lookup[gpt_config.pgs];
VERBOSE("[GPT] Runtime Configuration\n");
VERBOSE(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t);
VERBOSE(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p);
VERBOSE(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
VERBOSE(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base);
return 0;
}
/*
* The L1 descriptors are protected by a spinlock to ensure that multiple
* CPUs do not attempt to change the descriptors at once. In the future it
* would be better to have separate spinlocks for each L1 descriptor.
*/
static spinlock_t gpt_lock;
/*
* A helper to write the value (target_pas << gpi_shift) to the index of
* the gpt_l1_addr
*/
static inline void write_gpt(uint64_t *gpt_l1_desc, uint64_t *gpt_l1_addr,
unsigned int gpi_shift, unsigned int idx,
unsigned int target_pas)
{
*gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift);
*gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift);
gpt_l1_addr[idx] = *gpt_l1_desc;
}
/*
* Helper to retrieve the gpt_l1_* information from the base address
* returned in gpi_info
*/
static int get_gpi_params(uint64_t base, gpi_info_t *gpi_info)
{
uint64_t gpt_l0_desc, *gpt_l0_base;
gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)];
if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) {
VERBOSE("[GPT] Granule is not covered by a table descriptor!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
return -EINVAL;
}
/* Get the table index and GPI shift from PA. */
gpi_info->gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc);
gpi_info->idx = GPT_L1_IDX(gpt_config.p, base);
gpi_info->gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2;
gpi_info->gpt_l1_desc = (gpi_info->gpt_l1_addr)[gpi_info->idx];
gpi_info->gpi = (gpi_info->gpt_l1_desc >> gpi_info->gpi_shift) &
GPT_L1_GRAN_DESC_GPI_MASK;
return 0;
}
/*
* This function is the granule transition delegate service. When a granule
* transition request occurs it is routed to this function to have the request,
* if valid, fulfilled following A1.1.1 Delegate of RME supplement
*
* TODO: implement support for transitioning multiple granules at once.
*
* Parameters
* base Base address of the region to transition, must be
* aligned to granule size.
* size Size of region to transition, must be aligned to granule
* size.
* src_sec_state Security state of the caller.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_delegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
{
gpi_info_t gpi_info;
uint64_t nse;
int res;
unsigned int target_pas;
/* Ensure that the tables have been set up before taking requests. */
assert(gpt_config.plat_gpt_l0_base != 0UL);
/* Ensure that caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
/* Delegate request can only come from REALM or SECURE */
assert(src_sec_state == SMC_FROM_REALM ||
src_sec_state == SMC_FROM_SECURE);
/* See if this is a single or a range of granule transition. */
if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
return -EINVAL;
}
/* Check that base and size are valid */
if ((ULONG_MAX - base) < size) {
VERBOSE("[GPT] Transition request address overflow!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
/* Make sure base and size are valid. */
if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
(size == 0UL) ||
((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
VERBOSE("[GPT] Invalid granule transition address range!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
target_pas = GPT_GPI_REALM;
if (src_sec_state == SMC_FROM_SECURE) {
target_pas = GPT_GPI_SECURE;
}
/*
* Access to L1 tables is controlled by a global lock to ensure
* that no more than one CPU is allowed to make changes at any
* given time.
*/
spin_lock(&gpt_lock);
res = get_gpi_params(base, &gpi_info);
if (res != 0) {
spin_unlock(&gpt_lock);
return res;
}
/* Check that the current address is in NS state */
if (gpi_info.gpi != GPT_GPI_NS) {
VERBOSE("[GPT] Only Granule in NS state can be delegated.\n");
VERBOSE(" Caller: %u, Current GPI: %u\n", src_sec_state,
gpi_info.gpi);
spin_unlock(&gpt_lock);
return -EPERM;
}
if (src_sec_state == SMC_FROM_SECURE) {
nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
} else {
nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
}
/*
* In order to maintain mutual distrust between Realm and Secure
* states, remove any data speculatively fetched into the target
* physical address space. Issue DC CIPAPA over address range
*/
if (is_feat_mte2_supported()) {
flush_dcache_to_popa_range_mte2(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
} else {
flush_dcache_to_popa_range(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
}
write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
gpi_info.gpi_shift, gpi_info.idx, target_pas);
dsboshst();
gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
dsbosh();
nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
if (is_feat_mte2_supported()) {
flush_dcache_to_popa_range_mte2(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
} else {
flush_dcache_to_popa_range(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
}
/* Unlock access to the L1 tables. */
spin_unlock(&gpt_lock);
/*
* The isb() will be done as part of context
* synchronization when returning to lower EL
*/
VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n",
base, gpi_info.gpi, target_pas);
return 0;
}
/*
* This function is the granule transition undelegate service. When a granule
* transition request occurs it is routed to this function where the request is
* validated then fulfilled if possible.
*
* TODO: implement support for transitioning multiple granules at once.
*
* Parameters
* base Base address of the region to transition, must be
* aligned to granule size.
* size Size of region to transition, must be aligned to granule
* size.
* src_sec_state Security state of the caller.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_undelegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
{
gpi_info_t gpi_info;
uint64_t nse;
int res;
/* Ensure that the tables have been set up before taking requests. */
assert(gpt_config.plat_gpt_l0_base != 0UL);
/* Ensure that MMU and caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
/* Delegate request can only come from REALM or SECURE */
assert(src_sec_state == SMC_FROM_REALM ||
src_sec_state == SMC_FROM_SECURE);
/* See if this is a single or a range of granule transition. */
if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
return -EINVAL;
}
/* Check that base and size are valid */
if ((ULONG_MAX - base) < size) {
VERBOSE("[GPT] Transition request address overflow!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
/* Make sure base and size are valid. */
if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
(size == 0UL) ||
((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
VERBOSE("[GPT] Invalid granule transition address range!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
/*
* Access to L1 tables is controlled by a global lock to ensure
* that no more than one CPU is allowed to make changes at any
* given time.
*/
spin_lock(&gpt_lock);
res = get_gpi_params(base, &gpi_info);
if (res != 0) {
spin_unlock(&gpt_lock);
return res;
}
/* Check that the current address is in the delegated state */
if ((src_sec_state == SMC_FROM_REALM &&
gpi_info.gpi != GPT_GPI_REALM) ||
(src_sec_state == SMC_FROM_SECURE &&
gpi_info.gpi != GPT_GPI_SECURE)) {
VERBOSE("[GPT] Only Granule in REALM or SECURE state can be undelegated.\n");
VERBOSE(" Caller: %u, Current GPI: %u\n", src_sec_state,
gpi_info.gpi);
spin_unlock(&gpt_lock);
return -EPERM;
}
/* In order to maintain mutual distrust between Realm and Secure
* states, remove access now, in order to guarantee that writes
* to the currently-accessible physical address space will not
* later become observable.
*/
write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NO_ACCESS);
dsboshst();
gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
dsbosh();
if (src_sec_state == SMC_FROM_SECURE) {
nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
} else {
nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
}
/* Ensure that the scrubbed data has made it past the PoPA */
if (is_feat_mte2_supported()) {
flush_dcache_to_popa_range_mte2(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
} else {
flush_dcache_to_popa_range(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
}
/*
* Remove any data loaded speculatively
* in NS space from before the scrubbing
*/
nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
if (is_feat_mte2_supported()) {
flush_dcache_to_popa_range_mte2(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
} else {
flush_dcache_to_popa_range(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
}
/* Clear existing GPI encoding and transition granule. */
write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NS);
dsboshst();
/* Ensure that all agents observe the new NS configuration */
gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
dsbosh();
/* Unlock access to the L1 tables. */
spin_unlock(&gpt_lock);
/*
* The isb() will be done as part of context
* synchronization when returning to lower EL
*/
VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n",
base, gpi_info.gpi, GPT_GPI_NS);
return 0;
}