1/jekyll_site/_includes/classes-point-cube-en.md

149 lines
5.3 KiB
Markdown
Raw Permalink Normal View History

2023-12-17 07:55:25 +03:00
The Point class of the three-dimensional space contains methods for rotations by an angle and for
obtaining projections onto a plane. When obtaining projections, the distance from the point to the
projection center is calculated. Point also contains a static method to compare two projections
of points.
{% capture collapsed_md %}
```js
class Point {
// point coordinates
constructor(x,y,z) {
this.x=x;
this.y=y;
this.z=z;
}
// rotate this point by an angle (deg) along
// axes (x,y,z) relative to the point (t0)
rotate(deg, t0) {
// functions to obtain sine and cosine of angle in radians
const sin = (deg) => Math.sin((Math.PI/180)*deg);
const cos = (deg) => Math.cos((Math.PI/180)*deg);
// calculate new coordinates of point using the formulas
// of the rotation matrix for three-dimensional space
let x,y,z;
// rotation along 'x' axis
y = t0.y+(this.y-t0.y)*cos(deg.x)-(this.z-t0.z)*sin(deg.x);
z = t0.z+(this.y-t0.y)*sin(deg.x)+(this.z-t0.z)*cos(deg.x);
this.y=y; this.z=z;
// rotation along 'y' axis
x = t0.x+(this.x-t0.x)*cos(deg.y)-(this.z-t0.z)*sin(deg.y);
z = t0.z+(this.x-t0.x)*sin(deg.y)+(this.z-t0.z)*cos(deg.y);
this.x=x; this.z=z;
// rotation along 'z' axis
x = t0.x+(this.x-t0.x)*cos(deg.z)-(this.y-t0.y)*sin(deg.z);
y = t0.y+(this.x-t0.x)*sin(deg.z)+(this.y-t0.y)*cos(deg.z);
this.x=x; this.y=y;
}
// get a projection of (type) from a distance (d)
// onto the plane of the observer screen (tv)
projection(type, tv, d) {
let proj = {};
// obtain a projection using experimental formulas
switch (type) {
case 'parallel': {
proj.x = this.x;
proj.y = this.y+(tv.y-this.z)/4;
break;
}
case 'perspective': {
proj.x = tv.x+d*(this.x-tv.x)/(this.z-tv.z+d);
proj.y = tv.y+d*(this.y-tv.y)/(this.z-tv.z+d);
break;
}
}
// calculate distance to projection center
proj.dist = Math.sqrt((this.x-tv.x)*(this.x-tv.x)
+(this.y-tv.y)*(this.y-tv.y)
+(this.z-tv.z+d)*(this.z-tv.z+d));
return proj;
}
// compare two projections of points (p1,p2),
// coordinates (x,y) should match
static pEquals(p1, p2) {
return Math.abs(p1.x-p2.x)<0.0001
&& Math.abs(p1.y-p2.y)<0.0001;
}
};
```
{% endcapture %}
{%- include collapsed_block.html summary="class Point" content=collapsed_md -%}
The Cube class contains a collection of vertices of the Point class and an array of faces. Each face is an
array of 4 vertices, coming from the same point and going clockwise. The Cube contains methods for rotating
all vertices by an angle and for obtaining projections of all faces onto a plane. When obtaining projections,
the tilt of the face is calculated — this is the remoteness from the projection plane. The cube also contains
two static methods for comparing two face projections: for defining the equidistant faces from the projection
center and adjacent walls between neighboring cubes.
{% capture collapsed_md %}
```js
class Cube {
// left upper near coordinate and size
constructor(x,y,z,size) {
// right lower distant coordinate
let xs=x+size,ys=y+size,zs=z+size;
let v={ // vertices
t000: new Point(x,y,z), // top
t001: new Point(x,y,zs), // top
t010: new Point(x,ys,z), // bottom
t011: new Point(x,ys,zs), // bottom
t100: new Point(xs,y,z), // top
t101: new Point(xs,y,zs), // top
t110: new Point(xs,ys,z), // bottom
t111: new Point(xs,ys,zs)};// bottom
this.vertices=v;
this.faces=[ // faces
[v.t000,v.t100,v.t110,v.t010], // front
[v.t000,v.t010,v.t011,v.t001], // left
[v.t000,v.t001,v.t101,v.t100], // upper
[v.t001,v.t011,v.t111,v.t101], // rear
[v.t100,v.t101,v.t111,v.t110], // right
[v.t010,v.t110,v.t111,v.t011]];// lower
}
// rotate vertices of the cube by an angle (deg)
// along axes (x,y,z) relative to the point (t0)
rotate(deg, t0) {
for (let vertex in this.vertices)
this.vertices[vertex].rotate(deg, t0);
}
// get projections of (type) from a distance (d)
// onto the plane of the observer screen (tv)
projection(type, tv, d) {
let proj = [];
for (let face of this.faces) {
// face projection, array of vertices
let p = [];
// cumulative remoteness of vertices
p.dist = 0;
// bypass the vertices of the face
for (let vertex of face) {
// obtain the projections of the vertices
let proj = vertex.projection(type, tv, d);
// accumulate the remoteness of vertices
p.dist+=proj.dist;
// add to array of vertices
p.push(proj);
}
// calculate face tilt, remoteness from the projection plane
p.clock = ((p[1].x-p[0].x)*(p[2].y-p[0].y)
-(p[1].y-p[0].y)*(p[2].x-p[0].x))<0;
proj.push(p);
}
return proj;
}
// compare two projections of faces (f1,f2), vertices
// should be equidistant from the center of projection
static pEquidistant(f1, f2) {
return Math.abs(f1.dist-f2.dist)<0.0001;
}
// compare two projections of faces (f1,f2), coordinates
// of points along the main diagonal (p0,p2) should match
static pAdjacent(f1, f2) {
return Point.pEquals(f1[0],f2[0])
&& Point.pEquals(f1[2],f2[2]);
}
};
```
{% endcapture %}
{%- include collapsed_block.html summary="class Cube" content=collapsed_md -%}