mirror of
https://bitbucket.org/smil3y/kdelibs.git
synced 2025-02-24 10:52:49 +00:00
875 lines
32 KiB
C++
875 lines
32 KiB
C++
/* This file is part of the KDE project
|
|
Copyright (C) 2002, 2003 The Karbon Developers
|
|
2006 Alexander Kellett <lypanov@kde.org>
|
|
2006, 2007 Rob Buis <buis@kde.org>
|
|
2007 Apple, Inc. All rights reserved.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public License
|
|
along with this library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "wtf/Platform.h"
|
|
#if ENABLE(SVG)
|
|
#include "xml/Document.h"
|
|
#include "SVGParserUtilities.h"
|
|
|
|
#include "ExceptionCode.h"
|
|
#include "FloatConversion.h"
|
|
#include "FloatPoint.h"
|
|
#include "Path.h"
|
|
#include "PlatformString.h"
|
|
#include "SVGPathSegList.h"
|
|
#include "SVGPathSegArc.h"
|
|
#include "SVGPathSegClosePath.h"
|
|
#include "SVGPathSegCurvetoCubic.h"
|
|
#include "SVGPathSegCurvetoCubicSmooth.h"
|
|
#include "SVGPathSegCurvetoQuadratic.h"
|
|
#include "SVGPathSegCurvetoQuadraticSmooth.h"
|
|
#include "SVGPathSegLineto.h"
|
|
#include "SVGPathSegLinetoHorizontal.h"
|
|
#include "SVGPathSegLinetoVertical.h"
|
|
#include "SVGPathSegList.h"
|
|
#include "SVGPathSegMoveto.h"
|
|
#include "SVGPointList.h"
|
|
#include "SVGPathElement.h"
|
|
#include <math.h>
|
|
#include <wtf/MathExtras.h>
|
|
|
|
namespace WebCore {
|
|
|
|
/* We use this generic _parseNumber function to allow the Path parsing code to work
|
|
* at a higher precision internally, without any unnecessary runtime cost or code
|
|
* complexity
|
|
*/
|
|
template <typename FloatType> static bool _parseNumber(const UChar*& ptr, const UChar* end, FloatType& number, bool skip)
|
|
{
|
|
int integer, exponent;
|
|
FloatType decimal, frac;
|
|
int sign, expsign;
|
|
const UChar* start = ptr;
|
|
|
|
exponent = 0;
|
|
integer = 0;
|
|
frac = 1;
|
|
decimal = 0;
|
|
sign = 1;
|
|
expsign = 1;
|
|
|
|
// read the sign
|
|
if (ptr < end && *ptr == '+')
|
|
ptr++;
|
|
else if (ptr < end && *ptr == '-') {
|
|
ptr++;
|
|
sign = -1;
|
|
}
|
|
|
|
if (ptr == end || ((*ptr < '0' || *ptr > '9') && *ptr != '.'))
|
|
// The first character of a number must be one of [0-9+-.]
|
|
return false;
|
|
|
|
// read the integer part
|
|
while (ptr < end && *ptr >= '0' && *ptr <= '9')
|
|
integer = (integer * 10) + (ptr++)->unicode() - '0';
|
|
|
|
if (ptr < end && *ptr == '.') { // read the decimals
|
|
ptr++;
|
|
|
|
// There must be a least one digit following the .
|
|
if (ptr >= end || *ptr < '0' || *ptr > '9')
|
|
return false;
|
|
|
|
while (ptr < end && *ptr >= '0' && *ptr <= '9')
|
|
decimal += ((ptr++)->unicode() - '0') * (frac *= static_cast<FloatType>(0.1));
|
|
}
|
|
|
|
// read the exponent part
|
|
if (ptr != start && ptr + 1 < end && (*ptr == 'e' || *ptr == 'E')
|
|
&& (ptr[1] != 'x' && ptr[1] != 'm')) {
|
|
ptr++;
|
|
|
|
// read the sign of the exponent
|
|
if (*ptr == '+')
|
|
ptr++;
|
|
else if (*ptr == '-') {
|
|
ptr++;
|
|
expsign = -1;
|
|
}
|
|
|
|
// There must be an exponent
|
|
if (ptr >= end || *ptr < '0' || *ptr > '9')
|
|
return false;
|
|
|
|
while (ptr < end && *ptr >= '0' && *ptr <= '9') {
|
|
exponent *= 10;
|
|
exponent += ptr->unicode() - '0';
|
|
ptr++;
|
|
}
|
|
}
|
|
|
|
number = integer + decimal;
|
|
number *= sign * static_cast<FloatType>(pow(10.0, expsign * exponent));
|
|
|
|
if (start == ptr)
|
|
return false;
|
|
|
|
if (skip)
|
|
skipOptionalSpacesOrDelimiter(ptr, end);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool parseNumber(const UChar*& ptr, const UChar* end, float& number, bool skip)
|
|
{
|
|
return _parseNumber(ptr, end, number, skip);
|
|
}
|
|
|
|
// Only used for parsing Paths
|
|
static bool parseNumber(const UChar*& ptr, const UChar* end, double& number, bool skip = true)
|
|
{
|
|
return _parseNumber(ptr, end, number, skip);
|
|
}
|
|
|
|
bool parseNumberOptionalNumber(const String& s, float& x, float& y)
|
|
{
|
|
if (s.isEmpty())
|
|
return false;
|
|
const UChar* cur = s.characters();
|
|
const UChar* end = cur + s.length();
|
|
|
|
if (!parseNumber(cur, end, x))
|
|
return false;
|
|
|
|
if (cur == end)
|
|
y = x;
|
|
else if (!parseNumber(cur, end, y, false))
|
|
return false;
|
|
|
|
return cur == end;
|
|
}
|
|
|
|
bool pointsListFromSVGData(SVGPointList* pointsList, const String& points)
|
|
{
|
|
if (points.isEmpty())
|
|
return true;
|
|
const UChar* cur = points.characters();
|
|
const UChar* end = cur + points.length();
|
|
|
|
skipOptionalSpaces(cur, end);
|
|
|
|
bool delimParsed = false;
|
|
while (cur < end) {
|
|
delimParsed = false;
|
|
float xPos = 0.0f;
|
|
if (!parseNumber(cur, end, xPos))
|
|
return false;
|
|
|
|
float yPos = 0.0f;
|
|
if (!parseNumber(cur, end, yPos, false))
|
|
return false;
|
|
|
|
skipOptionalSpaces(cur, end);
|
|
|
|
if (cur < end && *cur == ',') {
|
|
delimParsed = true;
|
|
cur++;
|
|
}
|
|
skipOptionalSpaces(cur, end);
|
|
|
|
ExceptionCode ec = 0;
|
|
pointsList->appendItem(FloatPoint(xPos, yPos), ec);
|
|
}
|
|
return cur == end && !delimParsed;
|
|
}
|
|
|
|
/**
|
|
* Parser for svg path data, contained in the d attribute.
|
|
*
|
|
* The parser delivers encountered commands and parameters by calling
|
|
* methods that correspond to those commands. Clients have to derive
|
|
* from this class and implement the abstract command methods.
|
|
*
|
|
* There are two operating modes. By default the parser just delivers unaltered
|
|
* svg path data commands and parameters. In the second mode, it will convert all
|
|
* relative coordinates to absolute ones, and convert all curves to cubic beziers.
|
|
*/
|
|
class SVGPathParser
|
|
{
|
|
public:
|
|
virtual ~SVGPathParser() { }
|
|
bool parseSVG(const String& d, bool process = false);
|
|
|
|
protected:
|
|
virtual void svgMoveTo(double x1, double y1, bool closed, bool abs = true) = 0;
|
|
virtual void svgLineTo(double x1, double y1, bool abs = true) = 0;
|
|
virtual void svgLineToHorizontal(double x, bool abs = true) { Q_UNUSED(x); Q_UNUSED(abs); }
|
|
virtual void svgLineToVertical(double y, bool abs = true) { Q_UNUSED(y); Q_UNUSED(abs); }
|
|
virtual void svgCurveToCubic(double x1, double y1, double x2, double y2, double x, double y, bool abs = true) = 0;
|
|
virtual void svgCurveToCubicSmooth(double x, double y, double x2, double y2, bool abs = true) { Q_UNUSED(x); Q_UNUSED(y); Q_UNUSED(x2); Q_UNUSED(y2); Q_UNUSED(abs); }
|
|
virtual void svgCurveToQuadratic(double x, double y, double x1, double y1, bool abs = true) { Q_UNUSED(x); Q_UNUSED(y); Q_UNUSED(x1); Q_UNUSED(y1); Q_UNUSED(abs); }
|
|
virtual void svgCurveToQuadraticSmooth(double x, double y, bool abs = true) {Q_UNUSED(x); Q_UNUSED(y); Q_UNUSED(abs);}
|
|
virtual void svgArcTo(double x, double y, double r1, double r2, double angle, bool largeArcFlag, bool sweepFlag, bool abs = true) { Q_UNUSED(x); Q_UNUSED(y); Q_UNUSED(r1); Q_UNUSED(r2); Q_UNUSED(angle); Q_UNUSED(largeArcFlag); Q_UNUSED(sweepFlag); Q_UNUSED(abs);}
|
|
virtual void svgClosePath() = 0;
|
|
private:
|
|
void calculateArc(bool relative, double& curx, double& cury, double angle, double x, double y, double r1, double r2, bool largeArcFlag, bool sweepFlag);
|
|
};
|
|
|
|
bool SVGPathParser::parseSVG(const String& s, bool process)
|
|
{
|
|
if (s.isEmpty())
|
|
return false;
|
|
|
|
const UChar* ptr = s.characters();
|
|
const UChar* end = ptr + s.length();
|
|
|
|
double contrlx, contrly, curx, cury, subpathx, subpathy, tox, toy, x1, y1, x2, y2, xc, yc;
|
|
double px1, py1, px2, py2, px3, py3;
|
|
bool closed = true;
|
|
|
|
if (!skipOptionalSpaces(ptr, end)) // skip any leading spaces
|
|
return false;
|
|
|
|
char command = (ptr++)->unicode(), lastCommand = ' ';// or toLatin1() instead of unicode()???
|
|
if (command != 'm' && command != 'M') // path must start with moveto
|
|
return false;
|
|
|
|
subpathx = subpathy = curx = cury = contrlx = contrly = 0.0;
|
|
while (1) {
|
|
skipOptionalSpaces(ptr, end); // skip spaces between command and first coord
|
|
|
|
bool relative = false;
|
|
|
|
switch(command)
|
|
{
|
|
case 'm':
|
|
relative = true;
|
|
case 'M':
|
|
{
|
|
if (!parseNumber(ptr, end, tox) || !parseNumber(ptr, end, toy))
|
|
return false;
|
|
|
|
if (process) {
|
|
subpathx = curx = relative ? curx + tox : tox;
|
|
subpathy = cury = relative ? cury + toy : toy;
|
|
|
|
svgMoveTo(narrowPrecisionToFloat(curx), narrowPrecisionToFloat(cury), closed);
|
|
} else
|
|
svgMoveTo(narrowPrecisionToFloat(tox), narrowPrecisionToFloat(toy), closed, !relative);
|
|
closed = false;
|
|
break;
|
|
}
|
|
case 'l':
|
|
relative = true;
|
|
case 'L':
|
|
{
|
|
if (!parseNumber(ptr, end, tox) || !parseNumber(ptr, end, toy))
|
|
return false;
|
|
|
|
if (process) {
|
|
curx = relative ? curx + tox : tox;
|
|
cury = relative ? cury + toy : toy;
|
|
|
|
svgLineTo(narrowPrecisionToFloat(curx), narrowPrecisionToFloat(cury));
|
|
}
|
|
else
|
|
svgLineTo(narrowPrecisionToFloat(tox), narrowPrecisionToFloat(toy), !relative);
|
|
break;
|
|
}
|
|
case 'h':
|
|
{
|
|
if (!parseNumber(ptr, end, tox))
|
|
return false;
|
|
if (process) {
|
|
curx = curx + tox;
|
|
svgLineTo(narrowPrecisionToFloat(curx), narrowPrecisionToFloat(cury));
|
|
}
|
|
else
|
|
svgLineToHorizontal(narrowPrecisionToFloat(tox), false);
|
|
break;
|
|
}
|
|
case 'H':
|
|
{
|
|
if (!parseNumber(ptr, end, tox))
|
|
return false;
|
|
if (process) {
|
|
curx = tox;
|
|
svgLineTo(narrowPrecisionToFloat(curx), narrowPrecisionToFloat(cury));
|
|
}
|
|
else
|
|
svgLineToHorizontal(narrowPrecisionToFloat(tox));
|
|
break;
|
|
}
|
|
case 'v':
|
|
{
|
|
if (!parseNumber(ptr, end, toy))
|
|
return false;
|
|
if (process) {
|
|
cury = cury + toy;
|
|
svgLineTo(narrowPrecisionToFloat(curx), narrowPrecisionToFloat(cury));
|
|
}
|
|
else
|
|
svgLineToVertical(narrowPrecisionToFloat(toy), false);
|
|
break;
|
|
}
|
|
case 'V':
|
|
{
|
|
if (!parseNumber(ptr, end, toy))
|
|
return false;
|
|
if (process) {
|
|
cury = toy;
|
|
svgLineTo(narrowPrecisionToFloat(curx), narrowPrecisionToFloat(cury));
|
|
}
|
|
else
|
|
svgLineToVertical(narrowPrecisionToFloat(toy));
|
|
break;
|
|
}
|
|
case 'z':
|
|
case 'Z':
|
|
{
|
|
// reset curx, cury for next path
|
|
if (process) {
|
|
curx = subpathx;
|
|
cury = subpathy;
|
|
}
|
|
closed = true;
|
|
svgClosePath();
|
|
break;
|
|
}
|
|
case 'c':
|
|
relative = true;
|
|
case 'C':
|
|
{
|
|
if (!parseNumber(ptr, end, x1) || !parseNumber(ptr, end, y1) ||
|
|
!parseNumber(ptr, end, x2) || !parseNumber(ptr, end, y2) ||
|
|
!parseNumber(ptr, end, tox) || !parseNumber(ptr, end, toy))
|
|
return false;
|
|
|
|
if (process) {
|
|
px1 = relative ? curx + x1 : x1;
|
|
py1 = relative ? cury + y1 : y1;
|
|
px2 = relative ? curx + x2 : x2;
|
|
py2 = relative ? cury + y2 : y2;
|
|
px3 = relative ? curx + tox : tox;
|
|
py3 = relative ? cury + toy : toy;
|
|
|
|
svgCurveToCubic(narrowPrecisionToFloat(px1), narrowPrecisionToFloat(py1), narrowPrecisionToFloat(px2),
|
|
narrowPrecisionToFloat(py2), narrowPrecisionToFloat(px3), narrowPrecisionToFloat(py3));
|
|
|
|
contrlx = relative ? curx + x2 : x2;
|
|
contrly = relative ? cury + y2 : y2;
|
|
curx = relative ? curx + tox : tox;
|
|
cury = relative ? cury + toy : toy;
|
|
}
|
|
else
|
|
svgCurveToCubic(narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1), narrowPrecisionToFloat(x2),
|
|
narrowPrecisionToFloat(y2), narrowPrecisionToFloat(tox), narrowPrecisionToFloat(toy), !relative);
|
|
|
|
break;
|
|
}
|
|
case 's':
|
|
relative = true;
|
|
case 'S':
|
|
{
|
|
if (!parseNumber(ptr, end, x2) || !parseNumber(ptr, end, y2) ||
|
|
!parseNumber(ptr, end, tox) || !parseNumber(ptr, end, toy))
|
|
return false;
|
|
|
|
if (!(lastCommand == 'c' || lastCommand == 'C' ||
|
|
lastCommand == 's' || lastCommand == 'S')) {
|
|
contrlx = curx;
|
|
contrly = cury;
|
|
}
|
|
|
|
if (process) {
|
|
px1 = 2 * curx - contrlx;
|
|
py1 = 2 * cury - contrly;
|
|
px2 = relative ? curx + x2 : x2;
|
|
py2 = relative ? cury + y2 : y2;
|
|
px3 = relative ? curx + tox : tox;
|
|
py3 = relative ? cury + toy : toy;
|
|
|
|
svgCurveToCubic(narrowPrecisionToFloat(px1), narrowPrecisionToFloat(py1), narrowPrecisionToFloat(px2),
|
|
narrowPrecisionToFloat(py2), narrowPrecisionToFloat(px3), narrowPrecisionToFloat(py3));
|
|
|
|
contrlx = relative ? curx + x2 : x2;
|
|
contrly = relative ? cury + y2 : y2;
|
|
curx = relative ? curx + tox : tox;
|
|
cury = relative ? cury + toy : toy;
|
|
}
|
|
else
|
|
svgCurveToCubicSmooth(narrowPrecisionToFloat(x2), narrowPrecisionToFloat(y2),
|
|
narrowPrecisionToFloat(tox), narrowPrecisionToFloat(toy), !relative);
|
|
break;
|
|
}
|
|
case 'q':
|
|
relative = true;
|
|
case 'Q':
|
|
{
|
|
if (!parseNumber(ptr, end, x1) || !parseNumber(ptr, end, y1) ||
|
|
!parseNumber(ptr, end, tox) || !parseNumber(ptr, end, toy))
|
|
return false;
|
|
|
|
if (process) {
|
|
px1 = relative ? (curx + 2 * (x1 + curx)) * (1.0 / 3.0) : (curx + 2 * x1) * (1.0 / 3.0);
|
|
py1 = relative ? (cury + 2 * (y1 + cury)) * (1.0 / 3.0) : (cury + 2 * y1) * (1.0 / 3.0);
|
|
px2 = relative ? ((curx + tox) + 2 * (x1 + curx)) * (1.0 / 3.0) : (tox + 2 * x1) * (1.0 / 3.0);
|
|
py2 = relative ? ((cury + toy) + 2 * (y1 + cury)) * (1.0 / 3.0) : (toy + 2 * y1) * (1.0 / 3.0);
|
|
px3 = relative ? curx + tox : tox;
|
|
py3 = relative ? cury + toy : toy;
|
|
|
|
svgCurveToCubic(narrowPrecisionToFloat(px1), narrowPrecisionToFloat(py1), narrowPrecisionToFloat(px2),
|
|
narrowPrecisionToFloat(py2), narrowPrecisionToFloat(px3), narrowPrecisionToFloat(py3));
|
|
|
|
contrlx = relative ? curx + x1 : x1;
|
|
contrly = relative ? cury + y1 : y1;
|
|
curx = relative ? curx + tox : tox;
|
|
cury = relative ? cury + toy : toy;
|
|
}
|
|
else
|
|
svgCurveToQuadratic(narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1),
|
|
narrowPrecisionToFloat(tox), narrowPrecisionToFloat(toy), !relative);
|
|
break;
|
|
}
|
|
case 't':
|
|
relative = true;
|
|
case 'T':
|
|
{
|
|
if (!parseNumber(ptr, end, tox) || !parseNumber(ptr, end, toy))
|
|
return false;
|
|
if (!(lastCommand == 'q' || lastCommand == 'Q' ||
|
|
lastCommand == 't' || lastCommand == 'T')) {
|
|
contrlx = curx;
|
|
contrly = cury;
|
|
}
|
|
|
|
if (process) {
|
|
xc = 2 * curx - contrlx;
|
|
yc = 2 * cury - contrly;
|
|
|
|
px1 = relative ? (curx + 2 * xc) * (1.0 / 3.0) : (curx + 2 * xc) * (1.0 / 3.0);
|
|
py1 = relative ? (cury + 2 * yc) * (1.0 / 3.0) : (cury + 2 * yc) * (1.0 / 3.0);
|
|
px2 = relative ? ((curx + tox) + 2 * xc) * (1.0 / 3.0) : (tox + 2 * xc) * (1.0 / 3.0);
|
|
py2 = relative ? ((cury + toy) + 2 * yc) * (1.0 / 3.0) : (toy + 2 * yc) * (1.0 / 3.0);
|
|
px3 = relative ? curx + tox : tox;
|
|
py3 = relative ? cury + toy : toy;
|
|
|
|
svgCurveToCubic(narrowPrecisionToFloat(px1), narrowPrecisionToFloat(py1), narrowPrecisionToFloat(px2),
|
|
narrowPrecisionToFloat(py2), narrowPrecisionToFloat(px3), narrowPrecisionToFloat(py3));
|
|
|
|
contrlx = xc;
|
|
contrly = yc;
|
|
curx = relative ? curx + tox : tox;
|
|
cury = relative ? cury + toy : toy;
|
|
}
|
|
else
|
|
svgCurveToQuadraticSmooth(narrowPrecisionToFloat(tox), narrowPrecisionToFloat(toy), !relative);
|
|
break;
|
|
}
|
|
case 'a':
|
|
relative = true;
|
|
case 'A':
|
|
{
|
|
bool largeArc, sweep;
|
|
double angle, rx, ry;
|
|
if (!parseNumber(ptr, end, rx) || !parseNumber(ptr, end, ry) ||
|
|
!parseNumber(ptr, end, angle) || !parseNumber(ptr, end, tox))
|
|
return false;
|
|
largeArc = tox == 1;
|
|
if (!parseNumber(ptr, end, tox))
|
|
return false;
|
|
sweep = tox == 1;
|
|
if (!parseNumber(ptr, end, tox) || !parseNumber(ptr, end, toy))
|
|
return false;
|
|
|
|
// Spec: radii are nonnegative numbers
|
|
rx = fabs(rx);
|
|
ry = fabs(ry);
|
|
|
|
if (process)
|
|
calculateArc(relative, curx, cury, angle, tox, toy, rx, ry, largeArc, sweep);
|
|
else
|
|
svgArcTo(narrowPrecisionToFloat(tox), narrowPrecisionToFloat(toy), narrowPrecisionToFloat(rx), narrowPrecisionToFloat(ry),
|
|
narrowPrecisionToFloat(angle), largeArc, sweep, !relative);
|
|
break;
|
|
}
|
|
default:
|
|
// FIXME: An error should go to the JavaScript console, or the like.
|
|
return false;
|
|
}
|
|
lastCommand = command;
|
|
|
|
if (ptr >= end)
|
|
return true;
|
|
|
|
// Check for remaining coordinates in the current command.
|
|
if ((*ptr == '+' || *ptr == '-' || (*ptr >= '0' && *ptr <= '9')) &&
|
|
(command != 'z' && command != 'Z')) {
|
|
if (command == 'M')
|
|
command = 'L';
|
|
else if (command == 'm')
|
|
command = 'l';
|
|
} else
|
|
command = (ptr++)->unicode(); // or toLatin1() instead of unicode()???
|
|
|
|
if (lastCommand != 'C' && lastCommand != 'c' &&
|
|
lastCommand != 'S' && lastCommand != 's' &&
|
|
lastCommand != 'Q' && lastCommand != 'q' &&
|
|
lastCommand != 'T' && lastCommand != 't') {
|
|
contrlx = curx;
|
|
contrly = cury;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// This works by converting the SVG arc to "simple" beziers.
|
|
// For each bezier found a svgToCurve call is done.
|
|
// Adapted from Niko's code in kdelibs/kdecore/svgicons.
|
|
// Maybe this can serve in some shared lib? (Rob)
|
|
void SVGPathParser::calculateArc(bool relative, double& curx, double& cury, double angle, double x, double y, double r1, double r2, bool largeArcFlag, bool sweepFlag)
|
|
{
|
|
double sin_th, cos_th;
|
|
double a00, a01, a10, a11;
|
|
double x0, y0, x1, y1, xc, yc;
|
|
double d, sfactor, sfactor_sq;
|
|
double th0, th1, th_arc;
|
|
int i, n_segs;
|
|
|
|
sin_th = sin(angle * (piDouble / 180.0));
|
|
cos_th = cos(angle * (piDouble / 180.0));
|
|
|
|
double dx;
|
|
|
|
if (!relative)
|
|
dx = (curx - x) / 2.0;
|
|
else
|
|
dx = -x / 2.0;
|
|
|
|
double dy;
|
|
|
|
if (!relative)
|
|
dy = (cury - y) / 2.0;
|
|
else
|
|
dy = -y / 2.0;
|
|
|
|
double _x1 = cos_th * dx + sin_th * dy;
|
|
double _y1 = -sin_th * dx + cos_th * dy;
|
|
double Pr1 = r1 * r1;
|
|
double Pr2 = r2 * r2;
|
|
double Px = _x1 * _x1;
|
|
double Py = _y1 * _y1;
|
|
|
|
// Spec : check if radii are large enough
|
|
double check = Px / Pr1 + Py / Pr2;
|
|
if (check > 1) {
|
|
r1 = r1 * sqrt(check);
|
|
r2 = r2 * sqrt(check);
|
|
}
|
|
|
|
a00 = cos_th / r1;
|
|
a01 = sin_th / r1;
|
|
a10 = -sin_th / r2;
|
|
a11 = cos_th / r2;
|
|
|
|
x0 = a00 * curx + a01 * cury;
|
|
y0 = a10 * curx + a11 * cury;
|
|
|
|
if (!relative)
|
|
x1 = a00 * x + a01 * y;
|
|
else
|
|
x1 = a00 * (curx + x) + a01 * (cury + y);
|
|
|
|
if (!relative)
|
|
y1 = a10 * x + a11 * y;
|
|
else
|
|
y1 = a10 * (curx + x) + a11 * (cury + y);
|
|
|
|
/* (x0, y0) is current point in transformed coordinate space.
|
|
(x1, y1) is new point in transformed coordinate space.
|
|
|
|
The arc fits a unit-radius circle in this space.
|
|
*/
|
|
|
|
d = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0);
|
|
|
|
sfactor_sq = 1.0 / d - 0.25;
|
|
|
|
if (sfactor_sq < 0)
|
|
sfactor_sq = 0;
|
|
|
|
sfactor = sqrt(sfactor_sq);
|
|
|
|
if (sweepFlag == largeArcFlag)
|
|
sfactor = -sfactor;
|
|
|
|
xc = 0.5 * (x0 + x1) - sfactor * (y1 - y0);
|
|
yc = 0.5 * (y0 + y1) + sfactor * (x1 - x0);
|
|
|
|
/* (xc, yc) is center of the circle. */
|
|
th0 = atan2(y0 - yc, x0 - xc);
|
|
th1 = atan2(y1 - yc, x1 - xc);
|
|
|
|
th_arc = th1 - th0;
|
|
if (th_arc < 0 && sweepFlag)
|
|
th_arc += 2 * piDouble;
|
|
else if (th_arc > 0 && !sweepFlag)
|
|
th_arc -= 2 * piDouble;
|
|
|
|
n_segs = (int) (int) ceil(fabs(th_arc / (piDouble * 0.5 + 0.001)));
|
|
|
|
for(i = 0; i < n_segs; i++) {
|
|
double sin_th, cos_th;
|
|
double a00, a01, a10, a11;
|
|
double x1, y1, x2, y2, x3, y3;
|
|
double t;
|
|
double th_half;
|
|
|
|
double _th0 = th0 + i * th_arc / n_segs;
|
|
double _th1 = th0 + (i + 1) * th_arc / n_segs;
|
|
|
|
sin_th = sin(angle * (piDouble / 180.0));
|
|
cos_th = cos(angle * (piDouble / 180.0));
|
|
|
|
/* inverse transform compared with rsvg_path_arc */
|
|
a00 = cos_th * r1;
|
|
a01 = -sin_th * r2;
|
|
a10 = sin_th * r1;
|
|
a11 = cos_th * r2;
|
|
|
|
th_half = 0.5 * (_th1 - _th0);
|
|
t = (8.0 / 3.0) * sin(th_half * 0.5) * sin(th_half * 0.5) / sin(th_half);
|
|
x1 = xc + cos(_th0) - t * sin(_th0);
|
|
y1 = yc + sin(_th0) + t * cos(_th0);
|
|
x3 = xc + cos(_th1);
|
|
y3 = yc + sin(_th1);
|
|
x2 = x3 + t * sin(_th1);
|
|
y2 = y3 - t * cos(_th1);
|
|
|
|
svgCurveToCubic(narrowPrecisionToFloat(a00 * x1 + a01 * y1), narrowPrecisionToFloat(a10 * x1 + a11 * y1),
|
|
narrowPrecisionToFloat(a00 * x2 + a01 * y2), narrowPrecisionToFloat(a10 * x2 + a11 * y2),
|
|
narrowPrecisionToFloat(a00 * x3 + a01 * y3), narrowPrecisionToFloat(a10 * x3 + a11 * y3));
|
|
}
|
|
|
|
if (!relative)
|
|
curx = x;
|
|
else
|
|
curx += x;
|
|
|
|
if (!relative)
|
|
cury = y;
|
|
else
|
|
cury += y;
|
|
}
|
|
|
|
class PathBuilder : public SVGPathParser
|
|
{
|
|
public:
|
|
bool build(Path* path, const String& d)
|
|
{
|
|
m_path = path;
|
|
return parseSVG(d, true);
|
|
}
|
|
|
|
private:
|
|
virtual void svgMoveTo(double x1, double y1, bool closed, bool abs = true)
|
|
{
|
|
current.setX(narrowPrecisionToFloat(abs ? x1 : current.x() + x1));
|
|
current.setY(narrowPrecisionToFloat(abs ? y1 : current.y() + y1));
|
|
if (closed)
|
|
m_path->closeSubpath();
|
|
m_path->moveTo(current);
|
|
}
|
|
virtual void svgLineTo(double x1, double y1, bool abs = true)
|
|
{
|
|
current.setX(narrowPrecisionToFloat(abs ? x1 : current.x() + x1));
|
|
current.setY(narrowPrecisionToFloat(abs ? y1 : current.y() + y1));
|
|
m_path->addLineTo(current);
|
|
}
|
|
virtual void svgCurveToCubic(double x1, double y1, double x2, double y2, double x, double y, bool abs = true)
|
|
{
|
|
if (!abs) {
|
|
x1 += current.x();
|
|
y1 += current.y();
|
|
x2 += current.x();
|
|
y2 += current.y();
|
|
}
|
|
current.setX(narrowPrecisionToFloat(abs ? x : current.x() + x));
|
|
current.setY(narrowPrecisionToFloat(abs ? y : current.y() + y));
|
|
m_path->addBezierCurveTo(FloatPoint::narrowPrecision(x1, y1), FloatPoint::narrowPrecision(x2, y2), current);
|
|
}
|
|
virtual void svgClosePath()
|
|
{
|
|
m_path->closeSubpath();
|
|
}
|
|
Path* m_path;
|
|
FloatPoint current;
|
|
};
|
|
|
|
bool pathFromSVGData(Path& path, const String& d)
|
|
{
|
|
PathBuilder builder;
|
|
return builder.build(&path, d);
|
|
}
|
|
|
|
class SVGPathSegListBuilder : public SVGPathParser
|
|
{
|
|
public:
|
|
bool build(SVGPathSegList* segList, const String& d, bool process)
|
|
{
|
|
m_pathSegList = segList;
|
|
return parseSVG(d, process);
|
|
}
|
|
|
|
private:
|
|
virtual void svgMoveTo(double x1, double y1, bool, bool abs = true)
|
|
{
|
|
ExceptionCode ec = 0;
|
|
|
|
if (abs)
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegMovetoAbs(narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1)), ec);
|
|
else
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegMovetoRel(narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1)), ec);
|
|
}
|
|
virtual void svgLineTo(double x1, double y1, bool abs = true)
|
|
{
|
|
ExceptionCode ec = 0;
|
|
|
|
if (abs)
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegLinetoAbs(narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1)), ec);
|
|
else
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegLinetoRel(narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1)), ec);
|
|
}
|
|
virtual void svgLineToHorizontal(double x, bool abs)
|
|
{
|
|
ExceptionCode ec = 0;
|
|
|
|
if (abs)
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegLinetoHorizontalAbs(narrowPrecisionToFloat(x)), ec);
|
|
else
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegLinetoHorizontalRel(narrowPrecisionToFloat(x)), ec);
|
|
}
|
|
virtual void svgLineToVertical(double y, bool abs)
|
|
{
|
|
ExceptionCode ec = 0;
|
|
|
|
if (abs)
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegLinetoVerticalAbs(narrowPrecisionToFloat(y)), ec);
|
|
else
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegLinetoVerticalRel(narrowPrecisionToFloat(y)), ec);
|
|
}
|
|
virtual void svgCurveToCubic(double x1, double y1, double x2, double y2, double x, double y, bool abs = true)
|
|
{
|
|
ExceptionCode ec = 0;
|
|
|
|
if (abs)
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegCurvetoCubicAbs(narrowPrecisionToFloat(x), narrowPrecisionToFloat(y),
|
|
narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1),
|
|
narrowPrecisionToFloat(x2), narrowPrecisionToFloat(y2)), ec);
|
|
else
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegCurvetoCubicRel(narrowPrecisionToFloat(x), narrowPrecisionToFloat(y),
|
|
narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1),
|
|
narrowPrecisionToFloat(x2), narrowPrecisionToFloat(y2)), ec);
|
|
}
|
|
virtual void svgCurveToCubicSmooth(double x, double y, double x2, double y2, bool abs)
|
|
{
|
|
ExceptionCode ec = 0;
|
|
|
|
if (abs)
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegCurvetoCubicSmoothAbs(narrowPrecisionToFloat(x2), narrowPrecisionToFloat(y2),
|
|
narrowPrecisionToFloat(x), narrowPrecisionToFloat(y)), ec);
|
|
else
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegCurvetoCubicSmoothRel(narrowPrecisionToFloat(x2), narrowPrecisionToFloat(y2),
|
|
narrowPrecisionToFloat(x), narrowPrecisionToFloat(y)), ec);
|
|
}
|
|
virtual void svgCurveToQuadratic(double x, double y, double x1, double y1, bool abs)
|
|
{
|
|
ExceptionCode ec = 0;
|
|
|
|
if (abs)
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegCurvetoQuadraticAbs(narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1),
|
|
narrowPrecisionToFloat(x), narrowPrecisionToFloat(y)), ec);
|
|
else
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegCurvetoQuadraticRel(narrowPrecisionToFloat(x1), narrowPrecisionToFloat(y1),
|
|
narrowPrecisionToFloat(x), narrowPrecisionToFloat(y)), ec);
|
|
}
|
|
virtual void svgCurveToQuadraticSmooth(double x, double y, bool abs)
|
|
{
|
|
ExceptionCode ec = 0;
|
|
|
|
if (abs)
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegCurvetoQuadraticSmoothAbs(narrowPrecisionToFloat(x), narrowPrecisionToFloat(y)), ec);
|
|
else
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegCurvetoQuadraticSmoothRel(narrowPrecisionToFloat(x), narrowPrecisionToFloat(y)), ec);
|
|
}
|
|
virtual void svgArcTo(double x, double y, double r1, double r2, double angle, bool largeArcFlag, bool sweepFlag, bool abs)
|
|
{
|
|
ExceptionCode ec = 0;
|
|
|
|
if (abs)
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegArcAbs(narrowPrecisionToFloat(x), narrowPrecisionToFloat(y),
|
|
narrowPrecisionToFloat(r1), narrowPrecisionToFloat(r2),
|
|
narrowPrecisionToFloat(angle), largeArcFlag, sweepFlag), ec);
|
|
else
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegArcRel(narrowPrecisionToFloat(x), narrowPrecisionToFloat(y),
|
|
narrowPrecisionToFloat(r1), narrowPrecisionToFloat(r2),
|
|
narrowPrecisionToFloat(angle), largeArcFlag, sweepFlag), ec);
|
|
}
|
|
virtual void svgClosePath()
|
|
{
|
|
ExceptionCode ec = 0;
|
|
m_pathSegList->appendItem(SVGPathElement::createSVGPathSegClosePath(), ec);
|
|
}
|
|
SVGPathSegList* m_pathSegList;
|
|
};
|
|
|
|
bool pathSegListFromSVGData(SVGPathSegList* path , const String& d, bool process)
|
|
{
|
|
SVGPathSegListBuilder builder;
|
|
return builder.build(path, d, process);
|
|
}
|
|
|
|
Vector<String> parseDelimitedString(const String& input, const char separator)
|
|
{
|
|
Vector<String> values;
|
|
|
|
const UChar* ptr = input.characters();
|
|
const UChar* end = ptr + input.length();
|
|
skipOptionalSpaces(ptr, end);
|
|
|
|
while (ptr < end) {
|
|
// Leading and trailing white space, and white space before and after semicolon separators, will be ignored.
|
|
const UChar* inputStart = ptr;
|
|
while (ptr < end && *ptr != separator) // careful not to ignore whitespace inside inputs
|
|
ptr++;
|
|
|
|
if (ptr == inputStart)
|
|
break;
|
|
|
|
// walk backwards from the ; to ignore any whitespace
|
|
const UChar* inputEnd = ptr - 1;
|
|
while (inputStart < inputEnd && isWhitespace(*inputEnd))
|
|
inputEnd--;
|
|
|
|
values.append(String(inputStart, inputEnd - inputStart + 1));
|
|
skipOptionalSpacesOrDelimiter(ptr, end, separator);
|
|
}
|
|
|
|
return values;
|
|
}
|
|
|
|
}
|
|
|
|
#endif // ENABLE(SVG)
|