arm-trusted-firmware/drivers/marvell/gwin.c
Antonio Nino Diaz 09d40e0e08 Sanitise includes across codebase
Enforce full include path for includes. Deprecate old paths.

The following folders inside include/lib have been left unchanged:

- include/lib/cpus/${ARCH}
- include/lib/el3_runtime/${ARCH}

The reason for this change is that having a global namespace for
includes isn't a good idea. It defeats one of the advantages of having
folders and it introduces problems that are sometimes subtle (because
you may not know the header you are actually including if there are two
of them).

For example, this patch had to be created because two headers were
called the same way: e0ea0928d5 ("Fix gpio includes of mt8173 platform
to avoid collision."). More recently, this patch has had similar
problems: 46f9b2c3a2 ("drivers: add tzc380 support").

This problem was introduced in commit 4ecca33988 ("Move include and
source files to logical locations"). At that time, there weren't too
many headers so it wasn't a real issue. However, time has shown that
this creates problems.

Platforms that want to preserve the way they include headers may add the
removed paths to PLAT_INCLUDES, but this is discouraged.

Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2019-01-04 10:43:17 +00:00

228 lines
6.1 KiB
C

/*
* Copyright (C) 2018 Marvell International Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
* https://spdx.org/licenses
*/
/* GWIN unit device driver for Marvell AP810 SoC */
#include <common/debug.h>
#include <drivers/marvell/gwin.h>
#include <lib/mmio.h>
#include <armada_common.h>
#include <mvebu.h>
#include <mvebu_def.h>
#if LOG_LEVEL >= LOG_LEVEL_INFO
#define DEBUG_ADDR_MAP
#endif
/* common defines */
#define WIN_ENABLE_BIT (0x1)
#define WIN_TARGET_MASK (0xF)
#define WIN_TARGET_SHIFT (0x8)
#define WIN_TARGET(tgt) (((tgt) & WIN_TARGET_MASK) \
<< WIN_TARGET_SHIFT)
/* Bits[43:26] of the physical address are the window base,
* which is aligned to 64MB
*/
#define ADDRESS_RSHIFT (26)
#define ADDRESS_LSHIFT (10)
#define GWIN_ALIGNMENT_64M (0x4000000)
/* AP registers */
#define GWIN_CR_OFFSET(ap, win) (MVEBU_GWIN_BASE(ap) + 0x0 + \
(0x10 * (win)))
#define GWIN_ALR_OFFSET(ap, win) (MVEBU_GWIN_BASE(ap) + 0x8 + \
(0x10 * (win)))
#define GWIN_AHR_OFFSET(ap, win) (MVEBU_GWIN_BASE(ap) + 0xc + \
(0x10 * (win)))
#define CCU_GRU_CR_OFFSET(ap) (MVEBU_CCU_GRU_BASE(ap))
#define CCR_GRU_CR_GWIN_MBYPASS (1 << 1)
static void gwin_check(struct addr_map_win *win)
{
/* The base is always 64M aligned */
if (IS_NOT_ALIGN(win->base_addr, GWIN_ALIGNMENT_64M)) {
win->base_addr &= ~(GWIN_ALIGNMENT_64M - 1);
NOTICE("%s: Align the base address to 0x%llx\n",
__func__, win->base_addr);
}
/* size parameter validity check */
if (IS_NOT_ALIGN(win->win_size, GWIN_ALIGNMENT_64M)) {
win->win_size = ALIGN_UP(win->win_size, GWIN_ALIGNMENT_64M);
NOTICE("%s: Aligning window size to 0x%llx\n",
__func__, win->win_size);
}
}
static void gwin_enable_window(int ap_index, struct addr_map_win *win,
uint32_t win_num)
{
uint32_t alr, ahr;
uint64_t end_addr;
if ((win->target_id & WIN_TARGET_MASK) != win->target_id) {
ERROR("target ID = %d, is invalid\n", win->target_id);
return;
}
/* calculate 64bit end-address */
end_addr = (win->base_addr + win->win_size - 1);
alr = (uint32_t)((win->base_addr >> ADDRESS_RSHIFT) << ADDRESS_LSHIFT);
ahr = (uint32_t)((end_addr >> ADDRESS_RSHIFT) << ADDRESS_LSHIFT);
/* write start address and end address for GWIN */
mmio_write_32(GWIN_ALR_OFFSET(ap_index, win_num), alr);
mmio_write_32(GWIN_AHR_OFFSET(ap_index, win_num), ahr);
/* write the target ID and enable the window */
mmio_write_32(GWIN_CR_OFFSET(ap_index, win_num),
WIN_TARGET(win->target_id) | WIN_ENABLE_BIT);
}
static void gwin_disable_window(int ap_index, uint32_t win_num)
{
uint32_t win_reg;
win_reg = mmio_read_32(GWIN_CR_OFFSET(ap_index, win_num));
win_reg &= ~WIN_ENABLE_BIT;
mmio_write_32(GWIN_CR_OFFSET(ap_index, win_num), win_reg);
}
/* Insert/Remove temporary window for using the out-of reset default
* CPx base address to access the CP configuration space prior to
* the further base address update in accordance with address mapping
* design.
*
* NOTE: Use the same window array for insertion and removal of
* temporary windows.
*/
void gwin_temp_win_insert(int ap_index, struct addr_map_win *win, int size)
{
uint32_t win_id;
for (int i = 0; i < size; i++) {
win_id = MVEBU_GWIN_MAX_WINS - i - 1;
gwin_check(win);
gwin_enable_window(ap_index, win, win_id);
win++;
}
}
/*
* NOTE: Use the same window array for insertion and removal of
* temporary windows.
*/
void gwin_temp_win_remove(int ap_index, struct addr_map_win *win, int size)
{
uint32_t win_id;
for (int i = 0; i < size; i++) {
uint64_t base;
uint32_t target;
win_id = MVEBU_GWIN_MAX_WINS - i - 1;
target = mmio_read_32(GWIN_CR_OFFSET(ap_index, win_id));
target >>= WIN_TARGET_SHIFT;
target &= WIN_TARGET_MASK;
base = mmio_read_32(GWIN_ALR_OFFSET(ap_index, win_id));
base >>= ADDRESS_LSHIFT;
base <<= ADDRESS_RSHIFT;
if (win->target_id != target) {
ERROR("%s: Trying to remove bad window-%d!\n",
__func__, win_id);
continue;
}
gwin_disable_window(ap_index, win_id);
win++;
}
}
#ifdef DEBUG_ADDR_MAP
static void dump_gwin(int ap_index)
{
uint32_t win_num;
/* Dump all GWIN windows */
printf("\tbank target start end\n");
printf("\t----------------------------------------------------\n");
for (win_num = 0; win_num < MVEBU_GWIN_MAX_WINS; win_num++) {
uint32_t cr;
uint64_t alr, ahr;
cr = mmio_read_32(GWIN_CR_OFFSET(ap_index, win_num));
/* Window enabled */
if (cr & WIN_ENABLE_BIT) {
alr = mmio_read_32(GWIN_ALR_OFFSET(ap_index, win_num));
alr = (alr >> ADDRESS_LSHIFT) << ADDRESS_RSHIFT;
ahr = mmio_read_32(GWIN_AHR_OFFSET(ap_index, win_num));
ahr = (ahr >> ADDRESS_LSHIFT) << ADDRESS_RSHIFT;
printf("\tgwin %d 0x%016llx 0x%016llx\n",
(cr >> 8) & 0xF, alr, ahr);
}
}
}
#endif
int init_gwin(int ap_index)
{
struct addr_map_win *win;
uint32_t win_id;
uint32_t win_count;
uint32_t win_reg;
INFO("Initializing GWIN Address decoding\n");
/* Get the array of the windows and its size */
marvell_get_gwin_memory_map(ap_index, &win, &win_count);
if (win_count <= 0) {
INFO("no windows configurations found\n");
return 0;
}
if (win_count > MVEBU_GWIN_MAX_WINS) {
ERROR("number of windows is bigger than %d\n",
MVEBU_GWIN_MAX_WINS);
return 0;
}
/* disable all windows */
for (win_id = 0; win_id < MVEBU_GWIN_MAX_WINS; win_id++)
gwin_disable_window(ap_index, win_id);
/* enable relevant windows */
for (win_id = 0; win_id < win_count; win_id++, win++) {
gwin_check(win);
gwin_enable_window(ap_index, win, win_id);
}
/* GWIN Miss feature has not verified, therefore any access towards
* remote AP should be accompanied with proper configuration to
* GWIN registers group and therefore the GWIN Miss feature
* should be set into Bypass mode, need to make sure all GWIN regions
* are defined correctly that will assure no GWIN miss occurrance
* JIRA-AURORA2-1630
*/
INFO("Update GWIN miss bypass\n");
win_reg = mmio_read_32(CCU_GRU_CR_OFFSET(ap_index));
win_reg |= CCR_GRU_CR_GWIN_MBYPASS;
mmio_write_32(CCU_GRU_CR_OFFSET(ap_index), win_reg);
#ifdef DEBUG_ADDR_MAP
dump_gwin(ap_index);
#endif
INFO("Done GWIN Address decoding Initializing\n");
return 0;
}