kdelibs/kjs/number_object.cpp
Ivailo Monev 39f1e04295 generic: add back khtml and kjs with some changes
Signed-off-by: Ivailo Monev <xakepa10@gmail.com>
2015-11-09 23:23:53 +02:00

591 lines
19 KiB
C++

// -*- c-basic-offset: 2 -*-
// krazy:excludeall=doublequote_chars (UStrings aren't QStrings)
/*
* This file is part of the KDE libraries
* Copyright (C) 1999-2000,2003 Harri Porten (porten@kde.org)
* Copyright (C) 2007 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
* USA
*
*/
#include "number_object.h"
#include <config-kjs.h>
#include "number_object.lut.h"
#include "dtoa.h"
#include "error_object.h"
#include "operations.h"
#include <wtf/Assertions.h>
#include <wtf/MathExtras.h>
#include <wtf/Vector.h>
namespace KJS {
// GCC cstring uses these automatically, but not all implementations do.
using std::strlen;
using std::strcpy;
using std::strncpy;
using std::memset;
using std::memcpy;
static const double MAX_SAFE_INTEGER = 9007199254740991.0; //(2^53)-1
static const double MIN_SAFE_INTEGER = -9007199254740991.0; //-((2^53)-1)
// ------------------------------ NumberInstance ----------------------------
const ClassInfo NumberInstance::info = {"Number", 0, 0, 0};
NumberInstance::NumberInstance(JSObject* proto)
: JSWrapperObject(proto)
{
}
JSObject* NumberInstance::valueClone(Interpreter* targetCtx) const
{
NumberInstance* copy = new NumberInstance(targetCtx->builtinNumberPrototype());
copy->setInternalValue(internalValue());
return copy;
}
// ------------------------------ NumberPrototype ---------------------------
// ECMA 15.7.4
NumberPrototype::NumberPrototype(ExecState* exec, ObjectPrototype* objProto, FunctionPrototype* funcProto)
: NumberInstance(objProto)
{
setInternalValue(jsNumber(0));
// The constructor will be added later, after NumberObjectImp has been constructed
putDirectFunction(new NumberProtoFunc(exec, funcProto, NumberProtoFunc::ToString, 1, exec->propertyNames().toString), DontEnum);
putDirectFunction(new NumberProtoFunc(exec, funcProto, NumberProtoFunc::ToLocaleString, 0, exec->propertyNames().toLocaleString), DontEnum);
putDirectFunction(new NumberProtoFunc(exec, funcProto, NumberProtoFunc::ValueOf, 0, exec->propertyNames().valueOf), DontEnum);
putDirectFunction(new NumberProtoFunc(exec, funcProto, NumberProtoFunc::ToFixed, 1, exec->propertyNames().toFixed), DontEnum);
putDirectFunction(new NumberProtoFunc(exec, funcProto, NumberProtoFunc::ToExponential, 1, exec->propertyNames().toExponential), DontEnum);
putDirectFunction(new NumberProtoFunc(exec, funcProto, NumberProtoFunc::ToPrecision, 1, exec->propertyNames().toPrecision), DontEnum);
}
// ------------------------------ NumberProtoFunc ---------------------------
NumberProtoFunc::NumberProtoFunc(ExecState* exec, FunctionPrototype* funcProto, int i, int len, const Identifier& name)
: InternalFunctionImp(funcProto, name)
, id(i)
{
putDirect(exec->propertyNames().length, len, DontDelete|ReadOnly|DontEnum);
}
static UString integer_part_noexp(double d)
{
int decimalPoint;
int sign;
char* result = kjs_dtoa(d, 0, 0, &decimalPoint, &sign, NULL);
bool resultIsInfOrNan = (decimalPoint == 9999);
size_t length = strlen(result);
UString str = sign ? "-" : "";
if (resultIsInfOrNan)
str += result;
else if (decimalPoint <= 0)
str += "0";
else {
Vector<char, 1024> buf(decimalPoint + 1);
if (static_cast<int>(length) <= decimalPoint) {
strcpy(buf.data(), result);
memset(buf.data() + length, '0', decimalPoint - length);
} else
strncpy(buf.data(), result, decimalPoint);
buf[decimalPoint] = '\0';
str += UString(buf.data());
}
kjs_freedtoa(result);
return str;
}
static UString char_sequence(char c, int count)
{
Vector<char, 2048> buf(count + 1, c);
buf[count] = '\0';
return UString(buf.data());
}
static double intPow10(int e)
{
// This function uses the "exponentiation by squaring" algorithm and
// long double to quickly and precisely calculate integer powers of 10.0.
// This is a handy workaround for <rdar://problem/4494756>
if (e == 0)
return 1.0;
bool negative = e < 0;
unsigned exp = negative ? -e : e;
long double result = 10.0;
bool foundOne = false;
for (int bit = 31; bit >= 0; bit--) {
if (!foundOne) {
if ((exp >> bit) & 1)
foundOne = true;
} else {
result = result * result;
if ((exp >> bit) & 1)
result = result * 10.0;
}
}
if (negative)
return static_cast<double>(1.0 / result);
return static_cast<double>(result);
}
static JSValue* numberToString(ExecState* exec, JSValue* v, const List& args)
{
double radixAsDouble = args[0]->toInteger(exec); // nan -> 0
if (radixAsDouble == 10 || args[0]->isUndefined())
return jsString(v->toString(exec));
if (radixAsDouble < 2 || radixAsDouble > 36)
return throwError(exec, RangeError, "toString() radix argument must be between 2 and 36");
int radix = static_cast<int>(radixAsDouble);
const char digits[] = "0123456789abcdefghijklmnopqrstuvwxyz";
// INT_MAX results in 1024 characters left of the dot with radix 2
// give the same space on the right side. safety checks are in place
// unless someone finds a precise rule.
char s[2048 + 3];
const char* lastCharInString = s + sizeof(s) - 1;
double x = v->toNumber(exec);
if (isNaN(x) || isInf(x))
return jsString(UString::from(x));
bool isNegative = x < 0.0;
if (isNegative)
x = -x;
double integerPart = floor(x);
char* decimalPoint = s + sizeof(s) / 2;
// convert integer portion
char* p = decimalPoint;
double d = integerPart;
do {
int remainderDigit = static_cast<int>(fmod(d, radix));
*--p = digits[remainderDigit];
d /= radix;
} while ((d <= -1.0 || d >= 1.0) && s < p);
if (isNegative)
*--p = '-';
char* startOfResultString = p;
ASSERT(s <= startOfResultString);
d = x - integerPart;
p = decimalPoint;
const double epsilon = 0.001; // TODO: guessed. base on radix ?
bool hasFractionalPart = (d < -epsilon || d > epsilon);
if (hasFractionalPart) {
*p++ = '.';
do {
d *= radix;
const int digit = static_cast<int>(d);
*p++ = digits[digit];
d -= digit;
} while ((d < -epsilon || d > epsilon) && p < lastCharInString);
}
*p = '\0';
ASSERT(p < s + sizeof(s));
return jsString(startOfResultString);
}
static JSValue* numberToFixed(ExecState* exec, JSValue* v, const List& args)
{
JSValue* fractionDigits = args[0];
double df = fractionDigits->toInteger(exec);
if (!(df >= 0 && df <= 20))
return throwError(exec, RangeError, "toFixed() digits argument must be between 0 and 20");
int f = (int)df;
double x = v->toNumber(exec);
if (isNaN(x))
return jsString("NaN");
UString s;
if (x < 0) {
s.append('-');
x = -x;
} else if (x == -0.0)
x = 0;
if (x >= pow(10.0, 21.0))
return jsString(s + UString::from(x));
const double tenToTheF = pow(10.0, f);
double n = floor(x * tenToTheF);
if (fabs(n / tenToTheF - x) >= fabs((n + 1) / tenToTheF - x))
n++;
UString m = integer_part_noexp(n);
int k = m.size();
if (k <= f) {
UString z;
for (int i = 0; i < f + 1 - k; i++)
z.append('0');
m = z + m;
k = f + 1;
ASSERT(k == m.size());
}
int kMinusf = k - f;
if (kMinusf < m.size())
return jsString(s + m.substr(0, kMinusf) + "." + m.substr(kMinusf));
return jsString(s + m.substr(0, kMinusf));
}
void fractionalPartToString(char* buf, int& i, const char* result, int resultLength, int fractionalDigits)
{
if (fractionalDigits <= 0)
return;
int fDigitsInResult = static_cast<int>(resultLength) - 1;
buf[i++] = '.';
if (fDigitsInResult > 0) {
if (fractionalDigits < fDigitsInResult) {
strncpy(buf + i, result + 1, fractionalDigits);
i += fractionalDigits;
} else {
strcpy(buf + i, result + 1);
i += static_cast<int>(resultLength) - 1;
}
}
for (int j = 0; j < fractionalDigits - fDigitsInResult; j++)
buf[i++] = '0';
}
void exponentialPartToString(char* buf, int& i, int decimalPoint)
{
buf[i++] = 'e';
buf[i++] = (decimalPoint >= 0) ? '+' : '-';
// decimalPoint can't be more than 3 digits decimal given the
// nature of float representation
int exponential = decimalPoint - 1;
if (exponential < 0)
exponential *= -1;
if (exponential >= 100)
buf[i++] = static_cast<char>('0' + exponential / 100);
if (exponential >= 10)
buf[i++] = static_cast<char>('0' + (exponential % 100) / 10);
buf[i++] = static_cast<char>('0' + exponential % 10);
}
static JSValue* numberToExponential(ExecState* exec, JSValue* v, const List& args)
{
double x = v->toNumber(exec);
if (isNaN(x) || isInf(x))
return jsString(UString::from(x));
JSValue* fractionalDigitsValue = args[0];
double df = fractionalDigitsValue->toInteger(exec);
if (!(df >= 0 && df <= 20))
return throwError(exec, RangeError, "toExponential() argument must between 0 and 20");
int fractionalDigits = (int)df;
bool includeAllDigits = fractionalDigitsValue->isUndefined();
int decimalAdjust = 0;
if (x && !includeAllDigits) {
double logx = floor(log10(fabs(x)));
x /= pow(10.0, logx);
const double tenToTheF = pow(10.0, fractionalDigits);
double fx = floor(x * tenToTheF) / tenToTheF;
double cx = ceil(x * tenToTheF) / tenToTheF;
if (fabs(fx - x) < fabs(cx - x))
x = fx;
else
x = cx;
decimalAdjust = static_cast<int>(logx);
}
if (isNaN(x))
return jsString("NaN");
if (x == -0.0) // (-0.0).toExponential() should print as 0 instead of -0
x = 0;
int decimalPoint;
int sign;
char* result = kjs_dtoa(x, 0, 0, &decimalPoint, &sign, NULL);
size_t resultLength = strlen(result);
decimalPoint += decimalAdjust;
int i = 0;
char buf[80]; // digit + '.' + fractionDigits (max 20) + 'e' + sign + exponent (max?)
if (sign)
buf[i++] = '-';
if (decimalPoint == 999) // ? 9999 is the magical "result is Inf or NaN" value. what's 999??
strcpy(buf + i, result);
else {
buf[i++] = result[0];
if (includeAllDigits)
fractionalDigits = static_cast<int>(resultLength) - 1;
fractionalPartToString(buf, i, result, resultLength, fractionalDigits);
exponentialPartToString(buf, i, decimalPoint);
buf[i++] = '\0';
}
ASSERT(i <= 80);
kjs_freedtoa(result);
return jsString(buf);
}
static JSValue* numberToPrecision(ExecState* exec, JSValue* v, const List& args)
{
double doublePrecision = args[0]->toIntegerPreserveNaN(exec);
double x = v->toNumber(exec);
if (args[0]->isUndefined() || isNaN(x) || isInf(x))
return jsString(v->toString(exec));
UString s;
if (x < 0) {
s = "-";
x = -x;
}
if (!(doublePrecision >= 1 && doublePrecision <= 21)) // true for NaN
return throwError(exec, RangeError, "toPrecision() argument must be between 1 and 21");
int precision = (int)doublePrecision;
int e = 0;
UString m;
if (x) {
e = static_cast<int>(log10(x));
double tens = intPow10(e - precision + 1);
double n = floor(x / tens);
if (n < intPow10(precision - 1)) {
e = e - 1;
tens = intPow10(e - precision + 1);
n = floor(x / tens);
}
if (fabs((n + 1.0) * tens - x) <= fabs(n * tens - x))
++n;
// maintain n < 10^(precision)
if (n >= intPow10(precision)) {
n /= 10.0;
e += 1;
}
ASSERT(intPow10(precision - 1) <= n);
ASSERT(n < intPow10(precision));
m = integer_part_noexp(n);
if (e < -6 || e >= precision) {
if (m.size() > 1)
m = m.substr(0, 1) + "." + m.substr(1);
if (e >= 0)
return jsString(s + m + "e+" + UString::from(e));
return jsString(s + m + "e-" + UString::from(-e));
}
} else {
m = char_sequence('0', precision);
e = 0;
}
if (e == precision - 1)
return jsString(s + m);
else if (e >= 0) {
if (e + 1 < m.size())
return jsString(s + m.substr(0, e + 1) + "." + m.substr(e + 1));
return jsString(s + m);
}
return jsString(s + "0." + char_sequence('0', -(e + 1)) + m);
}
// ECMA 15.7.4.2 - 15.7.4.7
JSValue* NumberProtoFunc::callAsFunction(ExecState* exec, JSObject* thisObj, const List& args)
{
// no generic function. "this" has to be a Number object
if (!thisObj->inherits(&NumberInstance::info))
return throwError(exec, TypeError);
JSValue* v = static_cast<NumberInstance*>(thisObj)->internalValue();
switch (id) {
case ToString:
return numberToString(exec, v, args);
case ToLocaleString: /* TODO */
return jsString(v->toString(exec));
case ValueOf:
return jsNumber(v->toNumber(exec));
case ToFixed:
return numberToFixed(exec, v, args);
case ToExponential:
return numberToExponential(exec, v, args);
case ToPrecision:
return numberToPrecision(exec, v, args);
}
return 0;
}
// ------------------------------ NumberObjectImp ------------------------------
const ClassInfo NumberObjectImp::info = {"Function", &InternalFunctionImp::info, &numberTable, 0};
/* Source for number_object.lut.h
@begin numberTable 5
NaN NumberObjectImp::NaNValue DontEnum|DontDelete|ReadOnly
NEGATIVE_INFINITY NumberObjectImp::NegInfinity DontEnum|DontDelete|ReadOnly
POSITIVE_INFINITY NumberObjectImp::PosInfinity DontEnum|DontDelete|ReadOnly
MAX_VALUE NumberObjectImp::MaxValue DontEnum|DontDelete|ReadOnly
MIN_VALUE NumberObjectImp::MinValue DontEnum|DontDelete|ReadOnly
MAX_SAFE_INTEGER NumberObjectImp::MaxSafeInteger DontEnum|DontDelete|ReadOnly
MIN_SAFE_INTEGER NumberObjectImp::MinSafeInteger DontEnum|DontDelete|ReadOnly
isFinite NumberObjectImp::IsFinite DontEnum|Function 1
isInteger NumberObjectImp::IsInteger DontEnum|Function 1
isNaN NumberObjectImp::IsNaN DontEnum|Function 1
isSafeInteger NumberObjectImp::IsSafeInteger DontEnum|Function 1
parseInt NumberObjectImp::ParseInt DontEnum|Function 2
parseFloat NumberObjectImp::ParseFloat DontEnum|Function 1
@end
*/
NumberObjectImp::NumberObjectImp(ExecState* exec, FunctionPrototype* funcProto, NumberPrototype* numberProto)
: InternalFunctionImp(funcProto)
{
// Number.Prototype
putDirect(exec->propertyNames().prototype, numberProto, DontEnum|DontDelete|ReadOnly);
// no. of arguments for constructor
putDirect(exec->propertyNames().length, jsNumber(1), ReadOnly|DontDelete|DontEnum);
}
bool NumberObjectImp::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
return getStaticPropertySlot<NumberFuncImp, NumberObjectImp, InternalFunctionImp>(exec, &numberTable, this, propertyName, slot);
}
JSValue* NumberObjectImp::getValueProperty(ExecState*, int token) const
{
// ECMA 15.7.3
switch (token) {
case NaNValue:
return jsNaN();
case NegInfinity:
return jsNumberCell(-Inf);
case PosInfinity:
return jsNumberCell(Inf);
case MaxValue:
return jsNumberCell(1.7976931348623157E+308);
case MinValue:
return jsNumberCell(5E-324);
case MaxSafeInteger:
return jsNumber(MAX_SAFE_INTEGER);
case MinSafeInteger:
return jsNumber(MIN_SAFE_INTEGER);
}
return jsNull();
}
bool NumberObjectImp::implementsConstruct() const
{
return true;
}
// ECMA 15.7.1
JSObject* NumberObjectImp::construct(ExecState* exec, const List& args)
{
JSObject* proto = exec->lexicalInterpreter()->builtinNumberPrototype();
NumberInstance* obj = new NumberInstance(proto);
double n = args.isEmpty() ? 0 : args[0]->toNumber(exec);
obj->setInternalValue(jsNumber(n));
return obj;
}
// ECMA 15.7.2
JSValue* NumberObjectImp::callAsFunction(ExecState* exec, JSObject*, const List& args)
{
double n = args.isEmpty() ? 0 : args[0]->toNumber(exec);
return jsNumber(n);
}
NumberFuncImp::NumberFuncImp(ExecState* exec, int i, int l, const Identifier& name)
: InternalFunctionImp(static_cast<FunctionPrototype*>(exec->lexicalInterpreter()->builtinFunctionPrototype()), name)
, id(i)
{
putDirect(exec->propertyNames().length, l, DontDelete|ReadOnly|DontEnum);
}
JSValue* NumberFuncImp::callAsFunction(ExecState* exec, JSObject* /*thisObj*/, const List& args)
{
double arg = args[0]->toNumber(exec);
switch (id) {
case NumberObjectImp::IsFinite:
if (args[0]->type() != NumberType)
return jsBoolean(false);
return jsBoolean(!isNaN(arg) && !isInf(arg));
case NumberObjectImp::IsInteger:
{
if (args[0]->type() != NumberType)
return jsBoolean(false);
if (isNaN(arg) || isInf(arg))
return jsBoolean(false);
double num = args[0]->toInteger(exec);
return jsBoolean(num == arg);
}
case NumberObjectImp::IsNaN:
if (args[0]->type() != NumberType)
return jsBoolean(false);
return jsBoolean(isNaN(arg));
case NumberObjectImp::IsSafeInteger:
{
if (args[0]->type() != NumberType)
return jsBoolean(false);
if (isNaN(arg) || isInf(arg))
return jsBoolean(false);
double num = args[0]->toInteger(exec);
if (num != arg)
return jsBoolean(false);
return jsBoolean(fabs(num) <= MAX_SAFE_INTEGER);
}
case NumberObjectImp::ParseInt:
return jsNumber(KJS::parseInt(args[0]->toString(exec), args[1]->toInt32(exec)));
case NumberObjectImp::ParseFloat:
return jsNumber(KJS::parseFloat(args[0]->toString(exec)));
}
return jsUndefined();
}
} // namespace KJS