Some FPGAs come with a GIC that has an ITS block configured. Since the
ITS sits between the distributor and redistributors, we can autodetect
that, and already adjust the GICR base address.
To also make this ITS usable, add an ITS node to our base DTB, and
remove that should we not find an ITS during the scan for the
redistributor. This allows to use the same TF-A binary for FPGA images
with or without an ITS.
Change-Id: I4c0417dec7bccdbad8cbca26fa2634950fc50a66
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
When an Arm Ltd GIC (Arm GIC-[567]00) is instantiated with one or more
ITSes, the ITS MMIO frames appear between the distributor and
redistributor addresses. This makes the beginning of the redistributor
region dependent on the existence and number of ITSes.
To support various FPGA images, with and without ITSes, probe the
addresses in question, to learn whether they accommodate an ITS or a
redistributor. This can be safely done by looking at the PIDR[01]
registers, which contain an ID code for each region, documented in the
Arm GIC TRMs.
We try to find all ITSes instantiated, and skip either two or four 64K
frames, depending on GICv4.1 support. At some point we will find the
first redistributor; this address we then update in the DTB.
Change-Id: Iefb88c2afa989e044fe0b36b7020b56538c60b07
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Up until now we relied on the GICs used in our FPGA images to be GICv3
compliant, without the "direct virtual injection" feature (aka GICv4)
enabled.
To support newer images which have GICv4 compliant GICs, enable the
newly introduced GICv4 detection code, and use that also when we adjust
the redistributor region size in the devicetree.
This allows the same BL31 image to be used with GICv3 or GICv4 FPGA
images.
Change-Id: I9f6435a6d5150983625efe3650a8b7d1ef11b1d1
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
The size of a GICv3 redistributor region depends on the number of
cores in the system. For the ARM FPGA port, we detect the topology at
runtime, and adjust the CPU DT nodes accordingly.
Now the size of the GICR region must also be adjusted, or Linux will
fail to initialise the GICv3.
Use the newly introduced function to overwrite the GICR size entry in
the GICv3 reg property. We count the number of existing cores by
iterating over the GICR frames until we find the LAST bit set in TYPER.
Change-Id: Ib69565600859de9b1b15ceb8495172cd26d16fce
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Since we use a DTB with all platform information to pass this on to a
kernel loaded as BL33, we can as well make use of it for our own
purposes.
Every DT would contain a node for the GIC(v3) interrupt controller, so
we can read the base address for the distributor and redistributors from
there.
This avoids hard coding this information in the code and allows for a more
flexible binary.
Change-Id: Ic530e223a21a45bc30a07a21048116d5af69e972
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
This initializes the GIC using the Arm GIC drivers in TF-A.
The initial FPGA image uses a GIC600 implementation, and so that its
power controller is enabled, this platform port calls the corresponding
implementation-specific routines.
Signed-off-by: Oliver Swede <oli.swede@arm.com>
Change-Id: I88d5a073eead4b653b1ca73273182cd98a95e4c5