mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-08 05:43:53 +00:00

Enforce full include path for includes. Deprecate old paths. The following folders inside include/lib have been left unchanged: - include/lib/cpus/${ARCH} - include/lib/el3_runtime/${ARCH} The reason for this change is that having a global namespace for includes isn't a good idea. It defeats one of the advantages of having folders and it introduces problems that are sometimes subtle (because you may not know the header you are actually including if there are two of them). For example, this patch had to be created because two headers were called the same way:e0ea0928d5
("Fix gpio includes of mt8173 platform to avoid collision."). More recently, this patch has had similar problems:46f9b2c3a2
("drivers: add tzc380 support"). This problem was introduced in commit4ecca33988
("Move include and source files to logical locations"). At that time, there weren't too many headers so it wasn't a real issue. However, time has shown that this creates problems. Platforms that want to preserve the way they include headers may add the removed paths to PLAT_INCLUDES, but this is discouraged. Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
192 lines
6.5 KiB
C
192 lines
6.5 KiB
C
/*
|
|
* Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <bl31/bl31.h>
|
|
#include <bl31/ehf.h>
|
|
#include <common/bl_common.h>
|
|
#include <common/debug.h>
|
|
#include <common/runtime_svc.h>
|
|
#include <drivers/console.h>
|
|
#include <lib/el3_runtime/context_mgmt.h>
|
|
#include <lib/pmf/pmf.h>
|
|
#include <lib/runtime_instr.h>
|
|
#include <plat/common/platform.h>
|
|
#include <services/std_svc.h>
|
|
|
|
#if ENABLE_RUNTIME_INSTRUMENTATION
|
|
PMF_REGISTER_SERVICE_SMC(rt_instr_svc, PMF_RT_INSTR_SVC_ID,
|
|
RT_INSTR_TOTAL_IDS, PMF_STORE_ENABLE)
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
* This function pointer is used to initialise the BL32 image. It's initialized
|
|
* by SPD calling bl31_register_bl32_init after setting up all things necessary
|
|
* for SP execution. In cases where both SPD and SP are absent, or when SPD
|
|
* finds it impossible to execute SP, this pointer is left as NULL
|
|
******************************************************************************/
|
|
static int32_t (*bl32_init)(void);
|
|
|
|
/*******************************************************************************
|
|
* Variable to indicate whether next image to execute after BL31 is BL33
|
|
* (non-secure & default) or BL32 (secure).
|
|
******************************************************************************/
|
|
static uint32_t next_image_type = NON_SECURE;
|
|
|
|
/*
|
|
* Implement the ARM Standard Service function to get arguments for a
|
|
* particular service.
|
|
*/
|
|
uintptr_t get_arm_std_svc_args(unsigned int svc_mask)
|
|
{
|
|
/* Setup the arguments for PSCI Library */
|
|
DEFINE_STATIC_PSCI_LIB_ARGS_V1(psci_args, bl31_warm_entrypoint);
|
|
|
|
/* PSCI is the only ARM Standard Service implemented */
|
|
assert(svc_mask == PSCI_FID_MASK);
|
|
|
|
return (uintptr_t)&psci_args;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Simple function to initialise all BL31 helper libraries.
|
|
******************************************************************************/
|
|
void __init bl31_lib_init(void)
|
|
{
|
|
cm_init();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* BL31 is responsible for setting up the runtime services for the primary cpu
|
|
* before passing control to the bootloader or an Operating System. This
|
|
* function calls runtime_svc_init() which initializes all registered runtime
|
|
* services. The run time services would setup enough context for the core to
|
|
* swtich to the next exception level. When this function returns, the core will
|
|
* switch to the programmed exception level via. an ERET.
|
|
******************************************************************************/
|
|
void bl31_main(void)
|
|
{
|
|
NOTICE("BL31: %s\n", version_string);
|
|
NOTICE("BL31: %s\n", build_message);
|
|
|
|
/* Perform platform setup in BL31 */
|
|
bl31_platform_setup();
|
|
|
|
/* Initialise helper libraries */
|
|
bl31_lib_init();
|
|
|
|
#if EL3_EXCEPTION_HANDLING
|
|
INFO("BL31: Initialising Exception Handling Framework\n");
|
|
ehf_init();
|
|
#endif
|
|
|
|
/* Initialize the runtime services e.g. psci. */
|
|
INFO("BL31: Initializing runtime services\n");
|
|
runtime_svc_init();
|
|
|
|
/*
|
|
* All the cold boot actions on the primary cpu are done. We now need to
|
|
* decide which is the next image (BL32 or BL33) and how to execute it.
|
|
* If the SPD runtime service is present, it would want to pass control
|
|
* to BL32 first in S-EL1. In that case, SPD would have registered a
|
|
* function to intialize bl32 where it takes responsibility of entering
|
|
* S-EL1 and returning control back to bl31_main. Once this is done we
|
|
* can prepare entry into BL33 as normal.
|
|
*/
|
|
|
|
/*
|
|
* If SPD had registerd an init hook, invoke it.
|
|
*/
|
|
if (bl32_init != NULL) {
|
|
INFO("BL31: Initializing BL32\n");
|
|
|
|
int32_t rc = (*bl32_init)();
|
|
|
|
if (rc == 0)
|
|
WARN("BL31: BL32 initialization failed\n");
|
|
}
|
|
/*
|
|
* We are ready to enter the next EL. Prepare entry into the image
|
|
* corresponding to the desired security state after the next ERET.
|
|
*/
|
|
bl31_prepare_next_image_entry();
|
|
|
|
console_flush();
|
|
|
|
/*
|
|
* Perform any platform specific runtime setup prior to cold boot exit
|
|
* from BL31
|
|
*/
|
|
bl31_plat_runtime_setup();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Accessor functions to help runtime services decide which image should be
|
|
* executed after BL31. This is BL33 or the non-secure bootloader image by
|
|
* default but the Secure payload dispatcher could override this by requesting
|
|
* an entry into BL32 (Secure payload) first. If it does so then it should use
|
|
* the same API to program an entry into BL33 once BL32 initialisation is
|
|
* complete.
|
|
******************************************************************************/
|
|
void bl31_set_next_image_type(uint32_t security_state)
|
|
{
|
|
assert(sec_state_is_valid(security_state));
|
|
next_image_type = security_state;
|
|
}
|
|
|
|
uint32_t bl31_get_next_image_type(void)
|
|
{
|
|
return next_image_type;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function programs EL3 registers and performs other setup to enable entry
|
|
* into the next image after BL31 at the next ERET.
|
|
******************************************************************************/
|
|
void __init bl31_prepare_next_image_entry(void)
|
|
{
|
|
entry_point_info_t *next_image_info;
|
|
uint32_t image_type;
|
|
|
|
#if CTX_INCLUDE_AARCH32_REGS
|
|
/*
|
|
* Ensure that the build flag to save AArch32 system registers in CPU
|
|
* context is not set for AArch64-only platforms.
|
|
*/
|
|
if (el_implemented(1) == EL_IMPL_A64ONLY) {
|
|
ERROR("EL1 supports AArch64-only. Please set build flag "
|
|
"CTX_INCLUDE_AARCH32_REGS = 0\n");
|
|
panic();
|
|
}
|
|
#endif
|
|
|
|
/* Determine which image to execute next */
|
|
image_type = bl31_get_next_image_type();
|
|
|
|
/* Program EL3 registers to enable entry into the next EL */
|
|
next_image_info = bl31_plat_get_next_image_ep_info(image_type);
|
|
assert(next_image_info != NULL);
|
|
assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));
|
|
|
|
INFO("BL31: Preparing for EL3 exit to %s world\n",
|
|
(image_type == SECURE) ? "secure" : "normal");
|
|
print_entry_point_info(next_image_info);
|
|
cm_init_my_context(next_image_info);
|
|
cm_prepare_el3_exit(image_type);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function initializes the pointer to BL32 init function. This is expected
|
|
* to be called by the SPD after it finishes all its initialization
|
|
******************************************************************************/
|
|
void bl31_register_bl32_init(int32_t (*func)(void))
|
|
{
|
|
bl32_init = func;
|
|
}
|