This patch modifies GICv3 and TZC drivers to add AArch32 support.
No modifications are required for the GICv2 driver for AArch32 support.
The TZC driver assumes that the secure world is running in Little-Endian
mode to do 64 bit manipulations. Assertions are present to validate the
assumption.
Note: The legacy GICv3 driver is not supported for AArch32.
Change-Id: Id1bc75a9f5dafb9715c9500ca77b4606eb1e2458
This patch moves the various assembly console drivers
into `aarch64` architecture specific folder. Stub files,
which include files from new location, are retained at the
original location for platform compatibility reasons.
Change-Id: I0069b6c1c0489ca47f5204d4e26e3bc3def533a8
This patch fixes the offset of GICD_IROUTER register defined in gicv3.h.
Although the GICv3 documention mentions that the offset for this register
is 0x6100-0x7FD8, the offset calculation for an interrupt id `n` is :
0x6000 + 8n, where n >= 32
This requires the offset for GICD_IROUTER to be defined as 0x6000.
FixesARM-software/tf-issues#410
Change-Id: If9e91e30d946afe7f1f60fea4f065c7567093fa8
This patch reworks type usage in generic code, drivers and ARM platform files
to make it more portable. The major changes done with respect to
type usage are as listed below:
* Use uintptr_t for storing address instead of uint64_t or unsigned long.
* Review usage of unsigned long as it can no longer be assumed to be 64 bit.
* Use u_register_t for register values whose width varies depending on
whether AArch64 or AArch32.
* Use generic C types where-ever possible.
In addition to the above changes, this patch also modifies format specifiers
in print invocations so that they are AArch64/AArch32 agnostic. Only files
related to upcoming feature development have been reworked.
Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
The legacy GIC driver assumes that the SGIs and PPIs are Group0 during
initialization. This is true if the driver is the first one to initialize
the GIC hardware after reset. But in some cases, earlier BL stages could
have already initialized the GIC hardware which means that SGI and PPI
configuration are not the expected reset values causing assertion failure
in `gicd_set_ipriorityr()`. This patch explicitly resets the SGI and PPI
to Group0 prior to their initialization in the driver. The same patch is
not done in the GICv2-only driver because unlike in the legacy driver,
`gicd_set_ipriorityr()` of GICv2 driver doesn't enforce this policy and
the appropriate group is set irrespective of the initial value.
FixesARM-software/tf-issues#396
Change-Id: I521d35caa37470ce542c796c2ba99716e4763105
This patch adds the API `ccn_get_part0_id` to query the PART0 ID from the
PERIPHERAL_ID 0 register in the CCN driver. This ID allows to distinguish
the variant of CCN present on the system and possibly enable dynamic
configuration of the IP based on the variant. Also added an assert in
`ccn_master_to_rn_id_map()` to ensure that the master map bitfield provided
by the platform is within the expected interface id.
Change-Id: I92d2db7bd93a9be8a7fbe72a522cbcba0aba2d0e
Currently the `tzc400_configure_region` and `tzc_dmc500_configure_region`
functions uses uintptr_t as the data type for `region_top` and `region_base`
variables, which will be converted to 32/64 bits for AArch32/AArch64
respectively. But the expectation is to keep these addresses at least 64 bit.
This patch modifies the data types to make it at least 64 bit by using
unsigned long long instead of uintptr_t for the `region_top` and
`region_base` variables. It also modifies the associated macros
`_tzc##fn_name##_write_region_xxx` accordingly.
Change-Id: I4e3c6a8a39ad04205cf0f3bda336c3970b15a28b
The ARM CoreLink DMC-500 Dynamic Memory Controller provides the
programmable address region control of a TrustZone Address Space
Controller. The access permissions can be defined for eight
separate address regions plus a background or default region.
This patch adds a DMC-500 driver to define address regions and
program their access permissions as per ARM 100131_0000_02_en
(r0p0) document.
Change-Id: I9d33120f9480d742bcf7937e4b876f9d40c727e6
TrustZone protection can be programmed by both memory and TrustZone
address space controllers like DMC-500 and TZC-400. These peripherals
share a similar programmer's view.
Furthermore, it is possible to have multiple instances of each type of
peripheral in a system resulting in multiple programmer's views.
For example, on the TZC-400 each of the 4 filter units can be enabled
or disabled for each region. There is a single set of registers to
program the region attributes. On the DMC-500, each filter unit has its
own programmer's view resulting in multiple sets of registers to program
the region attributes. The layout of the registers is almost the same
across all these variations.
Hence the existing driver in `tzc400\tzc400.c` is refactored into the
new driver in `tzc\tzc400.c`. The previous driver file is still maintained
for compatibility and it is now deprecated.
Change-Id: Ieabd0528e244582875bc7e65029a00517671216d
The PL011 initialization function disables the UART, flushes the FIFO
and waits for the current character to be transmitted before applying
the configuration and enabling the UART. This waiting might result in
a deadlock if the FIFO is disabled while another CPU is printing a
message since the flush of FIFO will never finish.
This patch fixes the problem by removing the flush operation and the
loop for last character completion from the initialization function.
The UART is disabled, configured and enabled again.
Change-Id: I1ca0b6bd9f352c12856f10f174a9f6eaca3ab4ea
This patch adds support for the `%p` format specifier in tf_printf()
following the example of the printf implementation of the stdlib used
in the trusted firmware.
FixesARM-software/tf-issues#292
Change-Id: I0b3230c783f735d3e039be25a9405f00023420da
This patch moves the private GIC common accessors from `gic_common.h` to
a new private header file `gic_common_private.h`. This patch also adds
additional comments to GIC register accessors to highlight the fact
that some of them access register values that correspond to multiple
interrupt IDs. The convention used is that the `set`, `get` and `clr`
accessors access and modify the values corresponding to a single interrupt
ID whereas the `read` and `write` GIC register accessors access the raw
GIC registers and it could correspond to multiple interrupt IDs depending
on the register accessed.
Change-Id: I2643ecb2533f01e3d3219fcedfb5f80c120622f9
The code to set the interrupt priority for secure interrupts in the
new GICv2 and GICv3 drivers is incorrect. The setup code to configure
interrupt priorities of secure interrupts, one interrupt at a time, used
gicd_write_ipriorityr()/gicr_write_ipriority() function affecting
4 interrupts at a time. This bug did not manifest itself because all the
secure interrupts were configured to the highest secure priority(0) during
cold boot and the adjacent non secure interrupt priority would be configured
later by the normal world. This patch introduces new accessors,
gicd_set_ipriorityr() and gicr_set_ipriorityr(), for configuring priority
one interrupt at a time and fixes the the setup code to use the new
accessors.
FixesARM-software/tf-issues#344
Change-Id: I470fd74d2b7fce7058b55d83f604be05a27e1341
GICD_IPRIORITYR and GICD_ITARGETSR specifically support byte addressing
so that individual interrupt priorities can be atomically updated by
issuing a single byte write. The previous implementation of
gicd_set_ipriority() and gicd_set_itargetsr() used 32-bit register
accesses, modifying values for 4 interrupts at a time, using a
read-modify-write approach. This potentially may cause concurrent changes
by other CPUs to the adjacent interrupts to be corrupted. This patch fixes
the issue by modifying these accessors to use byte addressing.
FixesARM-software/tf-issues#343
Change-Id: Iec28b5f5074045b00dfb8d5f5339b685f9425915
Currently, `ccn_snoop_dvm_domain_common()` is responsible for providing
a bitmap of HN-F and HN-I nodes in the interconnect. There is a request
node (RN) corresponding to the master interface (e.g. cluster) that needs
to be added or removed from the snoop/DVM domain. This request node is
removed from or added to each HN-F or HN-I node present in the bitmap
depending upon the type of domain.
The above logic is incorrect when participation of a master interface in
the DVM domain has to be managed. The request node should be removed
from or added to the single Miscellaneous Node (MN) in the system
instead of each HN-I node.
This patch fixes this by removing the intermediate
`ccn_snoop_dvm_domain_common()` and instead reads the MN registers to
get the needed node Id bitmap for snoop(HN-F bitmap) and DVM(MN bitmap)
domains.
Additionally, it renames `MN_DDC_SET_OFF` to `MN_DDC_SET_OFFSET` to
be inline with other macros.
Change-Id: Id896046dd0ccc5092419e74f8ac85e31b104f7a4
The PL011 TRM (ARM DDI 0183G) specifies that the UART must be
disabled before any of the control registers are programmed. The
PL011 driver included in TF does not disable the UART, so the
initialization in BL2 and BL31 is violating this requirement
(and potentially in BL1 if the UART is enabled after reset).
This patch modifies the initialization function in the PL011
console driver to disable the UART before programming the
control registers.
Register clobber list and documentation updated.
FixesARM-software/tf-issues#300
Change-Id: I839b2d681d48b03f821ac53663a6a78e8b30a1a1
The Server Base System Architecture document (ARM-DEN-0029)
specifies a generic UART device. The programmer's view of this
generic UART is a subset of the ARM PL011 UART. However, the
current PL011 driver in Trusted Firmware uses some features
that are outside the generic UART specification.
This patch modifies the PL011 driver to exclude features outside
the SBSA generic UART specification by setting the boolean build
option 'PL011_GENERIC_UART=1'. Default value is 0 (use full
PL011 features).
User guide updated.
FixesARM-software/tf-issues#216
Change-Id: I6e0eb86f9d69569bc3980fb57e70d6da5d91a737
When resuming from system suspend the TZC needs to be
re-initialized. Hence the assertion for TZC base address
to detect re-initialization is removed.
Change-Id: I53d64146f6c919e95526441bb997f7b309c68141
This patch renames the GICv3 interrupt group macros from
INT_TYPE_G0, INT_TYPE_G1S and INT_TYPE_G1NS to INTR_GROUP0,
INTR_GROUP1S and INTR_GROUP1NS respectively.
Change-Id: I40c66f589ce6234fa42205adcd91f7d6ad8f33d4
The TZC-400 driver implementation incorrectly uses the component
ID registers to detect the TZC-400 peripheral. As all ARM
peripherals share the same component ID, it doesn't allow to
uniquely identify the TZC-400 peripheral. This patch fixes the
TZC-400 driver by relying on the `part_number_0` and
`part_number_1` fields in the `PID` registers instead.
The `tzc_read_component_id` function has been replaced by
`tzc_read_peripheral_id`, which reads the 'part_number' values
and compares them with the TZC-400 peripheral ID.
Also, it adds a debug assertion to detect when the TZC driver
initialisation function is called multiple times.
Change-Id: I35949f6501a51c0a794144cd1c3a6db62440dce6
Based on SP805 Programmer's model (ARM DDI 0270B). This driver
provides three public APIs:
void sp805_start(uintptr_t base, unsigned long ticks);
void sp805_stop(uintptr_t base);
void sp805_refresh(uintptr_t base, unsigned long ticks);
Upon start, the watchdog starts counting down from the number of
ticks specified. When the count reaches 0 an interrupt is triggered.
The watchdog restarts counting down from the number of ticks
specified. If the count reaches 0 again, the system is reset. A
mechanism to handle the interrupt has not been implemented. Instead,
the API to refresh the watchdog should be used instead to prevent a
system reset.
Change-Id: I799d53f8d1213b10b341a4a67fde6486e89a3dab
This patch adds a driver for ARM GICv2 systems, example GIC-400. Unlike
the existing GIC driver in `include/drivers/arm/arm_gic.h`, this driver
is optimised for GICv2 and does not support GICv3 systems in GICv2
compatibility mode. The driver interface has been implemented in
`drivers/arm/gic/v2/gicv2_main.c`. The corresponding header is in
`include/drivers/arm/gicv2.h`. Helper functions are implemented in
`drivers/arm/gic/v2/gicv2_helpers.c` and are accessible through the
`drivers/arm/gic/v2/gicv2_private.h` header.
Change-Id: I09fffa4e621fb99ba3c01204839894816cd89a2a
This patch adds a driver for ARM GICv3 systems that need to run software
stacks where affinity routing is enabled across all privileged exception
levels for both security states. This driver is a partial implementation
of the ARM Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069A). The driver does
not cater for legacy support of interrupts and asymmetric configurations.
The existing GIC driver has been preserved unchanged. The common code for
GICv2 and GICv3 systems has been refactored into a new file,
`drivers/arm/gic/common/gic_common.c`. The corresponding header is in
`include/drivers/arm/gic_common.h`.
The driver interface is implemented in `drivers/arm/gic/v3/gicv3_main.c`.
The corresponding header is in `include/drivers/arm/gicv3.h`. Helper
functions are implemented in `drivers/arm/gic/v3/arm_gicv3_helpers.c`
and are accessible through the `drivers/arm/gic/v3/gicv3_private.h`
header.
Change-Id: I8c3c834a1d049d05b776b4dcb76b18ccb927444a
This patch fixes a copy and paste issue that resulted in the cluster
indexes not being checked as intended. Note that this fix applies to
the deprecated CCI-400 driver, not the unified one.
Change-Id: I497132a91c236690e5eaff908f2db5c8c65e85ab
This patch adds a device driver which can be used to program the following
aspects of ARM CCN IP:
1. Specify the mapping between ACE/ACELite/ACELite+DVM/CHI master interfaces and
Request nodes.
2. Add and remove master interfaces from the snoop and dvm
domains.
3. Place the L3 cache in a given power state.
4. Configuring system adress map and enabling 3 SN striping mode of memory
controller operation.
Change-Id: I0f665c6a306938e5b66f6a92f8549b529aa8f325
From Linux 3.17 onwards, the mainline kernel has support for GICv3
systems and if EL3 exists, it only needs to initialise ICC_SRE_EL3.SRE
and ICC_SRE_EL3.Enable to 1. Hence, this patch removes the redundant
updates of ICC_SRE_EL2 and ICC_PMR_EL1.
NOTE: For partner software's which enter kernel in EL1,
ICC_SRE_EL2.Enable and ICC_SRE_EL2.SRE bit needs to be set to 1
in EL2 before jumping to linux.
Change-Id: I09ed47869351b08a3b034735f532bc677eaa6917
This patch changes the type of the base address parameter in the
ARM device driver APIs to uintptr_t (GIC, CCI, TZC400, PL011). The
uintptr_t type allows coverage of the whole memory space and to
perform arithmetic operations on the addresses. ARM platform code
has also been updated to use uintptr_t as GIC base address in the
configuration.
FixesARM-software/tf-issues#214
Change-Id: I1b87daedadcc8b63e8f113477979675e07d788f1
Add a delay timer driver for the ARM SP804 dual timer.
This driver only uses the first timer, called timer 1 in the
SP804 Technical Reference Manual (ARM DDI 0271D).
To use this driver, the BSP must provide three constants:
* The base address of the SP804 dual timer
* The clock multiplier
* The clock divider
The BSP is responsible for calling sp804_timer_init(). The SP804
driver instantiates a constant timer_ops_t and calls the generic
timer_init().
Change-Id: I49ba0a52bdf6072f403d1d0a20e305151d4bc086
Co-authored-by: Dan Handley <dan.handley@arm.com>
The ARM GIC driver treats the entire contents of the GICC_HPPIR as the interrupt
ID instead of just bits[9:0]. This could result in an SGI being treated as a
Group 1 interrupt on a GICv2 system.
This patch introduces a mask to retrieve only the ID from a read of GICC_HPPIR,
GICC_IAR and similar registers. The value read from these registers is masked
with this constant prior to use as an interrupt ID.
FixesARM-software/tf-issues#306
Change-Id: Ie3885157de33b71df9781a41f6ef015a30c4608d
Separate out the common console functionality in
`drivers/arm/pl011/pl011_console.S` into a new source file
`drivers/console/console.S`. The former includes the latter to
provide backwards compatibility for platform make files.
Also add a skeleton console implementation for platforms that do not
want to use PL011.
Change-Id: I1ff963b2b54a872fbcf1eb0700797b9e9afa2538
Region 0 is special in TZC-400. It is possible to set the access
permissions for this but not the address range or filters to which
the permissions apply. Add a function for setting the region 0
access permissions.
Also add some VERBOSE logging and allow assembly files to include
the TZC header.
Change-Id: I4389261ba10a6e5e2e43ee93d55318dc507b6648
In order for the symbol table in the ELF file to contain the size of
functions written in assembly, it is necessary to report it to the
assembler using the .size directive.
To fulfil the above requirements, this patch introduces an 'endfunc'
macro which contains the .endfunc and .size directives. It also adds
a .func directive to the 'func' assembler macro.
The .func/.endfunc have been used so the assembler can fail if
endfunc is omitted.
FixesARM-Software/tf-issues#295
Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc
Signed-off-by: Kévin Petit <kevin.petit@arm.com>
On a GICv2 system, the group status of PPIs and SGIs is set in the GICD_IGROUPR0
register. On a GICv3 system, if affinity routing is enabled for the non-secure
state, then the group status of PPIs and SGIs should be set in the GICR_IGROUPR0
register. ARM Trusted firmware sets the group status using the GICv2
sequence. On a GICv3 system, if the group status of an interrupt is set to Group
1 through a write to the GICD_IGROUPR0, then the GICR_IGROUPR0 is updated as
well.
The current sequence is incorrect since it first marks all PPIs and SGIs as
Group 1. It then clears the bits in GICD_IGROUPR0 corresponding to secure
interrupts to set their group status to Group 0. This operation is a no-op. It
leaves the secure generic timer interrupt (#29) used by the TSP marked as Group
1. This causes the interrupt to interfere with the execution of non-secure
software. Once an interrupt has been marked as Group 1, the GICR_IGROUPR0 should
be programmed to change its group status.
This patch rectifies this issue by setting the group status of only the
non-secure PPI and SGIs to Group 1 in the first place. GICD_IGROUPR0 resets to
0. So secure interrupts are marked as Group 0 by default.
Change-Id: I958b4b15f3e2b2444ce4c17764def36216498d00
Even though both CCI-400 and CCI-500 IPs have different configurations
with respect to the number and types of supported interfaces, their
register offsets and programming sequences are similar. This patch
creates a common driver for enabling and disabling snoop transactions
and DVMs with both the IPs.
New platform ports which implement one of these IPs should use this
common driver. Existing platform ports which implement CCI-400 should
migrate to the common driver as the standalone CCI-400 will be
deprecated in the future.
Change-Id: I3ccd0eb7b062922d2e4a374ff8c21e79fa357556
This patch introduces several improvements to the ARM GIC driver:
* In function gicd_set_itargetsr(), target CPU is specified using
the same bit mask detailed in the GICD_ITARGETSRn register instead
of the CPU linear ID, removing the dependency between bit position
and linear ID in the platform porting. The current CPU bit mask
may be obtained by reading GICD_ITARGETSR0.
* PPIs and SGIs are initialized in arm_gic_pcpu_distif_setup().
SPIs are initialized in arm_gic_distif_setup().
* By default, non secure interrupts are assigned the maximum
priority allowed to a non secure interrupt (defined by
GIC_HIGHEST_NS_PRIORITY).
* GICR base address is allowed to be NULL for GICv1 and GICv2.
Change-Id: Ie2837fe860d43b2282e582dfdb13c39c6186f232
This patch configures the TrustZone Controller in Juno to split
the 2GB DDR-DRAM memory at 0x80000000 into Secure and Non-Secure
regions:
- Secure DDR-DRAM: top 16 MB, except for the last 2 MB which are
used by the SCP for DDR retraining
- Non-Secure DDR-DRAM: remaining DRAM starting at base address
Build option PLAT_TSP_LOCATION selects the location of the secure
payload (BL3-2):
- 'tsram' : Trusted SRAM (default option)
- 'dram' : Secure region in the DDR-DRAM (set by the TrustZone
controller)
The MMU memory map has been updated to give BL2 permission to load
BL3-2 into the DDR-DRAM secure region.
FixesARM-software/tf-issues#233
Change-Id: I6843fc32ef90aadd3ea6ac4c7f314f8ecbd5d07b
The TZC-400 driver previously allowed the possibility of multiple
controller instances to be present in the same executable. This
was unnecessary since there will only ever be one instance.
This change simplifies the tzc_init() function to only take the
base address argument needed by implementation, conforming to the
driver initialization model of other drivers. It also hides some
of the implementation details that were previously exposed by the
API.
The FVP port has been updated accordingly.
THIS CHANGE REQUIRES ALL PLATFORM PORTS THAT USE THE TZC-400
DRIVER TO BE UPDATED
FixesARM-software/tf-issues#181
Change-Id: I7b721edf947064989958d8f457d6462d92e742c8
* Create cci_init() function in CCI-400 driver to allow platform
to provide arguments needed by the driver (i.e. base address
and cluster indices for the ACE slave interfaces).
* Rename cci_(en|dis)able_coherency to
cci_(en|dis)able_cluster_coherency to make it clear that
the driver only enables/disables the coherency of CPU
clusters and not other devices connected to the CCI-400.
* Update FVP port to use new cci_init() function and remove
unnecessary CCI defintions from platform_def.h. Also rename
fvp_cci_setup() to fvp_cci_enable() to more clearly
differentiate between CCI initialization and enabling.
THIS CHANGE REQUIRES PLATFORM PORTS THAT USE THE CCI-400 DRIVER
TO BE UPDATED
FixesARM-software/tf-issues#168
Change-Id: I1946a51409b91217b92285b6375082619f607fec
Assert a valid security state using the macro sec_state_is_valid().
Replace assert() with panic() in those cases that might arise
because of runtime errors and not programming errors.
Replace panic() with assert() in those cases that might arise
because of programming errors.
FixesARM-software/tf-issues#96
Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
This patch adds baud rate and UART clock frequency as parameters
to the pl011 driver api console_init(). This allows each platform
to specify UART clock and baud rate according to their specific
hardware implementation.
FixesARM-software/tf-issues#215
Change-Id: Id13eef70a1c530e709b34dd1e6eb84db0797ced2