arm-trusted-firmware/services/std_svc/spmd/spmd_logical_sp.c
Raghu Krishnamurthy 95f7f6d86a feat(spmd): get logical partitions info
This patch enables FF-A secure partitions and the SPMC to query EL3 SPMD
logical partitions that are present in the system via partition get info
regs abi. Note that normal world will not be able to see EL3 SPMD
logical partitions as per the spec.

Signed-off-by: Raghu Krishnamurthy <raghu.ncstate@gmail.com>
Change-Id: I3fca8aed8ae156a559a74521803324c13ae3d55a
2023-08-11 18:56:34 -07:00

742 lines
22 KiB
C

/*
* Copyright (c) 2023, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <string.h>
#include "spmd_private.h"
#include <common/debug.h>
#include <common/uuid.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <services/el3_spmd_logical_sp.h>
#include <services/spmc_svc.h>
#include <smccc_helpers.h>
/*
* Maximum ffa_partition_info entries that can be returned by an invocation
* of FFA_PARTITION_INFO_GET_REGS_64 is size in bytes, of available
* registers/args in struct ffa_value divided by size of struct
* ffa_partition_info. For this ABI, arg3-arg17 in ffa_value can be used, i.e.
* 15 uint64_t fields. For FF-A v1.1, this value should be 5.
*/
#define MAX_INFO_REGS_ENTRIES_PER_CALL \
(uint8_t)((15 * sizeof(uint64_t)) / \
sizeof(struct ffa_partition_info_v1_1))
CASSERT(MAX_INFO_REGS_ENTRIES_PER_CALL == 5, assert_too_many_info_reg_entries);
#if ENABLE_SPMD_LP
static bool is_spmd_lp_inited;
static bool is_spmc_inited;
/*
* Helper function to obtain the array storing the EL3
* SPMD Logical Partition descriptors.
*/
static struct spmd_lp_desc *get_spmd_el3_lp_array(void)
{
return (struct spmd_lp_desc *) SPMD_LP_DESCS_START;
}
/*******************************************************************************
* Validate any logical partition descriptors before we initialize.
* Initialization of said partitions will be taken care of during SPMD boot.
******************************************************************************/
static int el3_spmd_sp_desc_validate(struct spmd_lp_desc *lp_array)
{
/* Check the array bounds are valid. */
assert(SPMD_LP_DESCS_END > SPMD_LP_DESCS_START);
/*
* No support for SPMD logical partitions when SPMC is at EL3.
*/
assert(!is_spmc_at_el3());
/* If no SPMD logical partitions are implemented then simply bail out. */
if (SPMD_LP_DESCS_COUNT == 0U) {
return -1;
}
for (uint32_t index = 0U; index < SPMD_LP_DESCS_COUNT; index++) {
struct spmd_lp_desc *lp_desc = &lp_array[index];
/* Validate our logical partition descriptors. */
if (lp_desc == NULL) {
ERROR("Invalid SPMD Logical SP Descriptor\n");
return -EINVAL;
}
/*
* Ensure the ID follows the convention to indicate it resides
* in the secure world.
*/
if (!ffa_is_secure_world_id(lp_desc->sp_id)) {
ERROR("Invalid SPMD Logical SP ID (0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
/* Ensure SPMD logical partition is in valid range. */
if (!is_spmd_lp_id(lp_desc->sp_id)) {
ERROR("Invalid SPMD Logical Partition ID (0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
/* Ensure the UUID is not the NULL UUID. */
if (lp_desc->uuid[0] == 0 && lp_desc->uuid[1] == 0 &&
lp_desc->uuid[2] == 0 && lp_desc->uuid[3] == 0) {
ERROR("Invalid UUID for SPMD Logical SP (0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
/* Ensure init function callback is registered. */
if (lp_desc->init == NULL) {
ERROR("Missing init function for Logical SP(0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
/* Ensure that SPMD LP only supports sending direct requests. */
if (lp_desc->properties != FFA_PARTITION_DIRECT_REQ_SEND) {
ERROR("Invalid SPMD logical partition properties (0x%x)\n",
lp_desc->properties);
return -EINVAL;
}
/* Ensure that all partition IDs are unique. */
for (uint32_t inner_idx = index + 1;
inner_idx < SPMD_LP_DESCS_COUNT; inner_idx++) {
if (lp_desc->sp_id == lp_array[inner_idx].sp_id) {
ERROR("Duplicate SPMD logical SP ID Detected (0x%x)\n",
lp_desc->sp_id);
return -EINVAL;
}
}
}
return 0;
}
static void spmd_encode_ffa_error(struct ffa_value *retval, int32_t error_code)
{
retval->func = FFA_ERROR;
retval->arg1 = FFA_TARGET_INFO_MBZ;
retval->arg2 = (uint32_t)error_code;
retval->arg3 = FFA_TARGET_INFO_MBZ;
retval->arg4 = FFA_TARGET_INFO_MBZ;
retval->arg5 = FFA_TARGET_INFO_MBZ;
retval->arg6 = FFA_TARGET_INFO_MBZ;
retval->arg7 = FFA_TARGET_INFO_MBZ;
}
static void spmd_build_direct_message_req(spmd_spm_core_context_t *ctx,
uint64_t x1, uint64_t x2,
uint64_t x3, uint64_t x4)
{
gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_MSG_SEND_DIRECT_REQ_SMC32);
write_ctx_reg(gpregs, CTX_GPREG_X1, x1);
write_ctx_reg(gpregs, CTX_GPREG_X2, x2);
write_ctx_reg(gpregs, CTX_GPREG_X3, x3);
write_ctx_reg(gpregs, CTX_GPREG_X4, x4);
write_ctx_reg(gpregs, CTX_GPREG_X5, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X6, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X7, 0U);
}
static void spmd_encode_ctx_to_ffa_value(spmd_spm_core_context_t *ctx,
struct ffa_value *retval)
{
gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
retval->func = read_ctx_reg(gpregs, CTX_GPREG_X0);
retval->arg1 = read_ctx_reg(gpregs, CTX_GPREG_X1);
retval->arg2 = read_ctx_reg(gpregs, CTX_GPREG_X2);
retval->arg3 = read_ctx_reg(gpregs, CTX_GPREG_X3);
retval->arg4 = read_ctx_reg(gpregs, CTX_GPREG_X4);
retval->arg5 = read_ctx_reg(gpregs, CTX_GPREG_X5);
retval->arg6 = read_ctx_reg(gpregs, CTX_GPREG_X6);
retval->arg7 = read_ctx_reg(gpregs, CTX_GPREG_X7);
retval->arg8 = read_ctx_reg(gpregs, CTX_GPREG_X8);
retval->arg9 = read_ctx_reg(gpregs, CTX_GPREG_X9);
retval->arg10 = read_ctx_reg(gpregs, CTX_GPREG_X10);
retval->arg11 = read_ctx_reg(gpregs, CTX_GPREG_X11);
retval->arg12 = read_ctx_reg(gpregs, CTX_GPREG_X12);
retval->arg13 = read_ctx_reg(gpregs, CTX_GPREG_X13);
retval->arg14 = read_ctx_reg(gpregs, CTX_GPREG_X14);
retval->arg15 = read_ctx_reg(gpregs, CTX_GPREG_X15);
retval->arg16 = read_ctx_reg(gpregs, CTX_GPREG_X16);
retval->arg17 = read_ctx_reg(gpregs, CTX_GPREG_X17);
}
static void spmd_logical_sp_set_dir_req_ongoing(spmd_spm_core_context_t *ctx)
{
ctx->spmd_lp_sync_req_ongoing |= SPMD_LP_FFA_DIR_REQ_ONGOING;
}
static void spmd_logical_sp_reset_dir_req_ongoing(spmd_spm_core_context_t *ctx)
{
ctx->spmd_lp_sync_req_ongoing &= ~SPMD_LP_FFA_DIR_REQ_ONGOING;
}
static void spmd_build_ffa_info_get_regs(spmd_spm_core_context_t *ctx,
const uint32_t uuid[4],
const uint16_t start_index,
const uint16_t tag)
{
gp_regs_t *gpregs = get_gpregs_ctx(&ctx->cpu_ctx);
uint64_t arg1 = (uint64_t)uuid[1] << 32 | uuid[0];
uint64_t arg2 = (uint64_t)uuid[3] << 32 | uuid[2];
uint64_t arg3 = start_index | (uint64_t)tag << 16;
write_ctx_reg(gpregs, CTX_GPREG_X0, FFA_PARTITION_INFO_GET_REGS_SMC64);
write_ctx_reg(gpregs, CTX_GPREG_X1, arg1);
write_ctx_reg(gpregs, CTX_GPREG_X2, arg2);
write_ctx_reg(gpregs, CTX_GPREG_X3, arg3);
write_ctx_reg(gpregs, CTX_GPREG_X4, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X5, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X6, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X7, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X8, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X9, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X10, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X11, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X12, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X13, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X14, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X15, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X16, 0U);
write_ctx_reg(gpregs, CTX_GPREG_X17, 0U);
}
static void spmd_logical_sp_set_info_regs_ongoing(spmd_spm_core_context_t *ctx)
{
ctx->spmd_lp_sync_req_ongoing |= SPMD_LP_FFA_INFO_GET_REG_ONGOING;
}
static void spmd_logical_sp_reset_info_regs_ongoing(
spmd_spm_core_context_t *ctx)
{
ctx->spmd_lp_sync_req_ongoing &= ~SPMD_LP_FFA_INFO_GET_REG_ONGOING;
}
static void spmd_fill_lp_info_array(
struct ffa_partition_info_v1_1 (*partitions)[EL3_SPMD_MAX_NUM_LP],
uint32_t uuid[4], uint16_t *lp_count_out)
{
uint16_t lp_count = 0;
struct spmd_lp_desc *lp_array;
bool uuid_is_null = is_null_uuid(uuid);
if (SPMD_LP_DESCS_COUNT == 0U) {
*lp_count_out = 0;
return;
}
lp_array = get_spmd_el3_lp_array();
for (uint16_t index = 0; index < SPMD_LP_DESCS_COUNT; ++index) {
struct spmd_lp_desc *lp = &lp_array[index];
if (uuid_is_null || uuid_match(uuid, lp->uuid)) {
uint16_t array_index = lp_count;
++lp_count;
(*partitions)[array_index].ep_id = lp->sp_id;
(*partitions)[array_index].execution_ctx_count = 1;
(*partitions)[array_index].properties = lp->properties;
(*partitions)[array_index].properties |=
(FFA_PARTITION_INFO_GET_AARCH64_STATE <<
FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT);
if (uuid_is_null) {
memcpy(&((*partitions)[array_index].uuid),
&lp->uuid, sizeof(lp->uuid));
}
}
}
*lp_count_out = lp_count;
}
static inline void spmd_pack_lp_count_props(
uint64_t *xn, uint16_t ep_id, uint16_t vcpu_count,
uint32_t properties)
{
*xn = (uint64_t)ep_id;
*xn |= (uint64_t)vcpu_count << 16;
*xn |= (uint64_t)properties << 32;
}
static inline void spmd_pack_lp_uuid(uint64_t *xn_1, uint64_t *xn_2,
uint32_t uuid[4])
{
*xn_1 = (uint64_t)uuid[0];
*xn_1 |= (uint64_t)uuid[1] << 32;
*xn_2 = (uint64_t)uuid[2];
*xn_2 |= (uint64_t)uuid[3] << 32;
}
#endif
/*
* Initialize SPMD logical partitions. This function assumes that it is called
* only after the SPMC has successfully initialized.
*/
int32_t spmd_logical_sp_init(void)
{
#if ENABLE_SPMD_LP
int32_t rc = 0;
struct spmd_lp_desc *spmd_lp_descs;
assert(SPMD_LP_DESCS_COUNT <= EL3_SPMD_MAX_NUM_LP);
if (is_spmd_lp_inited == true) {
return 0;
}
if (is_spmc_inited == false) {
return -1;
}
spmd_lp_descs = get_spmd_el3_lp_array();
/* Perform initial validation of the SPMD Logical Partitions. */
rc = el3_spmd_sp_desc_validate(spmd_lp_descs);
if (rc != 0) {
ERROR("Logical SPMD Partition validation failed!\n");
return rc;
}
VERBOSE("SPMD Logical Secure Partition init start.\n");
for (unsigned int i = 0U; i < SPMD_LP_DESCS_COUNT; i++) {
rc = spmd_lp_descs[i].init();
if (rc != 0) {
ERROR("SPMD Logical SP (0x%x) failed to initialize\n",
spmd_lp_descs[i].sp_id);
return rc;
}
VERBOSE("SPMD Logical SP (0x%x) Initialized\n",
spmd_lp_descs[i].sp_id);
}
INFO("SPMD Logical Secure Partition init completed.\n");
if (rc == 0) {
is_spmd_lp_inited = true;
}
return rc;
#else
return 0;
#endif
}
void spmd_logical_sp_set_spmc_initialized(void)
{
#if ENABLE_SPMD_LP
is_spmc_inited = true;
#endif
}
void spmd_logical_sp_set_spmc_failure(void)
{
#if ENABLE_SPMD_LP
is_spmc_inited = false;
#endif
}
/*
* This function takes an ffa_value structure populated with partition
* information from an FFA_PARTITION_INFO_GET_REGS ABI call, extracts
* the values and writes it into a ffa_partition_info_v1_1 structure for
* other code to consume.
*/
bool ffa_partition_info_regs_get_part_info(
struct ffa_value args, uint8_t idx,
struct ffa_partition_info_v1_1 *partition_info)
{
uint64_t *arg_ptrs;
uint64_t info, uuid_lo, uuid_high;
/*
* Each partition information is encoded in 3 registers, so there can be
* a maximum of 5 entries.
*/
if (idx >= 5 || partition_info == NULL) {
return false;
}
/*
* List of pointers to args in return value. arg0/func encodes ff-a
* function, arg1 is reserved, arg2 encodes indices. arg3 and greater
* values reflect partition properties.
*/
arg_ptrs = (uint64_t *)&args + ((idx * 3) + 3);
info = *arg_ptrs;
arg_ptrs++;
uuid_lo = *arg_ptrs;
arg_ptrs++;
uuid_high = *arg_ptrs;
partition_info->ep_id = (uint16_t)(info & 0xFFFFU);
partition_info->execution_ctx_count = (uint16_t)((info >> 16) & 0xFFFFU);
partition_info->properties = (uint32_t)(info >> 32);
partition_info->uuid[0] = (uint32_t)(uuid_lo & 0xFFFFFFFFU);
partition_info->uuid[1] = (uint32_t)((uuid_lo >> 32) & 0xFFFFFFFFU);
partition_info->uuid[2] = (uint32_t)(uuid_high & 0xFFFFFFFFU);
partition_info->uuid[3] = (uint32_t)((uuid_high >> 32) & 0xFFFFFFFFU);
return true;
}
/*
* This function is called by the SPMD in response to
* an FFA_PARTITION_INFO_GET_REG ABI invocation by the SPMC. Secure partitions
* are allowed to discover the presence of EL3 SPMD logical partitions by
* invoking the aforementioned ABI and this function populates the required
* information about EL3 SPMD logical partitions.
*/
uint64_t spmd_el3_populate_logical_partition_info(void *handle, uint64_t x1,
uint64_t x2, uint64_t x3)
{
#if ENABLE_SPMD_LP
uint32_t target_uuid[4] = { 0 };
uint32_t w0;
uint32_t w1;
uint32_t w2;
uint32_t w3;
uint16_t start_index;
uint16_t tag;
static struct ffa_partition_info_v1_1 partitions[EL3_SPMD_MAX_NUM_LP];
uint16_t lp_count = 0;
uint16_t max_idx = 0;
uint16_t curr_idx = 0;
uint8_t num_entries_to_ret = 0;
struct ffa_value ret = { 0 };
uint64_t *arg_ptrs = (uint64_t *)&ret + 3;
w0 = (uint32_t)(x1 & 0xFFFFFFFFU);
w1 = (uint32_t)(x1 >> 32);
w2 = (uint32_t)(x2 & 0xFFFFFFFFU);
w3 = (uint32_t)(x2 >> 32);
target_uuid[0] = w0;
target_uuid[1] = w1;
target_uuid[2] = w2;
target_uuid[3] = w3;
start_index = (uint16_t)(x3 & 0xFFFFU);
tag = (uint16_t)((x3 >> 16) & 0xFFFFU);
assert(handle == cm_get_context(SECURE));
if (tag != 0) {
VERBOSE("Tag is not 0. Cannot return partition info.\n");
return spmd_ffa_error_return(handle, FFA_ERROR_RETRY);
}
memset(&partitions, 0, sizeof(partitions));
spmd_fill_lp_info_array(&partitions, target_uuid, &lp_count);
if (lp_count == 0) {
VERBOSE("No SPDM EL3 logical partitions exist.\n");
return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
}
if (start_index >= lp_count) {
VERBOSE("start_index = %d, lp_count = %d (start index must be"
" less than partition count.\n",
start_index, lp_count);
return spmd_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
max_idx = lp_count - 1;
num_entries_to_ret = (max_idx - start_index) + 1;
num_entries_to_ret =
MIN(num_entries_to_ret, MAX_INFO_REGS_ENTRIES_PER_CALL);
curr_idx = start_index + num_entries_to_ret - 1;
assert(curr_idx <= max_idx);
ret.func = FFA_SUCCESS_SMC64;
ret.arg2 = (uint64_t)((sizeof(struct ffa_partition_info_v1_1) & 0xFFFFU) << 48);
ret.arg2 |= (uint64_t)(curr_idx << 16);
ret.arg2 |= (uint64_t)max_idx;
for (uint16_t idx = start_index; idx <= curr_idx; ++idx) {
spmd_pack_lp_count_props(arg_ptrs, partitions[idx].ep_id,
partitions[idx].execution_ctx_count,
partitions[idx].properties);
arg_ptrs++;
if (is_null_uuid(target_uuid)) {
spmd_pack_lp_uuid(arg_ptrs, (arg_ptrs + 1),
partitions[idx].uuid);
}
arg_ptrs += 2;
}
SMC_RET18(handle, ret.func, ret.arg1, ret.arg2, ret.arg3, ret.arg4,
ret.arg5, ret.arg6, ret.arg7, ret.arg8, ret.arg9, ret.arg10,
ret.arg11, ret.arg12, ret.arg13, ret.arg14, ret.arg15,
ret.arg16, ret.arg17);
#else
return spmd_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
#endif
}
/* This function can be used by an SPMD logical partition to invoke the
* FFA_PARTITION_INFO_GET_REGS ABI to the SPMC, to discover the secure
* partitions in the system. The function takes a UUID, start index and
* tag and the partition information are returned in an ffa_value structure
* and can be consumed by using appropriate helper functions.
*/
bool spmd_el3_invoke_partition_info_get(
const uint32_t target_uuid[4],
const uint16_t start_index,
const uint16_t tag,
struct ffa_value *retval)
{
#if ENABLE_SPMD_LP
uint64_t rc = UINT64_MAX;
spmd_spm_core_context_t *ctx = spmd_get_context();
if (retval == NULL) {
return false;
}
memset(retval, 0, sizeof(*retval));
if (!is_spmc_inited) {
VERBOSE("Cannot discover partition before,"
" SPMC is initialized.\n");
spmd_encode_ffa_error(retval, FFA_ERROR_DENIED);
return true;
}
if (tag != 0) {
VERBOSE("Tag must be zero. other tags unsupported\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
/* Save the non-secure context before entering SPMC */
cm_el1_sysregs_context_save(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_save(NON_SECURE);
#endif
spmd_build_ffa_info_get_regs(ctx, target_uuid, start_index, tag);
spmd_logical_sp_set_info_regs_ongoing(ctx);
rc = spmd_spm_core_sync_entry(ctx);
if (rc != 0ULL) {
ERROR("%s failed (%lx) on CPU%u\n", __func__, rc,
plat_my_core_pos());
panic();
}
spmd_logical_sp_reset_info_regs_ongoing(ctx);
spmd_encode_ctx_to_ffa_value(ctx, retval);
assert(is_ffa_error(retval) || is_ffa_success(retval));
cm_el1_sysregs_context_restore(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_restore(NON_SECURE);
#endif
cm_set_next_eret_context(NON_SECURE);
return true;
#else
return false;
#endif
}
/*******************************************************************************
* This function sends an FF-A Direct Request from a partition in EL3 to a
* partition that may reside under an SPMC (only lower ELs supported). The main
* use of this API is for SPMD logical partitions.
* The API is expected to be used when there are platform specific SMCs that
* need to be routed to a secure partition that is FF-A compliant or when
* there are group 0 interrupts that need to be handled first in EL3 and then
* forwarded to an FF-A compliant secure partition. Therefore, it is expected
* that the handle to the context provided belongs to the non-secure context.
* This also means that interrupts/SMCs that trap to EL3 during secure execution
* cannot use this API.
* x1, x2, x3 and x4 are encoded as specified in the FF-A specification.
* retval is used to pass the direct response values to the caller.
* The function returns true if retval has valid values, and false otherwise.
******************************************************************************/
bool spmd_el3_ffa_msg_direct_req(uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *handle,
struct ffa_value *retval)
{
#if ENABLE_SPMD_LP
uint64_t rc = UINT64_MAX;
spmd_spm_core_context_t *ctx = spmd_get_context();
if (retval == NULL) {
return false;
}
memset(retval, 0, sizeof(*retval));
if (!is_spmd_lp_inited || !is_spmc_inited) {
VERBOSE("Cannot send SPMD logical partition direct message,"
" Partitions not initialized or SPMC not initialized.\n");
spmd_encode_ffa_error(retval, FFA_ERROR_DENIED);
return true;
}
/*
* x2 must be zero, since there is no support for framework message via
* an SPMD logical partition. This is sort of a useless check and it is
* possible to not take parameter. However, as the framework extends it
* may be useful to have x2 and extend this function later with
* functionality based on x2.
*/
if (x2 != 0) {
VERBOSE("x2 must be zero. Cannot send framework message.\n");
spmd_encode_ffa_error(retval, FFA_ERROR_DENIED);
return true;
}
/*
* Current context must be non-secure. API is expected to be used
* when entry into EL3 and the SPMD logical partition is via an
* interrupt that occurs when execution is in normal world and
* SMCs from normal world. FF-A compliant SPMCs are expected to
* trap interrupts during secure execution in lower ELs since they
* are usually not re-entrant and SMCs from secure world can be
* handled synchronously. There is no known use case for an SPMD
* logical partition to send a direct message to another partition
* in response to a secure interrupt or SMCs from secure world.
*/
if (handle != cm_get_context(NON_SECURE)) {
VERBOSE("Handle must be for the non-secure context.\n");
spmd_encode_ffa_error(retval, FFA_ERROR_DENIED);
return true;
}
if (!is_spmd_lp_id(ffa_endpoint_source(x1))) {
VERBOSE("Source ID must be valid SPMD logical partition"
" ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
if (is_spmd_lp_id(ffa_endpoint_destination(x1))) {
VERBOSE("Destination ID must not be SPMD logical partition"
" ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
if (!ffa_is_secure_world_id(ffa_endpoint_destination(x1))) {
VERBOSE("Destination ID must be secure world ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
if (ffa_endpoint_destination(x1) == SPMD_DIRECT_MSG_ENDPOINT_ID) {
VERBOSE("Destination ID must not be SPMD ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
if (ffa_endpoint_destination(x1) == spmd_spmc_id_get()) {
VERBOSE("Destination ID must not be SPMC ID.\n");
spmd_encode_ffa_error(retval,
FFA_ERROR_INVALID_PARAMETER);
return true;
}
/* Save the non-secure context before entering SPMC */
cm_el1_sysregs_context_save(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_save(NON_SECURE);
#endif
/*
* Perform synchronous entry into the SPMC. Synchronous entry is
* required because the spec requires that a direct message request
* from an SPMD LP look like a function call from it's perspective.
*/
spmd_build_direct_message_req(ctx, x1, x2, x3, x4);
spmd_logical_sp_set_dir_req_ongoing(ctx);
rc = spmd_spm_core_sync_entry(ctx);
spmd_logical_sp_reset_dir_req_ongoing(ctx);
if (rc != 0ULL) {
ERROR("%s failed (%lx) on CPU%u\n", __func__, rc,
plat_my_core_pos());
panic();
} else {
spmd_encode_ctx_to_ffa_value(ctx, retval);
/*
* Only expect error or direct response,
* spmd_spm_core_sync_exit should not be called on other paths.
* Checks are asserts since the LSP can fail gracefully if the
* source or destination ids are not the same. Panic'ing would
* not provide any benefit.
*/
assert(is_ffa_error(retval) || is_ffa_direct_msg_resp(retval));
assert(is_ffa_error(retval) ||
(ffa_endpoint_destination(retval->arg1) ==
ffa_endpoint_source(x1)));
assert(is_ffa_error(retval) ||
(ffa_endpoint_source(retval->arg1) ==
ffa_endpoint_destination(x1)));
}
cm_el1_sysregs_context_restore(NON_SECURE);
#if SPMD_SPM_AT_SEL2
cm_el2_sysregs_context_restore(NON_SECURE);
#endif
cm_set_next_eret_context(NON_SECURE);
return true;
#else
return false;
#endif
}
bool is_spmd_logical_sp_info_regs_req_in_progress(
spmd_spm_core_context_t *ctx)
{
#if ENABLE_SPMD_LP
return ((ctx->spmd_lp_sync_req_ongoing & SPMD_LP_FFA_INFO_GET_REG_ONGOING)
== SPMD_LP_FFA_INFO_GET_REG_ONGOING);
#else
return false;
#endif
}
bool is_spmd_logical_sp_dir_req_in_progress(
spmd_spm_core_context_t *ctx)
{
#if ENABLE_SPMD_LP
return ((ctx->spmd_lp_sync_req_ongoing & SPMD_LP_FFA_DIR_REQ_ONGOING)
== SPMD_LP_FFA_DIR_REQ_ONGOING);
#else
return false;
#endif
}