mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-24 22:05:40 +00:00
feat(stm32mp1): add a stm32mp crypto library
Add the crypto library for STM32MP1 to use STM32 hardware accelerators. Change-Id: I0bbb941001242a6fdc47514ab3efe07b12249285 Signed-off-by: Nicolas Toromanoff <nicolas.toromanoff@st.com> Signed-off-by: Lionel Debieve <lionel.debieve@foss.st.com>
This commit is contained in:
parent
af8dee20d5
commit
ad3e46a35c
2 changed files with 668 additions and 0 deletions
plat/st
661
plat/st/common/stm32mp_crypto_lib.c
Normal file
661
plat/st/common/stm32mp_crypto_lib.c
Normal file
|
@ -0,0 +1,661 @@
|
|||
/*
|
||||
* Copyright (c) 2022, STMicroelectronics - All Rights Reserved
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <endian.h>
|
||||
#include <errno.h>
|
||||
|
||||
#include <common/debug.h>
|
||||
#include <drivers/auth/crypto_mod.h>
|
||||
#include <drivers/io/io_storage.h>
|
||||
#include <drivers/st/bsec.h>
|
||||
#include <drivers/st/stm32_hash.h>
|
||||
#include <drivers/st/stm32_pka.h>
|
||||
#include <drivers/st/stm32_rng.h>
|
||||
#include <drivers/st/stm32_saes.h>
|
||||
#include <lib/xlat_tables/xlat_tables_v2.h>
|
||||
#include <mbedtls/asn1.h>
|
||||
#include <mbedtls/md.h>
|
||||
#include <mbedtls/oid.h>
|
||||
#include <mbedtls/platform.h>
|
||||
#include <mbedtls/x509.h>
|
||||
#include <plat/common/platform.h>
|
||||
#include <tools_share/firmware_encrypted.h>
|
||||
|
||||
#include <platform_def.h>
|
||||
|
||||
#define CRYPTO_HASH_MAX_SIZE 32U
|
||||
#define CRYPTO_SIGN_MAX_SIZE 64U
|
||||
#define CRYPTO_PUBKEY_MAX_SIZE 64U
|
||||
#define CRYPTO_MAX_TAG_SIZE 16U
|
||||
|
||||
/* brainpoolP256t1 OID is not defined in mbedTLS */
|
||||
#define OID_EC_GRP_BP256T1 MBEDTLS_OID_EC_BRAINPOOL_V1 "\x08"
|
||||
|
||||
#if STM32MP_CRYPTO_ROM_LIB
|
||||
struct stm32mp_auth_ops {
|
||||
uint32_t (*verify_signature)(uint8_t *hash_in, uint8_t *pubkey_in,
|
||||
uint8_t *signature, uint32_t ecc_algo);
|
||||
};
|
||||
|
||||
static struct stm32mp_auth_ops auth_ops;
|
||||
#endif
|
||||
|
||||
static void crypto_lib_init(void)
|
||||
{
|
||||
boot_api_context_t *boot_context __maybe_unused;
|
||||
int ret;
|
||||
|
||||
NOTICE("TRUSTED_BOARD_BOOT support enabled\n");
|
||||
|
||||
ret = stm32_hash_register();
|
||||
if (ret != 0) {
|
||||
ERROR("HASH init (%d)\n", ret);
|
||||
panic();
|
||||
}
|
||||
|
||||
if (stm32mp_is_closed_device() || stm32mp_is_auth_supported()) {
|
||||
#if STM32MP_CRYPTO_ROM_LIB
|
||||
boot_context = (boot_api_context_t *)stm32mp_get_boot_ctx_address();
|
||||
auth_ops.verify_signature = boot_context->bootrom_ecdsa_verify_signature;
|
||||
#else
|
||||
/* Use hardware peripherals */
|
||||
if (stm32_rng_init() != 0) {
|
||||
panic();
|
||||
}
|
||||
|
||||
if (stm32_saes_driver_init() != 0) {
|
||||
panic();
|
||||
}
|
||||
|
||||
if (stm32_pka_init() != 0) {
|
||||
panic();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
int get_plain_pk_from_asn1(void *pk_ptr, unsigned int pk_len, void **plain_pk,
|
||||
unsigned int *len, int *pk_alg)
|
||||
{
|
||||
int ret;
|
||||
mbedtls_pk_context mbedtls_pk = {0};
|
||||
unsigned char *p, *end;
|
||||
mbedtls_asn1_buf alg_params = {0};
|
||||
mbedtls_asn1_buf alg_oid = {0};
|
||||
|
||||
*plain_pk = NULL;
|
||||
*len = 0U;
|
||||
|
||||
/* Parse the public key */
|
||||
mbedtls_pk_init(&mbedtls_pk);
|
||||
p = (unsigned char *)pk_ptr;
|
||||
end = (unsigned char *)(p + pk_len);
|
||||
|
||||
ret = mbedtls_asn1_get_tag(&p, end, len,
|
||||
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE);
|
||||
if (ret != 0) {
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
end = p + *len;
|
||||
ret = mbedtls_asn1_get_alg(&p, end, &alg_oid, &alg_params);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (pk_alg != NULL) {
|
||||
if ((strlen(MBEDTLS_OID_EC_GRP_SECP256R1) == alg_params.len) &&
|
||||
(memcmp(MBEDTLS_OID_EC_GRP_SECP256R1, alg_params.p, alg_params.len) == 0)) {
|
||||
*pk_alg = BOOT_API_ECDSA_ALGO_TYPE_P256NIST;
|
||||
} else if ((strlen(OID_EC_GRP_BP256T1) == alg_params.len) &&
|
||||
(memcmp(OID_EC_GRP_BP256T1, alg_params.p, alg_params.len) == 0)) {
|
||||
*pk_alg = BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256;
|
||||
} else {
|
||||
ERROR("%s: Algorithm is not supported\n", __func__);
|
||||
return -EINVAL;
|
||||
}
|
||||
}
|
||||
|
||||
ret = mbedtls_asn1_get_bitstring_null(&p, end, len);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* We remove the ident (0x04) first byte. */
|
||||
if ((*len < 1U) || (p[0] != MBEDTLS_ASN1_OCTET_STRING)) {
|
||||
VERBOSE("%s: not expected len or tag\n", __func__);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
*len = *len - 1U;
|
||||
*plain_pk = p + 1U;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if STM32MP_CRYPTO_ROM_LIB
|
||||
uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in,
|
||||
uint8_t *signature, uint32_t ecc_algo)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = mmap_add_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_BASE,
|
||||
STM32MP_ROM_SIZE_2MB_ALIGNED, MT_CODE | MT_SECURE);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: mmap_add_dynamic_region (%d)\n", __func__, ret);
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
ret = auth_ops.verify_signature(hash_in, pubkey_in, signature, ecc_algo);
|
||||
|
||||
if (ret != BOOT_API_RETURN_OK) {
|
||||
VERBOSE("%s: auth_ops.verify_sign (%d)\n", __func__, ret);
|
||||
ret = CRYPTO_ERR_SIGNATURE;
|
||||
} else {
|
||||
ret = 0;
|
||||
}
|
||||
|
||||
mmap_remove_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_SIZE_2MB_ALIGNED);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int plat_convert_pk(void *full_pk_ptr, unsigned int full_pk_len,
|
||||
void **hashed_pk_ptr, unsigned int *hashed_pk_len)
|
||||
{
|
||||
return get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, hashed_pk_ptr, hashed_pk_len, NULL);
|
||||
}
|
||||
#else /* STM32MP_CRYPTO_ROM_LIB*/
|
||||
static uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in,
|
||||
uint8_t *signature, uint32_t ecc_algo)
|
||||
{
|
||||
int ret = -1;
|
||||
enum stm32_pka_ecdsa_curve_id cid;
|
||||
|
||||
switch (ecc_algo) {
|
||||
case BOOT_API_ECDSA_ALGO_TYPE_P256NIST:
|
||||
#if PKA_USE_NIST_P256
|
||||
cid = PKA_NIST_P256;
|
||||
ret = 0;
|
||||
#else
|
||||
WARN("%s nist_p256 requested but not included\n", __func__);
|
||||
#endif
|
||||
break;
|
||||
case BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256:
|
||||
#if PKA_USE_BRAINPOOL_P256T1
|
||||
cid = PKA_BRAINPOOL_P256T1;
|
||||
ret = 0;
|
||||
#else
|
||||
WARN("%s brainpool_p256t1 requested but not included\n", __func__);
|
||||
#endif
|
||||
break;
|
||||
default:
|
||||
WARN("%s unexpected ecc_algo(%u)\n", __func__, ecc_algo);
|
||||
break;
|
||||
}
|
||||
|
||||
if (ret < 0) {
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
ret = stm32_pka_ecdsa_verif(hash_in,
|
||||
BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES,
|
||||
signature, BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U,
|
||||
signature + BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U,
|
||||
BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U,
|
||||
pubkey_in, BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U,
|
||||
pubkey_in + BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U,
|
||||
BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U, cid);
|
||||
if (ret < 0) {
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int plat_convert_pk(void *full_pk_ptr, unsigned int full_pk_len,
|
||||
void **hashed_pk_ptr, unsigned int *hashed_pk_len)
|
||||
{
|
||||
static uint8_t st_pk[CRYPTO_PUBKEY_MAX_SIZE + sizeof(uint32_t)];
|
||||
int ret;
|
||||
void *plain_pk;
|
||||
unsigned int len;
|
||||
int curve_id;
|
||||
uint32_t cid;
|
||||
|
||||
ret = get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, &plain_pk, &len, &curve_id);
|
||||
if ((ret != 0) || (len > CRYPTO_PUBKEY_MAX_SIZE)) {
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
cid = curve_id; /* we want value of curve_id (1 or 2) in a uint32_t */
|
||||
|
||||
memcpy(st_pk, &cid, sizeof(cid));
|
||||
memcpy(st_pk + sizeof(cid), plain_pk, len);
|
||||
|
||||
*hashed_pk_ptr = st_pk;
|
||||
*hashed_pk_len = len + sizeof(cid);
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif /* STM32MP_CRYPTO_ROM_LIB */
|
||||
|
||||
static int get_plain_digest_from_asn1(void *digest_ptr, unsigned int digest_len,
|
||||
uint8_t **out, size_t *out_len, mbedtls_md_type_t *md_alg)
|
||||
{
|
||||
int ret;
|
||||
mbedtls_asn1_buf hash_oid, params;
|
||||
size_t len;
|
||||
unsigned char *p, *end;
|
||||
|
||||
*out = NULL;
|
||||
*out_len = 0U;
|
||||
|
||||
/* Digest info should be an MBEDTLS_ASN1_SEQUENCE */
|
||||
p = (unsigned char *)digest_ptr;
|
||||
end = p + digest_len;
|
||||
ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED |
|
||||
MBEDTLS_ASN1_SEQUENCE);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Get the hash algorithm */
|
||||
ret = mbedtls_asn1_get_alg(&p, end, &hash_oid, ¶ms);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = mbedtls_oid_get_md_alg(&hash_oid, md_alg);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Length of hash must match the algorithm's size */
|
||||
if (len != BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
*out = p;
|
||||
*out_len = len;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int crypto_verify_signature(void *data_ptr, unsigned int data_len,
|
||||
void *sig_ptr, unsigned int sig_len,
|
||||
void *sig_alg, unsigned int sig_alg_len,
|
||||
void *pk_ptr, unsigned int pk_len)
|
||||
{
|
||||
uint8_t image_hash[CRYPTO_HASH_MAX_SIZE] = {0};
|
||||
uint8_t sig[CRYPTO_SIGN_MAX_SIZE];
|
||||
uint8_t my_pk[CRYPTO_PUBKEY_MAX_SIZE];
|
||||
int ret;
|
||||
size_t len;
|
||||
mbedtls_asn1_sequence seq;
|
||||
mbedtls_asn1_sequence *cur;
|
||||
unsigned char *p, *end;
|
||||
int curve_id;
|
||||
mbedtls_asn1_buf sig_oid, sig_params;
|
||||
mbedtls_md_type_t md_alg;
|
||||
mbedtls_pk_type_t pk_alg;
|
||||
size_t bignum_len = sizeof(sig) / 2U;
|
||||
unsigned int seq_num = 0U;
|
||||
|
||||
if (!stm32mp_is_closed_device() && !stm32mp_is_auth_supported()) {
|
||||
return CRYPTO_SUCCESS;
|
||||
}
|
||||
|
||||
/* Get pointers to signature OID and parameters */
|
||||
p = (unsigned char *)sig_alg;
|
||||
end = (unsigned char *)(p + sig_alg_len);
|
||||
ret = mbedtls_asn1_get_alg(&p, end, &sig_oid, &sig_params);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret);
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
/* Get the actual signature algorithm (MD + PK) */
|
||||
ret = mbedtls_oid_get_sig_alg(&sig_oid, &md_alg, &pk_alg);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: mbedtls_oid_get_sig_alg (%d)\n", __func__, ret);
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
if ((md_alg != MBEDTLS_MD_SHA256) || (pk_alg != MBEDTLS_PK_ECDSA)) {
|
||||
VERBOSE("%s: md_alg=%u pk_alg=%u\n", __func__, md_alg, pk_alg);
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
ret = get_plain_pk_from_asn1(pk_ptr, pk_len, &pk_ptr, &pk_len, &curve_id);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: get_plain_pk_from_asn1 (%d)\n", __func__, ret);
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
/* We expect a known pk_len */
|
||||
if (pk_len != sizeof(my_pk)) {
|
||||
VERBOSE("%s: pk_len=%u sizeof(my_pk)=%zu)\n", __func__, pk_len, sizeof(my_pk));
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
/* Need to copy as auth_ops.verify_signature
|
||||
* expects aligned public key.
|
||||
*/
|
||||
memcpy(my_pk, pk_ptr, sizeof(my_pk));
|
||||
|
||||
/* Get the signature (bitstring) */
|
||||
p = (unsigned char *)sig_ptr;
|
||||
end = (unsigned char *)(p + sig_len);
|
||||
ret = mbedtls_asn1_get_bitstring_null(&p, end, &len);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret);
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
/* Get r and s from sequence */
|
||||
ret = mbedtls_asn1_get_sequence_of(&p, end, &seq, MBEDTLS_ASN1_INTEGER);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: mbedtls_asn1_get_sequence_of (%d)\n", __func__, ret);
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
/* We expect only 2 integers (r and s) from the sequence */
|
||||
if (seq.next->next != NULL) {
|
||||
cur = seq.next;
|
||||
mbedtls_asn1_sequence *next;
|
||||
|
||||
VERBOSE("%s: nb seq != 2\n", __func__);
|
||||
/* Free all the sequences */
|
||||
while (cur != NULL) {
|
||||
next = cur->next;
|
||||
mbedtls_free(cur);
|
||||
cur = next;
|
||||
}
|
||||
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
/*
|
||||
* ECDSA signatures are composed of a tuple (R,S) where R and S are between 0 and n.
|
||||
* This means that the R and S can have a maximum of 32 each, but can also be smaller.
|
||||
* Also seen the integer sequence may (sometime) start with 0x00 as MSB, but we can only
|
||||
* manage exactly 2*32 bytes, we remove this higher byte if there are not 00,
|
||||
* we will fail either.
|
||||
*/
|
||||
cur = &seq;
|
||||
memset(sig, 0U, sizeof(sig));
|
||||
|
||||
while (cur != NULL) {
|
||||
size_t skip = 0U;
|
||||
size_t seek = seq_num * bignum_len;
|
||||
|
||||
if (cur->buf.len > bignum_len) {
|
||||
/* Remove extra 0x00 bytes */
|
||||
skip = cur->buf.len - bignum_len;
|
||||
} else if (cur->buf.len < bignum_len) {
|
||||
/* Add padding to match HW required size */
|
||||
seek += (bignum_len % cur->buf.len);
|
||||
}
|
||||
|
||||
if (seek + cur->buf.len > sizeof(sig) + skip) {
|
||||
panic();
|
||||
}
|
||||
|
||||
memcpy(sig + seek, cur->buf.p + skip, cur->buf.len - skip);
|
||||
cur = cur->next;
|
||||
seq_num++;
|
||||
}
|
||||
|
||||
/* Need to free allocated 'next' in mbedtls_asn1_get_sequence_of */
|
||||
mbedtls_free(seq.next);
|
||||
|
||||
/* Compute hash for the data covered by the signature */
|
||||
stm32_hash_init(HASH_SHA256);
|
||||
|
||||
ret = stm32_hash_final_update((uint8_t *)data_ptr, data_len, image_hash);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: stm32_hash_final_update (%d)\n", __func__, ret);
|
||||
return CRYPTO_ERR_SIGNATURE;
|
||||
}
|
||||
|
||||
return verify_signature(image_hash, my_pk, sig, curve_id);
|
||||
}
|
||||
|
||||
static int crypto_verify_hash(void *data_ptr, unsigned int data_len,
|
||||
void *digest_info_ptr,
|
||||
unsigned int digest_info_len)
|
||||
{
|
||||
int ret;
|
||||
uint8_t calc_hash[BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES];
|
||||
unsigned char *p;
|
||||
mbedtls_md_type_t md_alg;
|
||||
size_t len;
|
||||
|
||||
/* we receive an asn1 encapsulated digest, we flatten it */
|
||||
ret = get_plain_digest_from_asn1(digest_info_ptr,
|
||||
digest_info_len, &p, &len,
|
||||
&md_alg);
|
||||
if ((ret != 0) || (md_alg != MBEDTLS_MD_SHA256) || (len != sizeof(calc_hash))) {
|
||||
return CRYPTO_ERR_HASH;
|
||||
}
|
||||
|
||||
digest_info_ptr = p;
|
||||
digest_info_len = len;
|
||||
|
||||
stm32_hash_init(HASH_SHA256);
|
||||
|
||||
ret = stm32_hash_final_update(data_ptr, data_len, calc_hash);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: hash failed\n", __func__);
|
||||
return CRYPTO_ERR_HASH;
|
||||
}
|
||||
|
||||
ret = memcmp(calc_hash, digest_info_ptr, digest_info_len);
|
||||
if (ret != 0) {
|
||||
VERBOSE("%s: not expected digest\n", __func__);
|
||||
ret = CRYPTO_ERR_HASH;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if !defined(DECRYPTION_SUPPORT_none)
|
||||
static int derive_key(uint8_t *key, size_t *key_len, size_t len,
|
||||
unsigned int *flags, const uint8_t *img_id, size_t img_id_len)
|
||||
{
|
||||
size_t i, j;
|
||||
|
||||
assert(*key_len >= 32U);
|
||||
|
||||
/*
|
||||
* Not a real derivation yet
|
||||
*
|
||||
* But we expect a 32 bytes key, and OTP is only 16 bytes
|
||||
* => duplicate.
|
||||
*/
|
||||
for (i = 0U, j = len; j < 32U;
|
||||
i += sizeof(uint32_t), j += sizeof(uint32_t)) {
|
||||
memcpy(key + j, key + i, sizeof(uint32_t));
|
||||
}
|
||||
|
||||
*key_len = 32U;
|
||||
/* Variable 'key' store a real key */
|
||||
*flags = 0U;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int plat_get_enc_key_info(enum fw_enc_status_t fw_enc_status, uint8_t *key,
|
||||
size_t *key_len, unsigned int *flags,
|
||||
const uint8_t *img_id, size_t img_id_len)
|
||||
{
|
||||
uint32_t otp_idx;
|
||||
uint32_t otp_len;
|
||||
size_t read_len;
|
||||
size_t i;
|
||||
|
||||
if (fw_enc_status == FW_ENC_WITH_BSSK) {
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (stm32_get_otp_index(ENCKEY_OTP, &otp_idx, &otp_len) != 0) {
|
||||
VERBOSE("%s: get %s index error\n", __func__, ENCKEY_OTP);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (otp_len > (*key_len * CHAR_BIT)) {
|
||||
VERBOSE("%s: length Error otp_len=%u key_len=%u\n", __func__,
|
||||
otp_len, *key_len * CHAR_BIT);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
read_len = otp_len / CHAR_BIT;
|
||||
assert(read_len % sizeof(uint32_t) == 0);
|
||||
|
||||
for (i = 0U; i < read_len / sizeof(uint32_t); i++) {
|
||||
uint32_t tmp;
|
||||
uint32_t otp_val;
|
||||
|
||||
if (stm32_get_otp_value_from_idx(otp_idx + i, &otp_val) != 0) {
|
||||
zeromem(key, *key_len);
|
||||
VERBOSE("%s: unable to read from otp\n", __func__);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
tmp = bswap32(otp_val);
|
||||
memcpy(key + i * sizeof(uint32_t), &tmp, sizeof(tmp));
|
||||
}
|
||||
|
||||
/* Now we have the OTP values in key till read_len */
|
||||
|
||||
if (derive_key(key, key_len, read_len, flags, img_id,
|
||||
img_id_len) != 0) {
|
||||
zeromem(key, *key_len);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static enum stm32_saes_key_selection select_key(unsigned int key_flags)
|
||||
{
|
||||
if ((key_flags & ENC_KEY_IS_IDENTIFIER) != 0U) {
|
||||
panic();
|
||||
}
|
||||
|
||||
/* Use the provided key buffer */
|
||||
return STM32_SAES_KEY_SOFT;
|
||||
}
|
||||
|
||||
static int stm32_decrypt_aes_gcm(void *data, size_t data_len,
|
||||
const void *key, unsigned int key_len,
|
||||
unsigned int key_flags,
|
||||
const void *iv, unsigned int iv_len,
|
||||
const void *tag, unsigned int tag_len)
|
||||
{
|
||||
int ret;
|
||||
struct stm32_saes_context ctx;
|
||||
unsigned char tag_buf[CRYPTO_MAX_TAG_SIZE];
|
||||
enum stm32_saes_key_selection key_mode;
|
||||
unsigned int diff = 0U;
|
||||
unsigned int i;
|
||||
|
||||
key_mode = select_key(key_flags);
|
||||
|
||||
ret = stm32_saes_init(&ctx, true, STM32_SAES_MODE_GCM, key_mode, key,
|
||||
key_len, iv, iv_len);
|
||||
if (ret != 0) {
|
||||
return CRYPTO_ERR_INIT;
|
||||
}
|
||||
|
||||
ret = stm32_saes_update_assodata(&ctx, true, NULL, 0U);
|
||||
if (ret != 0) {
|
||||
return CRYPTO_ERR_DECRYPTION;
|
||||
}
|
||||
|
||||
ret = stm32_saes_update_load(&ctx, true, data, data, data_len);
|
||||
if (ret != 0) {
|
||||
return CRYPTO_ERR_DECRYPTION;
|
||||
}
|
||||
|
||||
ret = stm32_saes_final(&ctx, tag_buf, sizeof(tag_buf));
|
||||
if (ret != 0) {
|
||||
return CRYPTO_ERR_DECRYPTION;
|
||||
}
|
||||
|
||||
/* Check tag in "constant-time" */
|
||||
for (i = 0U; i < tag_len; i++) {
|
||||
diff |= ((const unsigned char *)tag)[i] ^ tag_buf[i];
|
||||
}
|
||||
|
||||
if (diff != 0U) {
|
||||
return CRYPTO_ERR_DECRYPTION;
|
||||
}
|
||||
|
||||
return CRYPTO_SUCCESS;
|
||||
}
|
||||
|
||||
/*
|
||||
* Authenticated decryption of an image
|
||||
*
|
||||
*/
|
||||
static int crypto_auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr, size_t len,
|
||||
const void *key, unsigned int key_len, unsigned int key_flags,
|
||||
const void *iv, unsigned int iv_len, const void *tag,
|
||||
unsigned int tag_len)
|
||||
{
|
||||
int rc = -1;
|
||||
uint32_t real_iv[4];
|
||||
|
||||
switch (dec_algo) {
|
||||
case CRYPTO_GCM_DECRYPT:
|
||||
/*
|
||||
* GCM expect a Nonce
|
||||
* The AES IV is the nonce (a uint32_t[3])
|
||||
* then a counter (a uint32_t big endian)
|
||||
* The counter starts at 2.
|
||||
*/
|
||||
memcpy(real_iv, iv, iv_len);
|
||||
real_iv[3] = htobe32(0x2U);
|
||||
|
||||
rc = stm32_decrypt_aes_gcm(data_ptr, len, key, key_len, key_flags,
|
||||
real_iv, sizeof(real_iv), tag, tag_len);
|
||||
break;
|
||||
default:
|
||||
rc = CRYPTO_ERR_DECRYPTION;
|
||||
break;
|
||||
}
|
||||
|
||||
if (rc != 0) {
|
||||
return rc;
|
||||
}
|
||||
|
||||
return CRYPTO_SUCCESS;
|
||||
}
|
||||
|
||||
REGISTER_CRYPTO_LIB("stm32_crypto_lib",
|
||||
crypto_lib_init,
|
||||
crypto_verify_signature,
|
||||
crypto_verify_hash,
|
||||
crypto_auth_decrypt);
|
||||
|
||||
#else /* No decryption support */
|
||||
REGISTER_CRYPTO_LIB("stm32_crypto_lib",
|
||||
crypto_lib_init,
|
||||
crypto_verify_signature,
|
||||
crypto_verify_hash,
|
||||
NULL);
|
||||
|
||||
#endif
|
|
@ -18,6 +18,9 @@ STM32MP_UART_BAUDRATE ?= 115200
|
|||
# If it is set to 0, then FIP is used
|
||||
STM32MP_USE_STM32IMAGE ?= 0
|
||||
|
||||
# Use secure library from the ROM code for authentication
|
||||
STM32MP_CRYPTO_ROM_LIB ?= 0
|
||||
|
||||
# Please don't increment this value without good understanding of
|
||||
# the monotonic counter
|
||||
STM32_TF_VERSION ?= 0
|
||||
|
@ -70,6 +73,8 @@ STM32_HEADER_VERSION_MINOR:= 0
|
|||
# Add OP-TEE reserved shared memory area in mapping
|
||||
STM32MP15_OPTEE_RSV_SHM := 1
|
||||
$(eval $(call add_defines,STM32MP15_OPTEE_RSV_SHM))
|
||||
|
||||
STM32MP_CRYPTO_ROM_LIB := 1
|
||||
endif
|
||||
|
||||
# STM32 image header binary type for BL2
|
||||
|
@ -209,6 +214,7 @@ endif
|
|||
$(eval $(call assert_booleans,\
|
||||
$(sort \
|
||||
PLAT_XLAT_TABLES_DYNAMIC \
|
||||
STM32MP_CRYPTO_ROM_LIB \
|
||||
STM32MP_DDR_32BIT_INTERFACE \
|
||||
STM32MP_DDR_DUAL_AXI_PORT \
|
||||
STM32MP_EARLY_CONSOLE \
|
||||
|
@ -243,6 +249,7 @@ $(eval $(call add_defines,\
|
|||
STM32_HASH_VER \
|
||||
STM32_TF_A_COPIES \
|
||||
STM32_TF_VERSION \
|
||||
STM32MP_CRYPTO_ROM_LIB \
|
||||
STM32MP_DDR_32BIT_INTERFACE \
|
||||
STM32MP_DDR_DUAL_AXI_PORT \
|
||||
STM32MP_EARLY_CONSOLE \
|
||||
|
|
Loading…
Add table
Reference in a new issue