arm-trusted-firmware/drivers/mentor/i2c/mi2cv.c
Antonio Nino Diaz 09d40e0e08 Sanitise includes across codebase
Enforce full include path for includes. Deprecate old paths.

The following folders inside include/lib have been left unchanged:

- include/lib/cpus/${ARCH}
- include/lib/el3_runtime/${ARCH}

The reason for this change is that having a global namespace for
includes isn't a good idea. It defeats one of the advantages of having
folders and it introduces problems that are sometimes subtle (because
you may not know the header you are actually including if there are two
of them).

For example, this patch had to be created because two headers were
called the same way: e0ea0928d5 ("Fix gpio includes of mt8173 platform
to avoid collision."). More recently, this patch has had similar
problems: 46f9b2c3a2 ("drivers: add tzc380 support").

This problem was introduced in commit 4ecca33988 ("Move include and
source files to logical locations"). At that time, there weren't too
many headers so it wasn't a real issue. However, time has shown that
this creates problems.

Platforms that want to preserve the way they include headers may add the
removed paths to PLAT_INCLUDES, but this is discouraged.

Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2019-01-04 10:43:17 +00:00

614 lines
15 KiB
C

/*
* Copyright (C) 2018 Marvell International Ltd.
* Copyright (C) 2018 Icenowy Zheng <icenowy@aosc.io>
*
* SPDX-License-Identifier: BSD-3-Clause
* https://spdx.org/licenses
*/
/*
* This driver is for Mentor Graphics Inventra MI2CV IP core, which is used
* for Marvell and Allwinner SoCs in ATF.
*/
#include <errno.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <drivers/mentor/mi2cv.h>
#include <lib/mmio.h>
#include <mentor_i2c_plat.h>
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
#define DEBUG_I2C
#endif
#define I2C_TIMEOUT_VALUE 0x500
#define I2C_MAX_RETRY_CNT 1000
#define I2C_CMD_WRITE 0x0
#define I2C_CMD_READ 0x1
#define I2C_DATA_ADDR_7BIT_OFFS 0x1
#define I2C_DATA_ADDR_7BIT_MASK (0xFF << I2C_DATA_ADDR_7BIT_OFFS)
#define I2C_CONTROL_ACK 0x00000004
#define I2C_CONTROL_IFLG 0x00000008
#define I2C_CONTROL_STOP 0x00000010
#define I2C_CONTROL_START 0x00000020
#define I2C_CONTROL_TWSIEN 0x00000040
#define I2C_CONTROL_INTEN 0x00000080
#define I2C_STATUS_START 0x08
#define I2C_STATUS_REPEATED_START 0x10
#define I2C_STATUS_ADDR_W_ACK 0x18
#define I2C_STATUS_DATA_W_ACK 0x28
#define I2C_STATUS_LOST_ARB_DATA_ADDR_TRANSFER 0x38
#define I2C_STATUS_ADDR_R_ACK 0x40
#define I2C_STATUS_DATA_R_ACK 0x50
#define I2C_STATUS_DATA_R_NAK 0x58
#define I2C_STATUS_LOST_ARB_GENERAL_CALL 0x78
#define I2C_STATUS_IDLE 0xF8
#define I2C_UNSTUCK_TRIGGER 0x1
#define I2C_UNSTUCK_ONGOING 0x2
#define I2C_UNSTUCK_ERROR 0x4
static struct mentor_i2c_regs *base;
static int mentor_i2c_lost_arbitration(uint32_t *status)
{
*status = mmio_read_32((uintptr_t)&base->status);
if ((*status == I2C_STATUS_LOST_ARB_DATA_ADDR_TRANSFER) ||
(*status == I2C_STATUS_LOST_ARB_GENERAL_CALL))
return -EAGAIN;
return 0;
}
static void mentor_i2c_interrupt_clear(void)
{
uint32_t reg;
reg = mmio_read_32((uintptr_t)&base->control);
#ifndef I2C_INTERRUPT_CLEAR_INVERTED
reg &= ~(I2C_CONTROL_IFLG);
#else
reg |= I2C_CONTROL_IFLG;
#endif
mmio_write_32((uintptr_t)&base->control, reg);
/* Wait for 1 us for the clear to take effect */
udelay(1);
}
static int mentor_i2c_interrupt_get(void)
{
uint32_t reg;
/* get the interrupt flag bit */
reg = mmio_read_32((uintptr_t)&base->control);
reg &= I2C_CONTROL_IFLG;
return reg && I2C_CONTROL_IFLG;
}
static int mentor_i2c_wait_interrupt(void)
{
uint32_t timeout = 0;
while (!mentor_i2c_interrupt_get() && (timeout++ < I2C_TIMEOUT_VALUE))
;
if (timeout >= I2C_TIMEOUT_VALUE)
return -ETIMEDOUT;
return 0;
}
static int mentor_i2c_start_bit_set(void)
{
int is_int_flag = 0;
uint32_t status;
if (mentor_i2c_interrupt_get())
is_int_flag = 1;
/* set start bit */
mmio_write_32((uintptr_t)&base->control,
mmio_read_32((uintptr_t)&base->control) |
I2C_CONTROL_START);
/* in case that the int flag was set before i.e. repeated start bit */
if (is_int_flag) {
VERBOSE("%s: repeated start Bit\n", __func__);
mentor_i2c_interrupt_clear();
}
if (mentor_i2c_wait_interrupt()) {
ERROR("Start clear bit timeout\n");
return -ETIMEDOUT;
}
/* check that start bit went down */
if ((mmio_read_32((uintptr_t)&base->control) &
I2C_CONTROL_START) != 0) {
ERROR("Start bit didn't went down\n");
return -EPERM;
}
/* check the status */
if (mentor_i2c_lost_arbitration(&status)) {
ERROR("%s - %d: Lost arbitration, got status %x\n",
__func__, __LINE__, status);
return -EAGAIN;
}
if ((status != I2C_STATUS_START) &&
(status != I2C_STATUS_REPEATED_START)) {
ERROR("Got status %x after enable start bit.\n", status);
return -EPERM;
}
return 0;
}
static int mentor_i2c_stop_bit_set(void)
{
int timeout;
uint32_t status;
/* Generate stop bit */
mmio_write_32((uintptr_t)&base->control,
mmio_read_32((uintptr_t)&base->control) |
I2C_CONTROL_STOP);
mentor_i2c_interrupt_clear();
timeout = 0;
/* Read control register, check the control stop bit */
while ((mmio_read_32((uintptr_t)&base->control) & I2C_CONTROL_STOP) &&
(timeout++ < I2C_TIMEOUT_VALUE))
;
if (timeout >= I2C_TIMEOUT_VALUE) {
ERROR("Stop bit didn't went down\n");
return -ETIMEDOUT;
}
/* check that stop bit went down */
if ((mmio_read_32((uintptr_t)&base->control) & I2C_CONTROL_STOP) != 0) {
ERROR("Stop bit didn't went down\n");
return -EPERM;
}
/* check the status */
if (mentor_i2c_lost_arbitration(&status)) {
ERROR("%s - %d: Lost arbitration, got status %x\n",
__func__, __LINE__, status);
return -EAGAIN;
}
if (status != I2C_STATUS_IDLE) {
ERROR("Got status %x after enable stop bit.\n", status);
return -EPERM;
}
return 0;
}
static int mentor_i2c_address_set(uint8_t chain, int command)
{
uint32_t reg, status;
reg = (chain << I2C_DATA_ADDR_7BIT_OFFS) & I2C_DATA_ADDR_7BIT_MASK;
reg |= command;
mmio_write_32((uintptr_t)&base->data, reg);
udelay(1);
mentor_i2c_interrupt_clear();
if (mentor_i2c_wait_interrupt()) {
ERROR("Start clear bit timeout\n");
return -ETIMEDOUT;
}
/* check the status */
if (mentor_i2c_lost_arbitration(&status)) {
ERROR("%s - %d: Lost arbitration, got status %x\n",
__func__, __LINE__, status);
return -EAGAIN;
}
if (((status != I2C_STATUS_ADDR_R_ACK) && (command == I2C_CMD_READ)) ||
((status != I2C_STATUS_ADDR_W_ACK) && (command == I2C_CMD_WRITE))) {
/* only in debug, since in boot we try to read the SPD
* of both DRAM, and we don't want error messages in cas
* DIMM doesn't exist.
*/
INFO("%s: ERROR - status %x addr in %s mode.\n", __func__,
status, (command == I2C_CMD_WRITE) ? "Write" : "Read");
return -EPERM;
}
return 0;
}
/*
* The I2C module contains a clock divider to generate the SCL clock.
* This function calculates and sets the <N> and <M> fields in the I2C Baud
* Rate Register (t=01) to obtain given 'requested_speed'.
* The requested_speed will be equal to:
* CONFIG_SYS_TCLK / (10 * (M + 1) * (2 << N))
* Where M is the value represented by bits[6:3] and N is the value represented
* by bits[2:0] of "I2C Baud Rate Register".
* Therefore max M which can be set is 16 (2^4) and max N is 8 (2^3). So the
* lowest possible baudrate is:
* CONFIG_SYS_TCLK/(10 * (16 +1) * (2 << 8), which equals to:
* CONFIG_SYS_TCLK/87040. Assuming that CONFIG_SYS_TCLK=250MHz, the lowest
* possible frequency is ~2,872KHz.
*/
static unsigned int mentor_i2c_bus_speed_set(unsigned int requested_speed)
{
unsigned int n, m, freq, margin, min_margin = 0xffffffff;
unsigned int actual_n = 0, actual_m = 0;
int val;
/* Calculate N and M for the TWSI clock baud rate */
for (n = 0; n < 8; n++) {
for (m = 0; m < 16; m++) {
freq = CONFIG_SYS_TCLK / (10 * (m + 1) * (2 << n));
val = requested_speed - freq;
margin = (val > 0) ? val : -val;
if ((freq <= requested_speed) &&
(margin < min_margin)) {
min_margin = margin;
actual_n = n;
actual_m = m;
}
}
}
VERBOSE("%s: actual_n = %u, actual_m = %u\n",
__func__, actual_n, actual_m);
/* Set the baud rate */
mmio_write_32((uintptr_t)&base->baudrate, (actual_m << 3) | actual_n);
return 0;
}
#ifdef DEBUG_I2C
static int mentor_i2c_probe(uint8_t chip)
{
int ret = 0;
ret = mentor_i2c_start_bit_set();
if (ret != 0) {
mentor_i2c_stop_bit_set();
ERROR("%s - %d: %s", __func__, __LINE__,
"mentor_i2c_start_bit_set failed\n");
return -EPERM;
}
ret = mentor_i2c_address_set(chip, I2C_CMD_WRITE);
if (ret != 0) {
mentor_i2c_stop_bit_set();
ERROR("%s - %d: %s", __func__, __LINE__,
"mentor_i2c_address_set failed\n");
return -EPERM;
}
mentor_i2c_stop_bit_set();
VERBOSE("%s: successful I2C probe\n", __func__);
return ret;
}
#endif
/* regular i2c transaction */
static int mentor_i2c_data_receive(uint8_t *p_block, uint32_t block_size)
{
uint32_t reg, status, block_size_read = block_size;
/* Wait for cause interrupt */
if (mentor_i2c_wait_interrupt()) {
ERROR("Start clear bit timeout\n");
return -ETIMEDOUT;
}
while (block_size_read) {
if (block_size_read == 1) {
reg = mmio_read_32((uintptr_t)&base->control);
reg &= ~(I2C_CONTROL_ACK);
mmio_write_32((uintptr_t)&base->control, reg);
}
mentor_i2c_interrupt_clear();
if (mentor_i2c_wait_interrupt()) {
ERROR("Start clear bit timeout\n");
return -ETIMEDOUT;
}
/* check the status */
if (mentor_i2c_lost_arbitration(&status)) {
ERROR("%s - %d: Lost arbitration, got status %x\n",
__func__, __LINE__, status);
return -EAGAIN;
}
if ((status != I2C_STATUS_DATA_R_ACK) &&
(block_size_read != 1)) {
ERROR("Status %x in read transaction\n", status);
return -EPERM;
}
if ((status != I2C_STATUS_DATA_R_NAK) &&
(block_size_read == 1)) {
ERROR("Status %x in Rd Terminate\n", status);
return -EPERM;
}
/* read the data */
*p_block = (uint8_t) mmio_read_32((uintptr_t)&base->data);
VERBOSE("%s: place %d read %x\n", __func__,
block_size - block_size_read, *p_block);
p_block++;
block_size_read--;
}
return 0;
}
static int mentor_i2c_data_transmit(uint8_t *p_block, uint32_t block_size)
{
uint32_t status, block_size_write = block_size;
if (mentor_i2c_wait_interrupt()) {
ERROR("Start clear bit timeout\n");
return -ETIMEDOUT;
}
while (block_size_write) {
/* write the data */
mmio_write_32((uintptr_t)&base->data, (uint32_t) *p_block);
VERBOSE("%s: index = %d, data = %x\n", __func__,
block_size - block_size_write, *p_block);
p_block++;
block_size_write--;
mentor_i2c_interrupt_clear();
if (mentor_i2c_wait_interrupt()) {
ERROR("Start clear bit timeout\n");
return -ETIMEDOUT;
}
/* check the status */
if (mentor_i2c_lost_arbitration(&status)) {
ERROR("%s - %d: Lost arbitration, got status %x\n",
__func__, __LINE__, status);
return -EAGAIN;
}
if (status != I2C_STATUS_DATA_W_ACK) {
ERROR("Status %x in write transaction\n", status);
return -EPERM;
}
}
return 0;
}
static int mentor_i2c_target_offset_set(uint8_t chip, uint32_t addr, int alen)
{
uint8_t off_block[2];
uint32_t off_size;
if (alen == 2) { /* 2-byte addresses support */
off_block[0] = (addr >> 8) & 0xff;
off_block[1] = addr & 0xff;
off_size = 2;
} else { /* 1-byte addresses support */
off_block[0] = addr & 0xff;
off_size = 1;
}
VERBOSE("%s: off_size = %x addr1 = %x addr2 = %x\n", __func__,
off_size, off_block[0], off_block[1]);
return mentor_i2c_data_transmit(off_block, off_size);
}
#ifdef I2C_CAN_UNSTUCK
static int mentor_i2c_unstuck(int ret)
{
uint32_t v;
if (ret != -ETIMEDOUT)
return ret;
VERBOSE("Trying to \"unstuck i2c\"... ");
i2c_init(base);
mmio_write_32((uintptr_t)&base->unstuck, I2C_UNSTUCK_TRIGGER);
do {
v = mmio_read_32((uintptr_t)&base->unstuck);
} while (v & I2C_UNSTUCK_ONGOING);
if (v & I2C_UNSTUCK_ERROR) {
VERBOSE("failed - soft reset i2c\n");
ret = -EPERM;
} else {
VERBOSE("ok\n");
i2c_init(base);
ret = -EAGAIN;
}
return ret;
}
#else
static int mentor_i2c_unstuck(int ret)
{
VERBOSE("Cannot \"unstuck i2c\" - soft reset i2c\n");
return -EPERM;
}
#endif
/*
* API Functions
*/
void i2c_init(void *i2c_base)
{
/* For I2C speed and slave address, now we do not set them since
* we just provide the working speed and slave address otherwhere
* for i2c_init
*/
base = (struct mentor_i2c_regs *)i2c_base;
/* Reset the I2C logic */
mmio_write_32((uintptr_t)&base->soft_reset, 0);
udelay(200);
mentor_i2c_bus_speed_set(CONFIG_SYS_I2C_SPEED);
/* Enable the I2C and slave */
mmio_write_32((uintptr_t)&base->control,
I2C_CONTROL_TWSIEN | I2C_CONTROL_ACK);
/* set the I2C slave address */
mmio_write_32((uintptr_t)&base->xtnd_slave_addr, 0);
mmio_write_32((uintptr_t)&base->slave_address, CONFIG_SYS_I2C_SLAVE);
/* unmask I2C interrupt */
mmio_write_32((uintptr_t)&base->control,
mmio_read_32((uintptr_t)&base->control) |
I2C_CONTROL_INTEN);
udelay(10);
}
/*
* i2c_read: - Read multiple bytes from an i2c device
*
* The higher level routines take into account that this function is only
* called with len < page length of the device (see configuration file)
*
* @chip: address of the chip which is to be read
* @addr: i2c data address within the chip
* @alen: length of the i2c data address (1..2 bytes)
* @buffer: where to write the data
* @len: how much byte do we want to read
* @return: 0 in case of success
*/
int i2c_read(uint8_t chip, uint32_t addr, int alen, uint8_t *buffer, int len)
{
int ret = 0;
uint32_t counter = 0;
#ifdef DEBUG_I2C
mentor_i2c_probe(chip);
#endif
do {
if (ret != -EAGAIN && ret) {
ERROR("i2c transaction failed, after %d retries\n",
counter);
mentor_i2c_stop_bit_set();
return ret;
}
/* wait for 1 us for the interrupt clear to take effect */
if (counter > 0)
udelay(1);
counter++;
ret = mentor_i2c_start_bit_set();
if (ret) {
ret = mentor_i2c_unstuck(ret);
continue;
}
/* if EEPROM device */
if (alen != 0) {
ret = mentor_i2c_address_set(chip, I2C_CMD_WRITE);
if (ret)
continue;
ret = mentor_i2c_target_offset_set(chip, addr, alen);
if (ret)
continue;
ret = mentor_i2c_start_bit_set();
if (ret)
continue;
}
ret = mentor_i2c_address_set(chip, I2C_CMD_READ);
if (ret)
continue;
ret = mentor_i2c_data_receive(buffer, len);
if (ret)
continue;
ret = mentor_i2c_stop_bit_set();
} while ((ret == -EAGAIN) && (counter < I2C_MAX_RETRY_CNT));
if (counter == I2C_MAX_RETRY_CNT) {
ERROR("I2C transactions failed, got EAGAIN %d times\n",
I2C_MAX_RETRY_CNT);
ret = -EPERM;
}
mmio_write_32((uintptr_t)&base->control,
mmio_read_32((uintptr_t)&base->control) |
I2C_CONTROL_ACK);
udelay(1);
return ret;
}
/*
* i2c_write: - Write multiple bytes to an i2c device
*
* The higher level routines take into account that this function is only
* called with len < page length of the device (see configuration file)
*
* @chip: address of the chip which is to be written
* @addr: i2c data address within the chip
* @alen: length of the i2c data address (1..2 bytes)
* @buffer: where to find the data to be written
* @len: how much byte do we want to read
* @return: 0 in case of success
*/
int i2c_write(uint8_t chip, uint32_t addr, int alen, uint8_t *buffer, int len)
{
int ret = 0;
uint32_t counter = 0;
do {
if (ret != -EAGAIN && ret) {
ERROR("i2c transaction failed\n");
mentor_i2c_stop_bit_set();
return ret;
}
/* wait for 1 us for the interrupt clear to take effect */
if (counter > 0)
udelay(1);
counter++;
ret = mentor_i2c_start_bit_set();
if (ret) {
ret = mentor_i2c_unstuck(ret);
continue;
}
ret = mentor_i2c_address_set(chip, I2C_CMD_WRITE);
if (ret)
continue;
/* if EEPROM device */
if (alen != 0) {
ret = mentor_i2c_target_offset_set(chip, addr, alen);
if (ret)
continue;
}
ret = mentor_i2c_data_transmit(buffer, len);
if (ret)
continue;
ret = mentor_i2c_stop_bit_set();
} while ((ret == -EAGAIN) && (counter < I2C_MAX_RETRY_CNT));
if (counter == I2C_MAX_RETRY_CNT) {
ERROR("I2C transactions failed, got EAGAIN %d times\n",
I2C_MAX_RETRY_CNT);
ret = -EPERM;
}
udelay(1);
return ret;
}