Merge changes from topic "el3_direct_msg" into integration

* changes:
  docs(spm): document new build option
  feat(fvp): spmd logical partition smc handler
  feat(fvp): add spmd logical partition
  feat(spmd): get logical partitions info
  feat(spmd): add partition info get regs
  refactor(ff-a): move structure definitions
  feat(spmd): el3 direct message API
  feat(spmd): add spmd logical partitions
This commit is contained in:
Madhukar Pappireddy 2023-08-14 17:12:59 +02:00 committed by TrustedFirmware Code Review
commit 4ede8c39a2
14 changed files with 1170 additions and 37 deletions

View file

@ -624,6 +624,15 @@ ifneq (${SPD},none)
# over the sources.
endif #(SPD=none)
ifeq (${ENABLE_SPMD_LP}, 1)
ifneq (${SPD},spmd)
$(error Error: ENABLE_SPMD_LP requires SPD=spmd.)
endif
ifeq ($(SPMC_AT_EL3),1)
$(error SPMC at EL3 not supported when enabling SPMD Logical partitions.)
endif
endif
ifeq (${CTX_INCLUDE_EL2_REGS}, 1)
ifeq (${SPD},none)
ifeq (${ENABLE_RME},0)
@ -1182,6 +1191,7 @@ $(eval $(call assert_booleans,\
SPM_MM \
SPMC_AT_EL3 \
SPMD_SPM_AT_SEL2 \
ENABLE_SPMD_LP \
TRUSTED_BOARD_BOOT \
USE_COHERENT_MEM \
USE_DEBUGFS \
@ -1398,6 +1408,7 @@ $(eval $(call add_defines,\
CONDITIONAL_CMO \
IMPDEF_SYSREG_TRAP \
SVE_VECTOR_LEN \
ENABLE_SPMD_LP \
)))
ifeq (${SANITIZE_UB},trap)

View file

@ -913,6 +913,12 @@ Common build options
support pre-Armv8.4 platforms (aka not implementing the ``FEAT_SEL2``
extension).
- ``ENABLE_SPMD_LP`` : This boolean option is used jointly with the SPM
Dispatcher option (``SPD=spmd``). When enabled (1) it indicates support
for logical partitions in EL3, managed by the SPMD as defined in the FF-A
1.2 specification. This flag is disabled by default. This flag must not be
used if ``SPMC_AT_EL3`` is enabled. This is an experimental feature.
- ``SPM_MM`` : Boolean option to enable the Management Mode (MM)-based Secure
Partition Manager (SPM) implementation. The default value is ``0``
(disabled). This option cannot be enabled (``1``) when SPM Dispatcher is

View file

@ -85,6 +85,10 @@
#define __EL3_LP_DESCS_START__ Load$$__EL3_LP_DESCS__$$Base
#define __EL3_LP_DESCS_END__ Load$$__EL3_LP_DESCS__$$Limit
#endif
#if ENABLE_SPMD_LP
#define __SPMD_LP_DESCS_START__ Load$$__SPMD_LP_DESCS__$$Base
#define __SPMD_LP_DESCS_END__ Load$$__SPMD_LP_DESCS__$$Limit
#endif
#define __RW_START__ Load$$LR$$LR_RW_DATA$$Base
#define __RW_END__ Load$$LR$$LR_END$$Base
#define __SPM_SHIM_EXCEPTIONS_START__ Load$$__SPM_SHIM_EXCEPTIONS__$$Base

View file

@ -49,6 +49,15 @@
#define EL3_LP_DESCS
#endif
#if ENABLE_SPMD_LP
#define SPMD_LP_DESCS \
. = ALIGN(STRUCT_ALIGN); \
__SPMD_LP_DESCS_START__ = .; \
KEEP(*(.spmd_lp_descs)) \
__SPMD_LP_DESCS_END__ = .;
#else
#define SPMD_LP_DESCS
#endif
#define PMF_SVC_DESCS \
. = ALIGN(STRUCT_ALIGN); \
__PMF_SVC_DESCS_START__ = .; \
@ -100,7 +109,8 @@
CPU_OPS \
GOT \
BASE_XLAT_TABLE_RO \
EL3_LP_DESCS
EL3_LP_DESCS \
SPMD_LP_DESCS
/*
* .data must be placed at a lower address than the stacks if the stack

View file

@ -0,0 +1,168 @@
/*
* Copyright (c) 2023, ARM Limited and Contributors. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef EL3_SPMD_LOGICAL_SP_H
#define EL3_SPMD_LOGICAL_SP_H
#include <common/bl_common.h>
#include <lib/cassert.h>
#include <services/ffa_svc.h>
/*******************************************************************************
* Structure definition, typedefs & constants for the SPMD Logical Partitions.
******************************************************************************/
typedef struct spmd_spm_core_context spmd_spm_core_context_t;
/* Prototype for SPMD logical partition initializing function. */
typedef int32_t (*ffa_spmd_lp_init_t)(void);
/* SPMD Logical Partition Descriptor. */
struct spmd_lp_desc {
ffa_spmd_lp_init_t init;
uint16_t sp_id;
uint32_t properties;
uint32_t uuid[4]; /* Little Endian. */
const char *debug_name;
};
struct ffa_value {
uint64_t func;
uint64_t arg1;
uint64_t arg2;
uint64_t arg3;
uint64_t arg4;
uint64_t arg5;
uint64_t arg6;
uint64_t arg7;
uint64_t arg8;
uint64_t arg9;
uint64_t arg10;
uint64_t arg11;
uint64_t arg12;
uint64_t arg13;
uint64_t arg14;
uint64_t arg15;
uint64_t arg16;
uint64_t arg17;
};
/* Convenience macro to declare a SPMD logical partition descriptor. */
#define DECLARE_SPMD_LOGICAL_PARTITION(_name, _init, _sp_id, _uuid, _properties) \
static const struct spmd_lp_desc __partition_desc_ ## _name \
__section(".spmd_lp_descs") __used = { \
.debug_name = #_name, \
.init = (_init), \
.sp_id = (_sp_id), \
.uuid = _uuid, \
.properties = (_properties), \
}
IMPORT_SYM(uintptr_t, __SPMD_LP_DESCS_START__, SPMD_LP_DESCS_START);
IMPORT_SYM(uintptr_t, __SPMD_LP_DESCS_END__, SPMD_LP_DESCS_END);
#define SPMD_LP_DESCS_COUNT ((SPMD_LP_DESCS_END - SPMD_LP_DESCS_START) \
/ sizeof(struct spmd_lp_desc))
CASSERT(sizeof(struct spmd_lp_desc) == 40, assert_spmd_lp_desc_size_mismatch);
/*
* Reserve 63 IDs for SPMD Logical Partitions. Currently, 0xFFC0 to 0xFFFE
* is reserved.
*/
#define SPMD_LP_ID_END (SPMD_DIRECT_MSG_ENDPOINT_ID - 1)
#define SPMD_LP_ID_START (SPMD_LP_ID_END - 62)
/*
* TODO: Arbitrary number. Can make this platform specific in the future,
* no known use cases for more LPs at this point.
*/
#define EL3_SPMD_MAX_NUM_LP U(5)
static inline bool is_spmd_lp_id(unsigned int id)
{
#if ENABLE_SPMD_LP
return (id >= SPMD_LP_ID_START && id <= SPMD_LP_ID_END);
#else
return false;
#endif
}
static inline bool is_ffa_error(struct ffa_value *retval)
{
return retval->func == FFA_ERROR;
}
static inline bool is_ffa_success(struct ffa_value *retval)
{
return (retval->func == FFA_SUCCESS_SMC32) ||
(retval->func == FFA_SUCCESS_SMC64);
}
static inline bool is_ffa_direct_msg_resp(struct ffa_value *retval)
{
return (retval->func == FFA_MSG_SEND_DIRECT_RESP_SMC32) ||
(retval->func == FFA_MSG_SEND_DIRECT_RESP_SMC64);
}
static inline uint16_t ffa_partition_info_regs_get_last_idx(
struct ffa_value args)
{
return (uint16_t)(args.arg2 & 0xFFFFU);
}
static inline uint16_t ffa_partition_info_regs_get_curr_idx(
struct ffa_value args)
{
return (uint16_t)((args.arg2 >> 16) & 0xFFFFU);
}
static inline uint16_t ffa_partition_info_regs_get_tag(struct ffa_value args)
{
return (uint16_t)((args.arg2 >> 32) & 0xFFFFU);
}
static inline uint16_t ffa_partition_info_regs_get_desc_size(
struct ffa_value args)
{
return (uint16_t)(args.arg2 >> 48);
}
uint64_t spmd_el3_populate_logical_partition_info(void *handle, uint64_t x1,
uint64_t x2, uint64_t x3);
bool ffa_partition_info_regs_get_part_info(
struct ffa_value args, uint8_t idx,
struct ffa_partition_info_v1_1 *partition_info);
bool spmd_el3_invoke_partition_info_get(
const uint32_t target_uuid[4],
const uint16_t start_index,
const uint16_t tag,
struct ffa_value *retval);
void spmd_logical_sp_set_spmc_initialized(void);
void spmc_logical_sp_set_spmc_failure(void);
int32_t spmd_logical_sp_init(void);
bool is_spmd_logical_sp_dir_req_in_progress(
spmd_spm_core_context_t *ctx);
bool is_spmd_logical_sp_info_regs_req_in_progress(
spmd_spm_core_context_t *ctx);
bool spmd_el3_ffa_msg_direct_req(uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *handle,
struct ffa_value *retval);
uintptr_t plat_spmd_logical_sp_smc_handler(unsigned int smc_fid,
u_register_t x1,
u_register_t x2,
u_register_t x3,
u_register_t x4,
void *cookie,
void *handle,
u_register_t flags);
#endif /* EL3_SPMD_LOGICAL_SP_H */

View file

@ -343,4 +343,28 @@ struct ffa_boot_info_header {
uint64_t reserved;
};
/* FF-A Partition Info Get related macros. */
#define FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK U(0x7)
#define FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT U(8)
#define FFA_PARTITION_INFO_GET_AARCH32_STATE U(0)
#define FFA_PARTITION_INFO_GET_AARCH64_STATE U(1)
/**
* Holds information returned for each partition by the FFA_PARTITION_INFO_GET
* interface.
*/
struct ffa_partition_info_v1_0 {
uint16_t ep_id;
uint16_t execution_ctx_count;
uint32_t properties;
};
/* Extended structure for FF-A v1.1. */
struct ffa_partition_info_v1_1 {
uint16_t ep_id;
uint16_t execution_ctx_count;
uint32_t properties;
uint32_t uuid[4];
};
#endif /* FFA_SVC_H */

View file

@ -508,3 +508,6 @@ DRTM_SUPPORT := 0
# Check platform if cache management operations should be performed.
# Disabled by default.
CONDITIONAL_CMO := 0
# By default, disable SPMD Logical partitions
ENABLE_SPMD_LP := 0

View file

@ -0,0 +1,99 @@
/*
* Copyright (c) 2023, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common/debug.h>
#include <services/el3_spmd_logical_sp.h>
#include <services/ffa_svc.h>
#include <smccc_helpers.h>
#define SPMD_LP_PARTITION_ID SPMD_LP_ID_START
#define SPMD_LP_UUID {0xe98e43ad, 0xb7db524f, 0x47a3bf57, 0x1588f4e3}
/* SPMD Logical SP currently only supports sending direct message. */
#define SPMD_PARTITION_PROPERTIES FFA_PARTITION_DIRECT_REQ_SEND
#define SPMD_LP_MAX_SUPPORTED_SP 10
static void fvp_get_partition_info(void)
{
struct ffa_value ret = { 0 };
uint32_t target_uuid[4] = { 0 };
static struct ffa_partition_info_v1_1
part_info[SPMD_LP_MAX_SUPPORTED_SP] = { 0 };
uint16_t num_partitions = 0;
if (!spmd_el3_invoke_partition_info_get(target_uuid, 0, 0, &ret)) {
panic();
}
if (is_ffa_error(&ret)) {
panic();
}
num_partitions = ffa_partition_info_regs_get_last_idx(ret) + 1;
if (num_partitions > SPMD_LP_MAX_SUPPORTED_SP) {
panic();
}
INFO("Number of secure partitions = %d\n", num_partitions);
for (uint16_t i = 0; i < num_partitions; i++) {
INFO("***Start Partition***\n");
if (!ffa_partition_info_regs_get_part_info(ret, i, &part_info[i]))
panic();
INFO("\tPartition ID: 0x%x\n", part_info[i].ep_id);
INFO("\tvCPU count:0x%x\n", part_info[i].execution_ctx_count);
INFO("\tProperties: 0x%x\n", part_info[i].properties);
INFO("\tUUID: 0x%x 0x%x 0x%x 0x%x\n", part_info[i].uuid[0],
part_info[i].uuid[1], part_info[i].uuid[2],
part_info[i].uuid[3]);
INFO("***End Partition***\n");
}
}
static int32_t fvp_spmd_logical_partition_init(void)
{
INFO("FVP SPMD LSP: Init function called.\n");
fvp_get_partition_info();
return 0;
}
/*
* Platform specific SMC handler used to translate SIP SMCs or other platform
* specific SMCs into FF-A direct messages.
*/
uintptr_t plat_spmd_logical_sp_smc_handler(unsigned int smc_fid,
u_register_t x1,
u_register_t x2,
u_register_t x3,
u_register_t x4,
void *cookie,
void *handle,
u_register_t flags)
{
struct ffa_value retval = { 0 };
uint64_t send_recv_id = SPMD_LP_PARTITION_ID << 16 | 0x8001;
/*
* Forward the SMC as direct request.
*/
if (!spmd_el3_ffa_msg_direct_req(send_recv_id, x2, x3, x4, handle, &retval)) {
panic();
}
SMC_RET8(handle, retval.func, retval.arg1, retval.arg2, retval.arg3,
retval.arg4, retval.arg5, retval.arg6, retval.arg7);
}
/* Register SPMD logical partition */
DECLARE_SPMD_LOGICAL_PARTITION(
fvp_spmd_logical_partition,
fvp_spmd_logical_partition_init,/* Init Function */
SPMD_LP_PARTITION_ID, /* FF-A Partition ID */
SPMD_LP_UUID, /* UUID */
SPMD_PARTITION_PROPERTIES /* Partition Properties. */
);

View file

@ -13,6 +13,9 @@
#include <lib/pmf/pmf.h>
#include <plat/arm/common/arm_sip_svc.h>
#include <plat/arm/common/plat_arm.h>
#if ENABLE_SPMD_LP
#include <services/el3_spmd_logical_sp.h>
#endif
#include <tools_share/uuid.h>
/* ARM SiP Service UUID */
@ -133,8 +136,13 @@ static uintptr_t arm_sip_handler(unsigned int smc_fid,
SMC_RET2(handle, ARM_SIP_SVC_VERSION_MAJOR, ARM_SIP_SVC_VERSION_MINOR);
default:
#if ENABLE_SPMD_LP
return plat_spmd_logical_sp_smc_handler(smc_fid, x1, x2, x3, x4,
cookie, handle, flags);
#else
WARN("Unimplemented ARM SiP Service Call: 0x%x \n", smc_fid);
SMC_RET1(handle, SMC_UNK);
#endif
}
}

View file

@ -213,30 +213,6 @@ struct ns_endpoint_desc {
uint32_t ffa_version;
};
/**
* Holds information returned for each partition by the FFA_PARTITION_INFO_GET
* interface.
*/
struct ffa_partition_info_v1_0 {
uint16_t ep_id;
uint16_t execution_ctx_count;
uint32_t properties;
};
/* Extended structure for v1.1. */
struct ffa_partition_info_v1_1 {
uint16_t ep_id;
uint16_t execution_ctx_count;
uint32_t properties;
uint32_t uuid[4];
};
/* FF-A Partition Info Get related macros. */
#define FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK U(0x7)
#define FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT U(8)
#define FFA_PARTITION_INFO_GET_AARCH32_STATE U(0)
#define FFA_PARTITION_INFO_GET_AARCH64_STATE U(1)
/* Reference to power management hooks */
extern const spd_pm_ops_t spmc_pm;

View file

@ -15,7 +15,18 @@ endif
SPMD_SOURCES += $(addprefix services/std_svc/spmd/, \
${ARCH}/spmd_helpers.S \
spmd_pm.c \
spmd_main.c)
spmd_main.c \
spmd_logical_sp.c)
# Specify platform specific SPMD logical partition implementation.
SPMD_LP_SOURCES := $(wildcard $(addprefix ${PLAT_DIR}/, \
${PLAT}_spmd_logical_sp*.c))
ifeq (${ENABLE_SPMD_LP}, 1)
ifneq ($(wildcard $(SPMD_LP_SOURCES)),)
SPMD_SOURCES += $(SPMD_LP_SOURCES)
endif
endif
# Let the top-level Makefile know that we intend to include a BL32 image
NEED_BL32 := yes

View file

@ -0,0 +1,742 @@
/*
* Copyright (c) 2023, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <string.h>
#include "spmd_private.h"
#include <common/debug.h>
#include <common/uuid.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <services/el3_spmd_logical_sp.h>
#include <services/spmc_svc.h>
#include <smccc_helpers.h>
/*
* Maximum ffa_partition_info entries that can be returned by an invocation
* of FFA_PARTITION_INFO_GET_REGS_64 is size in bytes, of available
* registers/args in struct ffa_value divided by size of struct
* ffa_partition_info. For this ABI, arg3-arg17 in ffa_value can be used, i.e.
* 15 uint64_t fields. For FF-A v1.1, this value should be 5.
*/
#define MAX_INFO_REGS_ENTRIES_PER_CALL \
(uint8_t)((15 * sizeof(uint64_t)) / \
sizeof(struct ffa_partition_info_v1_1))
CASSERT(MAX_INFO_REGS_ENTRIES_PER_CALL == 5, assert_too_many_info_reg_entries);
#if ENABLE_SPMD_LP
static bool is_spmd_lp_inited;
static bool is_spmc_inited;
/*
* Helper function to obtain the array storing the EL3
* SPMD Logical Partition descriptors.
*/
static struct spmd_lp_desc *get_spmd_el3_lp_array(void)
{
return (struct spmd_lp_desc *) SPMD_LP_DESCS_START;
}
/*******************************************************************************
* Validate any logical partition descriptors before we initialize.
* Initialization of said partitions will be taken care of during SPMD boot.
******************************************************************************/
static int el3_spmd_sp_desc_validate(struct spmd_lp_desc *lp_array)
{
/* Check the array bounds are valid. */
assert(SPMD_LP_DESCS_END > SPMD_LP_DESCS_START);
/*
* No support for SPMD logical partitions when SPMC is at EL3.
*/
assert(!is_spmc_at_el3());
/* If no SPMD logical partitions are implemented then simply bail out. */
if (SPMD_LP_DESCS_COUNT == 0U) {
return -1;
}
for (uint32_t index = 0U; index < SPMD_LP_DESCS_COUNT; index++) {
struct spmd_lp_desc *lp_desc = &lp_array[index];
/* Validate our logical partition descriptors. */
if (lp_desc == NULL) {
ERROR("Invalid SPMD Logical SP Descriptor\n");
return -EINVAL;
}
/*
* Ensure the ID follows the convention to indicate it resides
* in the secure world.
*/
if (!ffa_is_secure_world_id(lp_desc->sp_id)) {
ERROR("Invalid SPMD Logical SP ID (0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
/* Ensure SPMD logical partition is in valid range. */
if (!is_spmd_lp_id(lp_desc->sp_id)) {
ERROR("Invalid SPMD Logical Partition ID (0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
/* Ensure the UUID is not the NULL UUID. */
if (lp_desc->uuid[0] == 0 && lp_desc->uuid[1] == 0 &&
lp_desc->uuid[2] == 0 && lp_desc->uuid[3] == 0) {
ERROR("Invalid UUID for SPMD Logical SP (0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
/* Ensure init function callback is registered. */
if (lp_desc->init == NULL) {
ERROR("Missing init function for Logical SP(0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
/* Ensure that SPMD LP only supports sending direct requests. */
if (lp_desc->properties != FFA_PARTITION_DIRECT_REQ_SEND) {
ERROR("Invalid SPMD logical partition properties (0x%x)\n",
lp_desc->properties);
return -EINVAL;
}
/* Ensure that all partition IDs are unique. */
for (uint32_t inner_idx = index + 1;
inner_idx < SPMD_LP_DESCS_COUNT; inner_idx++) {
if (lp_desc->sp_id == lp_array[inner_idx].sp_id) {
ERROR("Duplicate SPMD logical SP ID Detected (0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
}
}
return 0;
}
static void spmd_encode_ffa_error(struct ffa_value *retval, int32_t error_code)
{
retval->func = FFA_ERROR;
retval->arg1 = FFA_TARGET_INFO_MBZ;
retval->arg2 = (uint32_t)error_code;
retval->arg3 = FFA_TARGET_INFO_MBZ;
retval->arg4 = FFA_TARGET_INFO_MBZ;
retval->arg5 = FFA_TARGET_INFO_MBZ;
retval->arg6 = FFA_TARGET_INFO_MBZ;
retval->arg7 = FFA_TARGET_INFO_MBZ;
}
static void spmd_build_direct_message_req(spmd_spm_core_context_t *ctx,
uint64_t x1, uint64_t x2,
uint64_t x3, uint64_t x4)
{
gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_MSG_SEND_DIRECT_REQ_SMC32);
write_ctx_reg(gpregs, CTX_GPREG_X1, x1);
write_ctx_reg(gpregs, CTX_GPREG_X2, x2);
write_ctx_reg(gpregs, CTX_GPREG_X3, x3);
write_ctx_reg(gpregs, CTX_GPREG_X4, x4);
write_ctx_reg(gpregs, CTX_GPREG_X5, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X6, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X7, 0U);
}
static void spmd_encode_ctx_to_ffa_value(spmd_spm_core_context_t *ctx,
struct ffa_value *retval)
{
gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
retval->func = read_ctx_reg(gpregs, CTX_GPREG_X0);
retval->arg1 = read_ctx_reg(gpregs, CTX_GPREG_X1);
retval->arg2 = read_ctx_reg(gpregs, CTX_GPREG_X2);
retval->arg3 = read_ctx_reg(gpregs, CTX_GPREG_X3);
retval->arg4 = read_ctx_reg(gpregs, CTX_GPREG_X4);
retval->arg5 = read_ctx_reg(gpregs, CTX_GPREG_X5);
retval->arg6 = read_ctx_reg(gpregs, CTX_GPREG_X6);
retval->arg7 = read_ctx_reg(gpregs, CTX_GPREG_X7);
retval->arg8 = read_ctx_reg(gpregs, CTX_GPREG_X8);
retval->arg9 = read_ctx_reg(gpregs, CTX_GPREG_X9);
retval->arg10 = read_ctx_reg(gpregs, CTX_GPREG_X10);
retval->arg11 = read_ctx_reg(gpregs, CTX_GPREG_X11);
retval->arg12 = read_ctx_reg(gpregs, CTX_GPREG_X12);
retval->arg13 = read_ctx_reg(gpregs, CTX_GPREG_X13);
retval->arg14 = read_ctx_reg(gpregs, CTX_GPREG_X14);
retval->arg15 = read_ctx_reg(gpregs, CTX_GPREG_X15);
retval->arg16 = read_ctx_reg(gpregs, CTX_GPREG_X16);
retval->arg17 = read_ctx_reg(gpregs, CTX_GPREG_X17);
}
static void spmd_logical_sp_set_dir_req_ongoing(spmd_spm_core_context_t *ctx)
{
ctx->spmd_lp_sync_req_ongoing |= SPMD_LP_FFA_DIR_REQ_ONGOING;
}
static void spmd_logical_sp_reset_dir_req_ongoing(spmd_spm_core_context_t *ctx)
{
ctx->spmd_lp_sync_req_ongoing &= ~SPMD_LP_FFA_DIR_REQ_ONGOING;
}
static void spmd_build_ffa_info_get_regs(spmd_spm_core_context_t *ctx,
const uint32_t uuid[4],
const uint16_t start_index,
const uint16_t tag)
{
gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
uint64_t arg1 = (uint64_t)uuid[1] << 32 | uuid[0];
uint64_t arg2 = (uint64_t)uuid[3] << 32 | uuid[2];
uint64_t arg3 = start_index | (uint64_t)tag << 16;
write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_PARTITION_INFO_GET_REGS_SMC64);
write_ctx_reg(gpregs, CTX_GPREG_X1, arg1);
write_ctx_reg(gpregs, CTX_GPREG_X2, arg2);
write_ctx_reg(gpregs, CTX_GPREG_X3, arg3);
write_ctx_reg(gpregs, CTX_GPREG_X4, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X5, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X6, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X7, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X8, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X9, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X10, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X11, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X12, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X13, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X14, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X15, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X16, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X17, 0U);
}
static void spmd_logical_sp_set_info_regs_ongoing(spmd_spm_core_context_t *ctx)
{
ctx->spmd_lp_sync_req_ongoing |= SPMD_LP_FFA_INFO_GET_REG_ONGOING;
}
static void spmd_logical_sp_reset_info_regs_ongoing(
spmd_spm_core_context_t *ctx)
{
ctx->spmd_lp_sync_req_ongoing &= ~SPMD_LP_FFA_INFO_GET_REG_ONGOING;
}
static void spmd_fill_lp_info_array(
struct ffa_partition_info_v1_1 (*partitions)[EL3_SPMD_MAX_NUM_LP],
uint32_t uuid[4], uint16_t *lp_count_out)
{
uint16_t lp_count = 0;
struct spmd_lp_desc *lp_array;
bool uuid_is_null = is_null_uuid(uuid);
if (SPMD_LP_DESCS_COUNT == 0U) {
*lp_count_out = 0;
return;
}
lp_array = get_spmd_el3_lp_array();
for (uint16_t index = 0; index < SPMD_LP_DESCS_COUNT; ++index) {
struct spmd_lp_desc *lp = &lp_array[index];
if (uuid_is_null || uuid_match(uuid, lp->uuid)) {
uint16_t array_index = lp_count;
++lp_count;
(*partitions)[array_index].ep_id = lp->sp_id;
(*partitions)[array_index].execution_ctx_count = 1;
(*partitions)[array_index].properties = lp->properties;
(*partitions)[array_index].properties |=
(FFA_PARTITION_INFO_GET_AARCH64_STATE <<
FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT);
if (uuid_is_null) {
memcpy(&((*partitions)[array_index].uuid),
&lp->uuid, sizeof(lp->uuid));
}
}
}
*lp_count_out = lp_count;
}
static inline void spmd_pack_lp_count_props(
uint64_t *xn, uint16_t ep_id, uint16_t vcpu_count,
uint32_t properties)
{
*xn = (uint64_t)ep_id;
*xn |= (uint64_t)vcpu_count << 16;
*xn |= (uint64_t)properties << 32;
}
static inline void spmd_pack_lp_uuid(uint64_t *xn_1, uint64_t *xn_2,
uint32_t uuid[4])
{
*xn_1 = (uint64_t)uuid[0];
*xn_1 |= (uint64_t)uuid[1] << 32;
*xn_2 = (uint64_t)uuid[2];
*xn_2 |= (uint64_t)uuid[3] << 32;
}
#endif
/*
* Initialize SPMD logical partitions. This function assumes that it is called
* only after the SPMC has successfully initialized.
*/
int32_t spmd_logical_sp_init(void)
{
#if ENABLE_SPMD_LP
int32_t rc = 0;
struct spmd_lp_desc *spmd_lp_descs;
assert(SPMD_LP_DESCS_COUNT <= EL3_SPMD_MAX_NUM_LP);
if (is_spmd_lp_inited == true) {
return 0;
}
if (is_spmc_inited == false) {
return -1;
}
spmd_lp_descs = get_spmd_el3_lp_array();
/* Perform initial validation of the SPMD Logical Partitions. */
rc = el3_spmd_sp_desc_validate(spmd_lp_descs);
if (rc != 0) {
ERROR("Logical SPMD Partition validation failed!\n");
return rc;
}
VERBOSE("SPMD Logical Secure Partition init start.\n");
for (unsigned int i = 0U; i < SPMD_LP_DESCS_COUNT; i++) {
rc = spmd_lp_descs[i].init();
if (rc != 0) {
ERROR("SPMD Logical SP (0x%x) failed to initialize\n",
spmd_lp_descs[i].sp_id);
return rc;
}
VERBOSE("SPMD Logical SP (0x%x) Initialized\n",
spmd_lp_descs[i].sp_id);
}
INFO("SPMD Logical Secure Partition init completed.\n");
if (rc == 0) {
is_spmd_lp_inited = true;
}
return rc;
#else
return 0;
#endif
}
void spmd_logical_sp_set_spmc_initialized(void)
{
#if ENABLE_SPMD_LP
is_spmc_inited = true;
#endif
}
void spmd_logical_sp_set_spmc_failure(void)
{
#if ENABLE_SPMD_LP
is_spmc_inited = false;
#endif
}
/*
* This function takes an ffa_value structure populated with partition
* information from an FFA_PARTITION_INFO_GET_REGS ABI call, extracts
* the values and writes it into a ffa_partition_info_v1_1 structure for
* other code to consume.
*/
bool ffa_partition_info_regs_get_part_info(
struct ffa_value args, uint8_t idx,
struct ffa_partition_info_v1_1 *partition_info)
{
uint64_t *arg_ptrs;
uint64_t info, uuid_lo, uuid_high;
/*
* Each partition information is encoded in 3 registers, so there can be
* a maximum of 5 entries.
*/
if (idx >= 5 || partition_info == NULL) {
return false;
}
/*
* List of pointers to args in return value. arg0/func encodes ff-a
* function, arg1 is reserved, arg2 encodes indices. arg3 and greater
* values reflect partition properties.
*/
arg_ptrs = (uint64_t *)&args + ((idx * 3) + 3);
info = *arg_ptrs;
arg_ptrs++;
uuid_lo = *arg_ptrs;
arg_ptrs++;
uuid_high = *arg_ptrs;
partition_info->ep_id = (uint16_t)(info & 0xFFFFU);
partition_info->execution_ctx_count = (uint16_t)((info >> 16) & 0xFFFFU);
partition_info->properties = (uint32_t)(info >> 32);
partition_info->uuid[0] = (uint32_t)(uuid_lo & 0xFFFFFFFFU);
partition_info->uuid[1] = (uint32_t)((uuid_lo >> 32) & 0xFFFFFFFFU);
partition_info->uuid[2] = (uint32_t)(uuid_high & 0xFFFFFFFFU);
partition_info->uuid[3] = (uint32_t)((uuid_high >> 32) & 0xFFFFFFFFU);
return true;
}
/*
* This function is called by the SPMD in response to
* an FFA_PARTITION_INFO_GET_REG ABI invocation by the SPMC. Secure partitions
* are allowed to discover the presence of EL3 SPMD logical partitions by
* invoking the aforementioned ABI and this function populates the required
* information about EL3 SPMD logical partitions.
*/
uint64_t spmd_el3_populate_logical_partition_info(void *handle, uint64_t x1,
uint64_t x2, uint64_t x3)
{
#if ENABLE_SPMD_LP
uint32_t target_uuid[4] = { 0 };
uint32_t w0;
uint32_t w1;
uint32_t w2;
uint32_t w3;
uint16_t start_index;
uint16_t tag;
static struct ffa_partition_info_v1_1 partitions[EL3_SPMD_MAX_NUM_LP];
uint16_t lp_count = 0;
uint16_t max_idx = 0;
uint16_t curr_idx = 0;
uint8_t num_entries_to_ret = 0;
struct ffa_value ret = { 0 };
uint64_t *arg_ptrs = (uint64_t *)&ret + 3;
w0 = (uint32_t)(x1 & 0xFFFFFFFFU);
w1 = (uint32_t)(x1 >> 32);
w2 = (uint32_t)(x2 & 0xFFFFFFFFU);
w3 = (uint32_t)(x2 >> 32);
target_uuid[0] = w0;
target_uuid[1] = w1;
target_uuid[2] = w2;
target_uuid[3] = w3;
start_index = (uint16_t)(x3 & 0xFFFFU);
tag = (uint16_t)((x3 >> 16) & 0xFFFFU);
assert(handle == cm_get_context(SECURE));
if (tag != 0) {
VERBOSE("Tag is not 0. Cannot return partition info.\n");
return spmd_ffa_error_return(handle, FFA_ERROR_RETRY);
}
memset(&partitions, 0, sizeof(partitions));
spmd_fill_lp_info_array(&partitions, target_uuid, &lp_count);
if (lp_count == 0) {
VERBOSE("No SPDM EL3 logical partitions exist.\n");
return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
}
if (start_index >= lp_count) {
VERBOSE("start_index = %d, lp_count = %d (start index must be"
" less than partition count.\n",
start_index, lp_count);
return spmd_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
max_idx = lp_count - 1;
num_entries_to_ret = (max_idx - start_index) + 1;
num_entries_to_ret =
MIN(num_entries_to_ret, MAX_INFO_REGS_ENTRIES_PER_CALL);
curr_idx = start_index + num_entries_to_ret - 1;
assert(curr_idx <= max_idx);
ret.func = FFA_SUCCESS_SMC64;
ret.arg2 = (uint64_t)((sizeof(struct ffa_partition_info_v1_1) & 0xFFFFU) << 48);
ret.arg2 |= (uint64_t)(curr_idx << 16);
ret.arg2 |= (uint64_t)max_idx;
for (uint16_t idx = start_index; idx <= curr_idx; ++idx) {
spmd_pack_lp_count_props(arg_ptrs, partitions[idx].ep_id,
partitions[idx].execution_ctx_count,
partitions[idx].properties);
arg_ptrs++;
if (is_null_uuid(target_uuid)) {
spmd_pack_lp_uuid(arg_ptrs, (arg_ptrs + 1),
partitions[idx].uuid);
}
arg_ptrs += 2;
}
SMC_RET18(handle, ret.func, ret.arg1, ret.arg2, ret.arg3, ret.arg4,
ret.arg5, ret.arg6, ret.arg7, ret.arg8, ret.arg9, ret.arg10,
ret.arg11, ret.arg12, ret.arg13, ret.arg14, ret.arg15,
ret.arg16, ret.arg17);
#else
return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
#endif
}
/* This function can be used by an SPMD logical partition to invoke the
* FFA_PARTITION_INFO_GET_REGS ABI to the SPMC, to discover the secure
* partitions in the system. The function takes a UUID, start index and
* tag and the partition information are returned in an ffa_value structure
* and can be consumed by using appropriate helper functions.
*/
bool spmd_el3_invoke_partition_info_get(
const uint32_t target_uuid[4],
const uint16_t start_index,
const uint16_t tag,
struct ffa_value *retval)
{
#if ENABLE_SPMD_LP
uint64_t rc = UINT64_MAX;
spmd_spm_core_context_t *ctx = spmd_get_context();
if (retval == NULL) {
return false;
}
memset(retval, 0, sizeof(*retval));
if (!is_spmc_inited) {
VERBOSE("Cannot discover partition before,"
" SPMC is initialized.\n");
spmd_encode_ffa_error(retval, FFA_ERROR_DENIED);
return true;
}
if (tag != 0) {
VERBOSE("Tag must be zero. other tags unsupported\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
/* Save the non-secure context before entering SPMC */
cm_el1_sysregs_context_save(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_save(NON_SECURE);
#endif
spmd_build_ffa_info_get_regs(ctx, target_uuid, start_index, tag);
spmd_logical_sp_set_info_regs_ongoing(ctx);
rc = spmd_spm_core_sync_entry(ctx);
if (rc != 0ULL) {
ERROR("%s failed (%lx) on CPU%u\n", __func__, rc,
plat_my_core_pos());
panic();
}
spmd_logical_sp_reset_info_regs_ongoing(ctx);
spmd_encode_ctx_to_ffa_value(ctx, retval);
assert(is_ffa_error(retval) || is_ffa_success(retval));
cm_el1_sysregs_context_restore(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_restore(NON_SECURE);
#endif
cm_set_next_eret_context(NON_SECURE);
return true;
#else
return false;
#endif
}
/*******************************************************************************
* This function sends an FF-A Direct Request from a partition in EL3 to a
* partition that may reside under an SPMC (only lower ELs supported). The main
* use of this API is for SPMD logical partitions.
* The API is expected to be used when there are platform specific SMCs that
* need to be routed to a secure partition that is FF-A compliant or when
* there are group 0 interrupts that need to be handled first in EL3 and then
* forwarded to an FF-A compliant secure partition. Therefore, it is expected
* that the handle to the context provided belongs to the non-secure context.
* This also means that interrupts/SMCs that trap to EL3 during secure execution
* cannot use this API.
* x1, x2, x3 and x4 are encoded as specified in the FF-A specification.
* retval is used to pass the direct response values to the caller.
* The function returns true if retval has valid values, and false otherwise.
******************************************************************************/
bool spmd_el3_ffa_msg_direct_req(uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *handle,
struct ffa_value *retval)
{
#if ENABLE_SPMD_LP
uint64_t rc = UINT64_MAX;
spmd_spm_core_context_t *ctx = spmd_get_context();
if (retval == NULL) {
return false;
}
memset(retval, 0, sizeof(*retval));
if (!is_spmd_lp_inited || !is_spmc_inited) {
VERBOSE("Cannot send SPMD logical partition direct message,"
" Partitions not initialized or SPMC not initialized.\n");
spmd_encode_ffa_error(retval, FFA_ERROR_DENIED);
return true;
}
/*
* x2 must be zero, since there is no support for framework message via
* an SPMD logical partition. This is sort of a useless check and it is
* possible to not take parameter. However, as the framework extends it
* may be useful to have x2 and extend this function later with
* functionality based on x2.
*/
if (x2 != 0) {
VERBOSE("x2 must be zero. Cannot send framework message.\n");
spmd_encode_ffa_error(retval, FFA_ERROR_DENIED);
return true;
}
/*
* Current context must be non-secure. API is expected to be used
* when entry into EL3 and the SPMD logical partition is via an
* interrupt that occurs when execution is in normal world and
* SMCs from normal world. FF-A compliant SPMCs are expected to
* trap interrupts during secure execution in lower ELs since they
* are usually not re-entrant and SMCs from secure world can be
* handled synchronously. There is no known use case for an SPMD
* logical partition to send a direct message to another partition
* in response to a secure interrupt or SMCs from secure world.
*/
if (handle != cm_get_context(NON_SECURE)) {
VERBOSE("Handle must be for the non-secure context.\n");
spmd_encode_ffa_error(retval, FFA_ERROR_DENIED);
return true;
}
if (!is_spmd_lp_id(ffa_endpoint_source(x1))) {
VERBOSE("Source ID must be valid SPMD logical partition"
" ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
if (is_spmd_lp_id(ffa_endpoint_destination(x1))) {
VERBOSE("Destination ID must not be SPMD logical partition"
" ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
if (!ffa_is_secure_world_id(ffa_endpoint_destination(x1))) {
VERBOSE("Destination ID must be secure world ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
if (ffa_endpoint_destination(x1) == SPMD_DIRECT_MSG_ENDPOINT_ID) {
VERBOSE("Destination ID must not be SPMD ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
if (ffa_endpoint_destination(x1) == spmd_spmc_id_get()) {
VERBOSE("Destination ID must not be SPMC ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
/* Save the non-secure context before entering SPMC */
cm_el1_sysregs_context_save(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_save(NON_SECURE);
#endif
/*
* Perform synchronous entry into the SPMC. Synchronous entry is
* required because the spec requires that a direct message request
* from an SPMD LP look like a function call from it's perspective.
*/
spmd_build_direct_message_req(ctx, x1, x2, x3, x4);
spmd_logical_sp_set_dir_req_ongoing(ctx);
rc = spmd_spm_core_sync_entry(ctx);
spmd_logical_sp_reset_dir_req_ongoing(ctx);
if (rc != 0ULL) {
ERROR("%s failed (%lx) on CPU%u\n", __func__, rc,
plat_my_core_pos());
panic();
} else {
spmd_encode_ctx_to_ffa_value(ctx, retval);
/*
* Only expect error or direct response,
* spmd_spm_core_sync_exit should not be called on other paths.
* Checks are asserts since the LSP can fail gracefully if the
* source or destination ids are not the same. Panic'ing would
* not provide any benefit.
*/
assert(is_ffa_error(retval) || is_ffa_direct_msg_resp(retval));
assert(is_ffa_error(retval) ||
(ffa_endpoint_destination(retval->arg1) ==
ffa_endpoint_source(x1)));
assert(is_ffa_error(retval) ||
(ffa_endpoint_source(retval->arg1) ==
ffa_endpoint_destination(x1)));
}
cm_el1_sysregs_context_restore(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_restore(NON_SECURE);
#endif
cm_set_next_eret_context(NON_SECURE);
return true;
#else
return false;
#endif
}
bool is_spmd_logical_sp_info_regs_req_in_progress(
spmd_spm_core_context_t *ctx)
{
#if ENABLE_SPMD_LP
return ((ctx->spmd_lp_sync_req_ongoing & SPMD_LP_FFA_INFO_GET_REG_ONGOING)
== SPMD_LP_FFA_INFO_GET_REG_ONGOING);
#else
return false;
#endif
}
bool is_spmd_logical_sp_dir_req_in_progress(
spmd_spm_core_context_t *ctx)
{
#if ENABLE_SPMD_LP
return ((ctx->spmd_lp_sync_req_ongoing & SPMD_LP_FFA_DIR_REQ_ONGOING)
== SPMD_LP_FFA_DIR_REQ_ONGOING);
#else
return false;
#endif
}

View file

@ -27,6 +27,7 @@
#include <plat/common/common_def.h>
#include <plat/common/platform.h>
#include <platform_def.h>
#include <services/el3_spmd_logical_sp.h>
#include <services/ffa_svc.h>
#include <services/spmc_svc.h>
#include <services/spmd_svc.h>
@ -86,8 +87,7 @@ uint16_t spmd_spmc_id_get(void)
******************************************************************************/
static int32_t spmd_init(void);
static int spmd_spmc_init(void *pm_addr);
static uint64_t spmd_ffa_error_return(void *handle,
int error_code);
static uint64_t spmd_smc_forward(uint32_t smc_fid,
bool secure_origin,
uint64_t x1,
@ -190,6 +190,12 @@ static int32_t spmd_init(void)
VERBOSE("SPM Core init end.\n");
spmd_logical_sp_set_spmc_initialized();
rc = spmd_logical_sp_init();
if (rc != 0) {
WARN("SPMD Logical partitions failed init.\n");
}
return 1;
}
@ -742,7 +748,7 @@ static uint64_t spmd_smc_forward(uint32_t smc_fid,
/*******************************************************************************
* Return FFA_ERROR with specified error code
******************************************************************************/
static uint64_t spmd_ffa_error_return(void *handle, int error_code)
uint64_t spmd_ffa_error_return(void *handle, int error_code)
{
SMC_RET8(handle, (uint32_t) FFA_ERROR,
FFA_TARGET_INFO_MBZ, (uint32_t)error_code,
@ -845,6 +851,16 @@ uint64_t spmd_smc_handler(uint32_t smc_fid,
SMC_GET_GP(handle, CTX_GPREG_X6),
SMC_GET_GP(handle, CTX_GPREG_X7));
/*
* If there is an on-going info regs from EL3 SPMD LP, unconditionally
* return, we don't expect any other FF-A ABIs to be called between
* calls to FFA_PARTITION_INFO_GET_REGS.
*/
if (is_spmd_logical_sp_info_regs_req_in_progress(ctx)) {
assert(secure_origin);
spmd_spm_core_sync_exit(0ULL);
}
switch (smc_fid) {
case FFA_ERROR:
/*
@ -856,6 +872,16 @@ uint64_t spmd_smc_handler(uint32_t smc_fid,
spmd_spm_core_sync_exit(x2);
}
/*
* If there was an SPMD logical partition direct request on-going,
* return back to the SPMD logical partition so the error can be
* consumed.
*/
if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
assert(secure_origin);
spmd_spm_core_sync_exit(0ULL);
}
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
@ -1045,6 +1071,31 @@ uint64_t spmd_smc_handler(uint32_t smc_fid,
case FFA_MSG_SEND_DIRECT_REQ_SMC32:
case FFA_MSG_SEND_DIRECT_REQ_SMC64:
/*
* Regardless of secure_origin, SPMD logical partitions cannot
* handle direct messages. They can only initiate direct
* messages and consume direct responses or errors.
*/
if (is_spmd_lp_id(ffa_endpoint_source(x1)) ||
is_spmd_lp_id(ffa_endpoint_destination(x1))) {
return spmd_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER
);
}
/*
* When there is an ongoing SPMD logical partition direct
* request, there cannot be another direct request. Return
* error in this case. Panic'ing is an option but that does
* not provide the opportunity for caller to abort based on
* error codes.
*/
if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
assert(secure_origin);
return spmd_ffa_error_return(handle,
FFA_ERROR_DENIED);
}
if (!secure_origin) {
/* Validate source endpoint is non-secure for non-secure caller. */
if (ffa_is_secure_world_id(ffa_endpoint_source(x1))) {
@ -1072,7 +1123,9 @@ uint64_t spmd_smc_handler(uint32_t smc_fid,
break; /* Not reached */
case FFA_MSG_SEND_DIRECT_RESP_SMC32:
if (secure_origin && spmd_is_spmc_message(x1)) {
case FFA_MSG_SEND_DIRECT_RESP_SMC64:
if (secure_origin && (spmd_is_spmc_message(x1) ||
is_spmd_logical_sp_dir_req_in_progress(ctx))) {
spmd_spm_core_sync_exit(0ULL);
} else {
/* Forward direct message to the other world */
@ -1112,7 +1165,6 @@ uint64_t spmd_smc_handler(uint32_t smc_fid,
/* Forward the call to the other world */
/* fallthrough */
case FFA_MSG_SEND:
case FFA_MSG_SEND_DIRECT_RESP_SMC64:
case FFA_MEM_DONATE_SMC32:
case FFA_MEM_DONATE_SMC64:
case FFA_MEM_LEND_SMC32:
@ -1129,11 +1181,14 @@ uint64_t spmd_smc_handler(uint32_t smc_fid,
case FFA_SUCCESS_SMC32:
case FFA_SUCCESS_SMC64:
/*
* TODO: Assume that no requests originate from EL3 at the
* moment. This will change if a SP service is required in
* response to secure interrupts targeted to EL3. Until then
* simply forward the call to the Normal world.
* If there is an ongoing direct request from an SPMD logical
* partition, return an error.
*/
if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
assert(secure_origin);
return spmd_ffa_error_return(handle,
FFA_ERROR_DENIED);
}
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
@ -1160,6 +1215,12 @@ uint64_t spmd_smc_handler(uint32_t smc_fid,
FFA_ERROR_NOT_SUPPORTED);
}
if (is_spmd_logical_sp_dir_req_in_progress(ctx)) {
assert(secure_origin);
return spmd_ffa_error_return(handle,
FFA_ERROR_DENIED);
}
return spmd_smc_forward(smc_fid, secure_origin,
x1, x2, x3, x4, cookie,
handle, flags);
@ -1175,8 +1236,8 @@ uint64_t spmd_smc_handler(uint32_t smc_fid,
#if MAKE_FFA_VERSION(1, 1) <= FFA_VERSION_COMPILED
case FFA_PARTITION_INFO_GET_REGS_SMC64:
if (secure_origin) {
/* TODO: Future patches to enable support for this */
return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
return spmd_el3_populate_logical_partition_info(handle, x1,
x2, x3);
}
/* Call only supported with SMCCC 1.2+ */

View file

@ -52,8 +52,15 @@ typedef struct spmd_spm_core_context {
cpu_context_t cpu_ctx;
spmc_state_t state;
bool secure_interrupt_ongoing;
#if ENABLE_SPMD_LP
uint8_t spmd_lp_sync_req_ongoing;
#endif
} spmd_spm_core_context_t;
/* Flags to indicate ongoing requests for SPMD EL3 logical partitions */
#define SPMD_LP_FFA_DIR_REQ_ONGOING U(0x1)
#define SPMD_LP_FFA_INFO_GET_REG_ONGOING U(0x2)
/*
* Reserve ID for NS physical FFA Endpoint.
*/
@ -100,6 +107,9 @@ bool spmd_check_address_in_binary_image(uint64_t address);
* otherwise it returns a negative value
*/
int plat_spmd_handle_group0_interrupt(uint32_t id);
uint64_t spmd_ffa_error_return(void *handle, int error_code);
#endif /* __ASSEMBLER__ */
#endif /* SPMD_PRIVATE_H */