This patch uses stacks allocated in normal memory to enable the MMU early in the
warm boot path thus removing the dependency on stacks allocated in coherent
memory. Necessary cache and stack maintenance is performed when a cpu is being
powered down and up. This avoids any coherency issues that can arise from
reading speculatively fetched stale stack memory from another CPUs cache. These
changes affect the warm boot path in both BL3-1 and BL3-2.
The EL3 system registers responsible for preserving the MMU state are not saved
and restored any longer. Static values are used to program these system
registers when a cpu is powered on or resumed from suspend.
Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
Many of the interfaces internal to PSCI pass the current CPU
MPIDR_EL1 value from function to function. This is not required,
and with inline access to the system registers is less efficient
than requiring the code to read that register whenever required.
This patch remove the mpidr parameter from the affected interfaces
and reduces code in FVP BL3-1 size by 160 bytes.
Change-Id: I16120a7c6944de37232016d7e109976540775602
psci_suspend_context is an array of cache-line aligned structures
containing the single power_state integer per cpu. This array is
the only structure indexed by the aff_map_node.data integer.
This patch saves 2KB of BL3-1 memory by placing the CPU
power_state value directly in the aff_map_node structure. As a
result, this value is now never cached and the cache clean when
writing the value is no longer required.
FixesARM-software/tf-issues#195
Change-Id: Ib4c70c8f79eed295ea541e7827977a588a19ef9b
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI
and SPDs into two functions:
* The first uses entry_point_info to initialize the relevant
cpu_context for first entry into a lower exception level on a CPU
* The second populates the EL1 and EL2 system registers as needed
from the cpu_context to ensure correct entry into the lower EL
This patch alters the way that BL3-1 determines which exception level
is used when first entering EL1 or EL2 during cold boot - this is now
fully determined by the SPSR value in the entry_point_info for BL3-3,
as set up by the platform code in BL2 (or otherwise provided to BL3-1).
In the situation that EL1 (or svc mode) is selected for a processor
that supports EL2, the context management code will now configure all
essential EL2 register state to ensure correct execution of EL1. This
allows the platform code to run non-secure EL1 payloads directly
without requiring a small EL2 stub or OS loader.
Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
The crash reporting support and early initialisation of the
cpu_data allow the runtime_exception vectors to be used from
the start in BL3-1, removing the need for the additional
early_exception vectors and 2KB of code from BL3-1.
Change-Id: I5f8997dabbaafd8935a7455910b7db174a25d871
This patch prepares the per-cpu pointer cache for wider use by:
* renaming the structure to cpu_data and placing in new header
* providing accessors for this CPU, or other CPUs
* splitting the initialization of the TPIDR pointer from the
initialization of the cpu_data content
* moving the crash stack initialization to a crash stack function
* setting the TPIDR pointer very early during boot
Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
All callers of cm_get_context() pass the calling CPU MPIDR to the
function. Providing a specialised version for the current
CPU results in a reduction in code size and better readability.
The current function has been renamed to cm_get_context_by_mpidr()
and the existing name is now used for the current-CPU version.
The same treatment has been done to cm_set_context(), although
only both forms are used at present in the PSCI and TSPD code.
Change-Id: I91cb0c2f7bfcb950a045dbd9ff7595751c0c0ffb
This patch implements the register reporting when unhandled exceptions are
taken in BL3-1. Unhandled exceptions will result in a dump of registers
to the console, before halting execution by that CPU. The Crash Stack,
previously called the Exception Stack, is used for this activity.
This stack is used to preserve the CPU context and runtime stack
contents for debugging and analysis.
This also introduces the per_cpu_ptr_cache, referenced by tpidr_el3,
to provide easy access to some of BL3-1 per-cpu data structures.
Initially, this is used to provide a pointer to the Crash stack.
panic() now prints the the error file and line number in Debug mode
and prints the PC value in release mode.
The Exception Stack is renamed to Crash Stack with this patch.
The original intention of exception stack is no longer valid
since we intend to support several valid exceptions like IRQ
and FIQ in the trusted firmware context. This stack is now
utilized for dumping and reporting the system state when a
crash happens and hence the rename.
FixesARM-software/tf-issues#79 Improve reporting of unhandled exception
Change-Id: I260791dc05536b78547412d147193cdccae7811a
The current code does not always use data and instruction
barriers as required by the architecture and frequently uses
barriers excessively due to their inclusion in all of the
write_*() helper functions.
Barriers should be used explicitly in assembler or C code
when modifying processor state that requires the barriers in
order to enable review of correctness of the code.
This patch removes the barriers from the helper functions and
introduces them as necessary elsewhere in the code.
PORTING NOTE: check any port of Trusted Firmware for use of
system register helper functions for reliance on the previous
barrier behaviour and add explicit barriers as necessary.
FixesARM-software/tf-issues#92
Change-Id: Ie63e187404ff10e0bdcb39292dd9066cb84c53bf
Reduce the number of header files included from other header
files as much as possible without splitting the files. Use forward
declarations where possible. This allows removal of some unnecessary
"#ifndef __ASSEMBLY__" statements.
Also, review the .c and .S files for which header files really need
including and reorder the #include statements alphabetically.
FixesARM-software/tf-issues#31
Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
Add tag names to all unnamed structs in header files. This
allows forward declaration of structs, which is necessary to
reduce header file nesting (to be implemented in a subsequent
commit).
Also change the typedef names across the codebase to use the _t
suffix to be more conformant with the Linux coding style. The
coding style actually prefers us not to use typedefs at all but
this is considered a step too far for Trusted Firmware.
Also change the IO framework structs defintions to use typedef'd
structs to be consistent with the rest of the codebase.
Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
Move the BL function prototypes out of arch.h and into the
appropriate header files to allow more efficient header file
inclusion. Create new BL private header files where there is no
sensible existing header file.
Change-Id: I45f3e10b72b5d835254a6f25a5e47cf4cfb274c3
Make codebase consistent in its use of #include "" syntax for
user includes and #include <> syntax for system includes.
FixesARM-software/tf-issues#65
Change-Id: If2f7c4885173b1fd05ac2cde5f1c8a07000c7a33
This patch saves the 'power_state' parameter prior to suspending
a cpu and invalidates it upon its resumption. The 'affinity level'
and 'state id' fields of this parameter can be read using a set of
public and private apis. Validation of power state parameter is
introduced which checks for SBZ bits are zero.
This change also takes care of flushing the parameter from the cache
to main memory. This ensures that it is available after cpu reset
when the caches and mmu are turned off. The earlier support for
saving only the 'affinity level' field of the 'power_state' parameter
has also been reworked.
FixesARM-Software/tf-issues#26FixesARM-Software/tf-issues#130
Change-Id: Ic007ccb5e39bf01e0b67390565d3b4be33f5960a
Each ARM Trusted Firmware image should know in which EL it is running
and it should use the corresponding register directly instead of reading
currentEL and knowing which asm register to read/write
Change-Id: Ief35630190b6f07c8fbb7ba6cb20db308f002945
This patch implements ARM Standard Service as a runtime service and adds
support for call count, UID and revision information SMCs. The existing
PSCI implementation is subsumed by the Standard Service calls and all
PSCI calls are therefore dispatched by the Standard Service to the PSCI
handler.
At present, PSCI is the only specification under Standard Service. Thus
call count returns the number of PSCI calls implemented. As this is the
initial implementation, a revision number of 0.1 is returned for call
revision.
FixesARM-software/tf-issues#62
Change-Id: I6d4273f72ad6502636efa0f872e288b191a64bc1
2014-03-20 11:16:23 +00:00
Renamed from services/psci/psci_afflvl_suspend.c (Browse further)