kdelibs/kjs/function.cpp
Ivailo Monev 39f1e04295 generic: add back khtml and kjs with some changes
Signed-off-by: Ivailo Monev <xakepa10@gmail.com>
2015-11-09 23:23:53 +02:00

1216 lines
36 KiB
C++

// -*- c-basic-offset: 2 -*-
/*
* This file is part of the KDE libraries
* Copyright (C) 1999-2002 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003 Apple Computer, Inc.
* Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
* Copyright (C) 2007 Maksim Orlovich (maksim@kde.org)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "function.h"
#include <config-kjs.h>
#include "scriptfunction.h"
#include "dtoa.h"
#include "internal.h"
#include "function_object.h"
#include "lexer.h"
#include "nodes.h"
#include "operations.h"
#include "debugger.h"
#include "PropertyNameArray.h"
#include "commonunicode.h"
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <string>
#include "wtf/DisallowCType.h"
#include "wtf/ASCIICType.h"
#include "bytecode/machine.h"
using namespace WTF;
//#define KJS_VERBOSE
namespace KJS {
// ----------------------------- FunctionImp ----------------------------------
const ClassInfo FunctionImp::info = {"Function", &InternalFunctionImp::info, 0, 0};
FunctionImp::FunctionImp(ExecState* exec, const Identifier& n, FunctionBodyNode* b, const ScopeChain& sc)
: InternalFunctionImp(static_cast<FunctionPrototype*>
(exec->lexicalInterpreter()->builtinFunctionPrototype()), n)
, body(b)
, _scope(sc)
{
}
void FunctionImp::mark()
{
InternalFunctionImp::mark();
_scope.mark();
}
FunctionImp::~FunctionImp()
{
}
void FunctionImp::initialCompile(ExecState* newExec)
{
FunctionBodyNode* body = this->body.get();
// Reserve various slots needed for the activation object. We do it only once,
// --- isCompiled() would return true even if debugging state changed
body->reserveSlot(ActivationImp::LengthSlot, false);
body->reserveSlot(ActivationImp::TearOffNeeded, false);
body->reserveSlot(ActivationImp::ScopeLink, false /* will mark via ScopeChain::mark() */);
body->reserveSlot(ActivationImp::FunctionSlot, true);
body->reserveSlot(ActivationImp::ArgumentsObjectSlot, true);
// Create declarations for parameters, and allocate the symbols.
// We always just give them sequential positions, to make passInParameters
// simple (though perhaps wasting memory in the trivial case)
for (size_t i = 0; i < body->numParams(); ++i)
body->addSymbolOverwriteID(i + ActivationImp::NumReservedSlots, body->paramName(i), DontDelete);
body->processDecls(newExec);
body->compile(FunctionCode, newExec->dynamicInterpreter()->debugger() ? Debug : Release);
}
#ifdef KJS_VERBOSE
static int callDepth;
static std::string callIndent;
static const char* ind()
{
callIndent = "";
for (int i = 0; i < callDepth; ++i)
callIndent += " ";
return callIndent.c_str();
}
// Multiline print adding indentation
static void printInd(const char* str)
{
fprintf(stderr, "%s", ind());
for (const char* c = str; *c; ++c) {
if (*c != '\n')
fprintf(stderr, "%c", *c);
else
fprintf(stderr, "\n%s", ind());
}
}
#endif
JSValue* FunctionImp::callAsFunction(ExecState* exec, JSObject* thisObj, const List& args)
{
assert(thisObj);
#ifdef KJS_VERBOSE
++callDepth;
#endif
Debugger* dbg = exec->dynamicInterpreter()->debugger();
// enter a new execution context
FunctionExecState newExec(exec->dynamicInterpreter(), thisObj, body.get(), exec, this);
if (exec->hadException())
newExec.setException(exec->exception());
FunctionBodyNode* body = this->body.get();
// The first time we're called, compute the set of local variables,
// and compile the body. (note that parameters have been collected
// during the AST build)
CompileType currentState = body->compileState();
if (currentState == NotCompiled) {
initialCompile(&newExec);
} else {
// Otherwise, we may still need to recompile due to debug...
CompileType desiredState = dbg ? Debug : Release;
if (desiredState != currentState)
body->compile(FunctionCode, desiredState);
}
size_t stackSize = 0;
LocalStorageEntry* stackSpace = 0;
// We always allocate on stack initially, and tearoff only after we're done.
int regs = body->numLocalsAndRegisters();
stackSize = sizeof(LocalStorageEntry) * regs;
stackSpace = (LocalStorageEntry*)exec->dynamicInterpreter()->stackAlloc(stackSize);
ActivationImp* activation = static_cast<ActivationImp*>(newExec.activationObject());
activation->setup(&newExec, this, &args, stackSpace);
activation->tearOffNeededSlot() = body->tearOffAtEnd();
newExec.initLocalStorage(stackSpace, regs);
JSValue* result = Machine::runBlock(&newExec, body->code(), exec);
// If we need to tear off now --- either due to static flag above, or
// if execution requested it dynamically --- do so now.
if (activation->tearOffNeededSlot()) {
activation->performTearOff();
} else {
// Otherwise, we recycle the activation object; we must clear its
// data pointer, though, since that may become dead.
// (we also unlink it from the scope chain at this time)
activation->scopeLink().deref();
activation->localStorage = 0;
exec->dynamicInterpreter()->recycleActivation(activation);
}
// Now free the stack space..
exec->dynamicInterpreter()->stackFree(stackSize);
#ifdef KJS_VERBOSE
fprintf(stderr, "%s", ind());
if (exec->exception())
printInfo(exec,"throwing", exec->exception());
else
printInfo(exec,"returning", result);
--callDepth;
#endif
return result;
}
JSValue *FunctionImp::argumentsGetter(ExecState* exec, JSObject*, const Identifier& propertyName, const PropertySlot& slot)
{
FunctionImp *thisObj = static_cast<FunctionImp *>(slot.slotBase());
ExecState *context = exec;
while (context) {
if (context->function() == thisObj) {
return static_cast<ActivationImp *>(context->activationObject())->get(exec, propertyName);
}
context = context->callingExecState();
}
return jsNull();
}
JSValue *FunctionImp::callerGetter(ExecState* exec, JSObject*, const Identifier&, const PropertySlot& slot)
{
FunctionImp* thisObj = static_cast<FunctionImp*>(slot.slotBase());
ExecState* context = exec;
while (context) {
if (context->function() == thisObj)
break;
context = context->callingExecState();
}
if (!context)
return jsNull();
ExecState* callingContext = context->callingExecState();
if (!callingContext)
return jsNull();
FunctionImp* callingFunction = callingContext->function();
if (!callingFunction)
return jsNull();
return callingFunction;
}
JSValue *FunctionImp::lengthGetter(ExecState*, JSObject*, const Identifier&, const PropertySlot& slot)
{
FunctionImp *thisObj = static_cast<FunctionImp *>(slot.slotBase());
return jsNumber(thisObj->body->numParams());
}
JSValue* FunctionImp::nameGetter(ExecState*, JSObject*, const Identifier&, const PropertySlot& slot)
{
FunctionImp* thisObj = static_cast<FunctionImp*>(slot.slotBase());
return jsString(thisObj->functionName().ustring());
}
bool FunctionImp::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
// Find the arguments from the closest context.
if (propertyName == exec->propertyNames().arguments) {
slot.setCustom(this, argumentsGetter);
return true;
}
// Compute length of parameters.
if (propertyName == exec->propertyNames().length) {
slot.setCustom(this, lengthGetter);
return true;
}
// Calling function (Mozilla-extension)
if (propertyName == exec->propertyNames().caller) {
slot.setCustom(this, callerGetter);
return true;
}
// Function name (Mozilla-extension)
if (propertyName == exec->propertyNames().name) {
slot.setCustom(this, nameGetter);
return true;
}
return InternalFunctionImp::getOwnPropertySlot(exec, propertyName, slot);
}
bool FunctionImp::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& desc)
{
if (propertyName == exec->propertyNames().length) {
desc.setPropertyDescriptorValues(exec, jsNumber(body->numParams()), ReadOnly|DontDelete|DontEnum);
return true;
}
return KJS::JSObject::getOwnPropertyDescriptor(exec, propertyName, desc);
}
void FunctionImp::put(ExecState *exec, const Identifier &propertyName, JSValue *value, int attr)
{
if (propertyName == exec->propertyNames().arguments ||
propertyName == exec->propertyNames().length ||
propertyName == exec->propertyNames().name)
return;
InternalFunctionImp::put(exec, propertyName, value, attr);
}
bool FunctionImp::deleteProperty(ExecState *exec, const Identifier &propertyName)
{
if (propertyName == exec->propertyNames().arguments ||
propertyName == exec->propertyNames().length ||
propertyName == exec->propertyNames().name)
return false;
return InternalFunctionImp::deleteProperty(exec, propertyName);
}
/* Returns the parameter name corresponding to the given index. eg:
* function f1(x, y, z): getParameterName(0) --> x
*
* If a name appears more than once, only the last index at which
* it appears associates with it. eg:
* function f2(x, x): getParameterName(0) --> null
*/
Identifier FunctionImp::getParameterName(size_t index)
{
if (index >= body->numParams())
return CommonIdentifiers::shared()->nullIdentifier;
Identifier name = body->paramName(index);
// Are there any subsequent parameters with the same name?
for (size_t pos = index + 1; pos < body->numParams(); ++pos)
if (body->paramName(pos) == name)
return CommonIdentifiers::shared()->nullIdentifier;
return name;
}
bool FunctionImp::implementsConstruct() const
{
return true;
}
// ECMA 13.2.2 [[Construct]]
JSObject *FunctionImp::construct(ExecState *exec, const List &args)
{
JSObject *proto;
JSValue *p = get(exec, exec->propertyNames().prototype);
if (p->isObject())
proto = static_cast<JSObject*>(p);
else
proto = exec->lexicalInterpreter()->builtinObjectPrototype();
JSObject *obj(new JSObject(proto));
JSValue *res = call(exec,obj,args);
if (res->isObject())
return static_cast<JSObject *>(res);
else
return obj;
}
// ------------------------------ Thrower ---------------------------------
Thrower::Thrower(ErrorType type)
: JSObject(),
m_type(type)
{
}
JSValue* Thrower::callAsFunction(ExecState* exec, JSObject* /*thisObj*/, const List& /*args*/)
{
return throwError(exec, m_type);
}
// ------------------------------ BoundFunction ---------------------------------
BoundFunction::BoundFunction(ExecState* exec, JSObject* targetFunction, JSObject* boundThis, KJS::List boundArgs)
: InternalFunctionImp(static_cast<FunctionPrototype*>(exec->lexicalInterpreter()->builtinFunctionPrototype())),
m_targetFunction(targetFunction),
m_boundThis(boundThis),
m_boundArgs(boundArgs)
{
}
// ECMAScript Edition 5.1r6 - 15.3.4.5.2
JSObject* BoundFunction::construct(ExecState* exec, const List& extraArgs)
{
JSObject* target = m_targetFunction;
if (!target->implementsConstruct())
return throwError(exec, TypeError);
List boundArgs = m_boundArgs;
List args;
for (int i = 0; i < boundArgs.size(); ++i)
args.append(boundArgs.at(i));
for (int i = 0; i < extraArgs.size(); ++i)
args.append(extraArgs.at(i));
return target->construct(exec, args);
}
// ECMAScript Edition 5.1r6 - 15.3.4.5.1
JSValue* BoundFunction::callAsFunction(ExecState* exec, JSObject* /*thisObj*/, const List& extraArgs)
{
List boundArgs = m_boundArgs;
JSObject* boundThis = m_boundThis;
JSObject* target = m_targetFunction;
List args;
for (int i = 0; i < boundArgs.size(); ++i)
args.append(boundArgs.at(i));
for (int i = 0; i < extraArgs.size(); ++i)
args.append(extraArgs.at(i));
return target->callAsFunction(exec, boundThis, args);
}
// ECMAScript Edition 5.1r6 - 15.3.4.5.3
bool BoundFunction::hasInstance(ExecState* exec, JSValue* value)
{
JSObject* target = m_targetFunction;
if (!target->implementsHasInstance())
return throwError(exec, TypeError);
return target->hasInstance(exec, value);
}
void BoundFunction::setTargetFunction(JSObject* targetFunction)
{
m_targetFunction = targetFunction;
}
void BoundFunction::setBoundArgs(const List& boundArgs)
{
m_boundArgs = boundArgs;
}
void BoundFunction::setBoundThis(JSObject* boundThis)
{
m_boundThis = boundThis;
}
// ------------------------------ IndexToNameMap ---------------------------------
// We map indexes in the arguments array to their corresponding argument names.
// Example: function f(x, y, z): arguments[0] = x, so we map 0 to Identifier("x").
// Once we have an argument name, we can get and set the argument's value in the
// activation object.
// We use Identifier::null to indicate that a given argument's value
// isn't stored in the activation object.
IndexToNameMap::IndexToNameMap(FunctionImp *func, const List &args)
{
_map = new Identifier[args.size()];
this->_size = args.size();
size_t i = 0;
ListIterator iterator = args.begin();
for (; iterator != args.end(); i++, iterator++)
_map[i] = func->getParameterName(i); // null if there is no corresponding parameter
}
IndexToNameMap::~IndexToNameMap() {
delete [] _map;
}
bool IndexToNameMap::isMapped(const Identifier &index) const
{
bool indexIsNumber;
int indexAsNumber = index.toStrictUInt32(&indexIsNumber);
if (!indexIsNumber)
return false;
if (indexAsNumber >= _size)
return false;
if (_map[indexAsNumber].isNull())
return false;
return true;
}
void IndexToNameMap::unMap(const Identifier &index)
{
bool indexIsNumber;
int indexAsNumber = index.toStrictUInt32(&indexIsNumber);
assert(indexIsNumber && indexAsNumber < _size);
_map[indexAsNumber] = CommonIdentifiers::shared()->nullIdentifier;;
}
int IndexToNameMap::size() const
{
return _size;
}
Identifier& IndexToNameMap::operator[](int index)
{
return _map[index];
}
Identifier& IndexToNameMap::operator[](const Identifier &index)
{
bool indexIsNumber;
int indexAsNumber = index.toStrictUInt32(&indexIsNumber);
assert(indexIsNumber && indexAsNumber < _size);
return (*this)[indexAsNumber];
}
// ------------------------------ Arguments ---------------------------------
const ClassInfo Arguments::info = {"Arguments", 0, 0, 0};
// ECMA 10.1.8
Arguments::Arguments(ExecState *exec, FunctionImp *func, const List &args, ActivationImp *act)
: JSObject(exec->lexicalInterpreter()->builtinObjectPrototype()),
_activationObject(act),
indexToNameMap(func, args)
{
putDirect(exec->propertyNames().callee, func, DontEnum);
putDirect(exec->propertyNames().length, args.size(), DontEnum);
int i = 0;
ListIterator iterator = args.begin();
for (; iterator != args.end(); i++, iterator++) {
if (!indexToNameMap.isMapped(Identifier::from(i))) {
//ECMAScript Edition 5.1r6 - 10.6.11.b, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true
JSObject::put(exec, Identifier::from(i), *iterator, None);
}
}
}
void Arguments::mark()
{
JSObject::mark();
if (_activationObject && !_activationObject->marked())
_activationObject->mark();
}
JSValue *Arguments::mappedIndexGetter(ExecState* exec, JSObject*, const Identifier& propertyName, const PropertySlot& slot)
{
Arguments *thisObj = static_cast<Arguments *>(slot.slotBase());
return thisObj->_activationObject->get(exec, thisObj->indexToNameMap[propertyName]);
}
bool Arguments::getOwnPropertySlot(ExecState *exec, const Identifier& propertyName, PropertySlot& slot)
{
if (indexToNameMap.isMapped(propertyName)) {
slot.setCustom(this, mappedIndexGetter);
return true;
}
return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}
void Arguments::put(ExecState *exec, const Identifier &propertyName, JSValue *value, int attr)
{
if (indexToNameMap.isMapped(propertyName)) {
unsigned attr = 0;
JSObject::getPropertyAttributes(propertyName, attr);
if (attr & ReadOnly)
return;
_activationObject->put(exec, indexToNameMap[propertyName], value, attr);
} else {
JSObject::put(exec, propertyName, value, attr);
}
}
bool Arguments::deleteProperty(ExecState *exec, const Identifier &propertyName)
{
if (indexToNameMap.isMapped(propertyName)) {
bool result = JSObject::deleteProperty(exec, propertyName);
if (result) {
_activationObject->deleteProperty(exec, indexToNameMap[propertyName]);
indexToNameMap.unMap(propertyName);
}
return true;
} else {
return JSObject::deleteProperty(exec, propertyName);
}
}
void Arguments::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, PropertyMap::PropertyMode mode)
{
unsigned int length = indexToNameMap.size();
unsigned attr;
for (unsigned int i = 0; i < length; ++i) {
attr = 0;
Identifier ident = Identifier::from(i);
if (indexToNameMap.isMapped(ident) &&
_activationObject->getPropertyAttributes(indexToNameMap[ident], attr)) {
if (PropertyMap::checkEnumerable(attr, mode)) {
propertyNames.add(ident);
}
}
}
JSObject::getOwnPropertyNames(exec, propertyNames, mode);
}
bool Arguments::defineOwnProperty(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& desc, bool shouldThrow)
{
bool isMapped = indexToNameMap.isMapped(propertyName);
Identifier mappedName;
if (isMapped)
mappedName = indexToNameMap[propertyName];
else
mappedName = propertyName;
bool allowed = JSObject::defineOwnProperty(exec, propertyName, desc, false);
if (!allowed) {
if (shouldThrow)
throwError(exec, TypeError);
return false;
}
if (isMapped) {
if (desc.isAccessorDescriptor()) {
indexToNameMap.unMap(propertyName);
} else {
if (desc.value()) {
_activationObject->putDirect(mappedName, desc.value(), desc.attributes());
}
if (desc.writableSet() && desc.writable() == false) {
indexToNameMap.unMap(propertyName);
}
}
}
return true;
}
// ------------------------------ ActivationImp --------------------------------
const ClassInfo ActivationImp::info = {"Activation", 0, 0, 0};
// ECMA 10.1.6
void ActivationImp::setup(ExecState* exec, FunctionImp *function,
const List* arguments, LocalStorageEntry* entries)
{
FunctionBodyNode* body = function->body.get();
size_t total = body->numLocalsAndRegisters();
localStorage = entries;
lengthSlot() = total;
// we can now link ourselves into the scope, which will also fix up our scopeLink().
exec->pushVariableObjectScope(this);
const FunctionBodyNode::SymbolInfo* symInfo = body->getLocalInfo();
// Setup our fields
this->arguments = arguments;
functionSlot() = function;
argumentsObjectSlot() = jsUndefined();
symbolTable = &body->symbolTable();
// Set the mark/don't mark flags and attributes for everything
for (size_t p = 0; p < total; ++p)
entries[p].attributes = symInfo[p].attr;
// Pass in the parameters (ECMA 10.1.3q)
#ifdef KJS_VERBOSE
fprintf(stderr, "%s---------------------------------------------------\n"
"%sprocessing parameters for %s call\n", ind(), ind(),
function->functionName().isEmpty() ? "(internal)" : function->functionName().ascii());
#endif
size_t numParams = body->numParams();
size_t numPassedIn = min(numParams, static_cast<size_t>(arguments->size()));
size_t pos = 0;
for (; pos < numPassedIn; ++pos) {
size_t symNum = pos + ActivationImp::NumReservedSlots;
JSValue* v = arguments->atUnchecked(pos);
entries[symNum].val.valueVal = v;
#ifdef KJS_VERBOSE
fprintf(stderr, "%s setting parameter %s", ind(), body->paramName(pos).ascii());
printInfo(exec, "to", v);
#endif
}
for (; pos < numParams; ++pos) {
size_t symNum = pos + ActivationImp::NumReservedSlots;
entries[symNum].val.valueVal = jsUndefined();
#ifdef KJS_VERBOSE
fprintf(stderr, "%s setting parameter %s to undefined (not passed in)", ind(), body->paramName(pos).ascii());
#endif
}
#ifdef KJS_VERBOSE
fprintf(stderr, "\n%s---------------------------------\n", ind());
fprintf(stderr, "%sBody:\n", ind());
fprintf(stderr, "%s---------------------------------\n", ind());
printInd(body->toString().ascii());
fprintf(stderr, "\n%s---------------------------------\n\n", ind());
#endif
// Initialize the rest of the locals to 'undefined'
for (size_t pos = numParams + ActivationImp::NumReservedSlots; pos < total; ++pos)
entries[pos].val.valueVal = jsUndefined();
// Finally, put in the functions. Note that this relies on above
// steps to have completed, since it can trigger a GC.
size_t numFuns = body->numFunctionLocals();
size_t* funsData = body->getFunctionLocalInfo();
for (size_t fun = 0; fun < numFuns; ++fun) {
size_t id = funsData[fun];
entries[id].val.valueVal = symInfo[id].funcDecl->makeFunctionObject(exec);
}
}
void ActivationImp::performTearOff()
{
// Create a new local array, copy stuff over
size_t total = lengthSlot();
LocalStorageEntry* entries = new LocalStorageEntry[total];
std::memcpy(entries, localStorage, total*sizeof(LocalStorageEntry));
localStorage = entries;
}
void ActivationImp::requestTearOff()
{
tearOffNeededSlot() = true;
}
JSValue *ActivationImp::argumentsGetter(ExecState* exec, JSObject*, const Identifier&, const PropertySlot& slot)
{
ActivationImp* thisObj = static_cast<ActivationImp*>(slot.slotBase());
if (thisObj->argumentsObjectSlot() == jsUndefined())
thisObj->createArgumentsObject(exec);
return thisObj->argumentsObjectSlot();
}
PropertySlot::GetValueFunc ActivationImp::getArgumentsGetter()
{
return ActivationImp::argumentsGetter;
}
bool ActivationImp::getOwnPropertySlot(ExecState *exec, const Identifier& propertyName, PropertySlot& slot)
{
if (symbolTableGet(propertyName, slot))
return true;
if (JSValue** location = getDirectLocation(propertyName)) {
slot.setValueSlot(this, location);
return true;
}
// Only return the built-in arguments object if it wasn't overridden above.
if (propertyName == exec->propertyNames().arguments) {
slot.setCustom(this, getArgumentsGetter());
return true;
}
// We don't call through to JSObject because there's no way to give an
// activation object getter properties or a prototype.
ASSERT(!_prop.hasGetterSetterProperties());
ASSERT(prototype() == jsNull());
return false;
}
bool ActivationImp::deleteProperty(ExecState *exec, const Identifier &propertyName)
{
if (propertyName == exec->propertyNames().arguments)
return false;
return JSVariableObject::deleteProperty(exec, propertyName);
}
void ActivationImp::putDirect(const Identifier& propertyName, JSValue* value, int attr)
{
size_t index = symbolTable->get(propertyName.ustring().rep());
if (index != missingSymbolMarker()) {
LocalStorageEntry& entry = localStorage[index];
entry.val.valueVal = value;
entry.attributes = attr;
return;
}
JSVariableObject::putDirect(propertyName, value, attr);
}
JSValue* ActivationImp::getDirect(const Identifier& propertyName) const
{
size_t index = symbolTable->get(propertyName.ustring().rep());
if (index != missingSymbolMarker()) {
LocalStorageEntry& entry = localStorage[index];
return entry.val.valueVal;
}
return JSVariableObject::getDirect(propertyName);
}
bool ActivationImp::getPropertyAttributes(const Identifier& propertyName, unsigned int& attributes) const
{
size_t index = symbolTable->get(propertyName.ustring().rep());
if (index != missingSymbolMarker()) {
LocalStorageEntry& entry = localStorage[index];
attributes = entry.attributes;
return true;
}
return JSVariableObject::getPropertyAttributes(propertyName, attributes);
}
void ActivationImp::put(ExecState*, const Identifier& propertyName, JSValue* value, int attr)
{
// If any bits other than DontDelete are set, then we bypass the read-only check.
bool checkReadOnly = !(attr & ~DontDelete);
if (symbolTablePut(propertyName, value, checkReadOnly))
return;
// We don't call through to JSObject because __proto__ and getter/setter
// properties are non-standard extensions that other implementations do not
// expose in the activation object.
ASSERT(!_prop.hasGetterSetterProperties());
_prop.put(propertyName, value, attr, checkReadOnly);
}
void ActivationImp::createArgumentsObject(ExecState *exec)
{
requestTearOff();
argumentsObjectSlot() = new Arguments(exec, static_cast<FunctionImp*>(functionSlot()),
*arguments, const_cast<ActivationImp*>(this));
}
// ------------------------------ GlobalFunc -----------------------------------
GlobalFuncImp::GlobalFuncImp(ExecState* exec, FunctionPrototype* funcProto, int i, int len, const Identifier& name)
: InternalFunctionImp(funcProto, name)
, id(i)
{
putDirect(exec->propertyNames().length, len, DontDelete|ReadOnly|DontEnum);
}
static JSValue *encode(ExecState *exec, const List &args, const char *do_not_escape)
{
UString r = "", s, str = args[0]->toString(exec);
CString cstr = str.UTF8String();
const char *p = cstr.c_str();
for (size_t k = 0; k < cstr.size(); k++, p++) {
char c = *p;
if (c && strchr(do_not_escape, c)) {
r.append(c);
} else {
char tmp[4];
sprintf(tmp, "%%%02X", (unsigned char)c);
r += tmp;
}
}
return jsString(r);
}
static JSValue *decode(ExecState *exec, const List &args, const char *do_not_unescape)
{
UString s = "", str = args[0]->toString(exec);
int k = 0, len = str.size();
const UChar *d = str.data();
UChar u;
while (k < len) {
const UChar *p = d + k;
UChar c = *p;
if (c == '%') {
int charLen = 0;
if (k <= len - 3 && isASCIIHexDigit(p[1].uc) && isASCIIHexDigit(p[2].uc)) {
const char b0 = Lexer::convertHex(p[1].uc, p[2].uc);
const int sequenceLen = UTF8SequenceLength(b0);
if (sequenceLen != 0 && k <= len - sequenceLen * 3) {
charLen = sequenceLen * 3;
char sequence[5];
sequence[0] = b0;
for (int i = 1; i < sequenceLen; ++i) {
const UChar *q = p + i * 3;
if (q[0] == '%' && isASCIIHexDigit(q[1].uc) && isASCIIHexDigit(q[2].uc))
sequence[i] = Lexer::convertHex(q[1].uc, q[2].uc);
else {
charLen = 0;
break;
}
}
if (charLen != 0) {
sequence[sequenceLen] = 0;
const int character = decodeUTF8Sequence(sequence);
if (character < 0 || character >= 0x110000) {
charLen = 0;
} else if (character >= 0x10000) {
// Convert to surrogate pair.
s.append(static_cast<unsigned short>(0xD800 | ((character - 0x10000) >> 10)));
u = static_cast<unsigned short>(0xDC00 | ((character - 0x10000) & 0x3FF));
} else {
u = static_cast<unsigned short>(character);
}
}
}
}
if (charLen == 0)
return throwError(exec, URIError);
if (u.uc == 0 || u.uc >= 128 || !strchr(do_not_unescape, u.low())) {
c = u;
k += charLen - 1;
}
}
k++;
s.append(c);
}
return jsString(s);
}
static int parseDigit(unsigned short c, int radix)
{
int digit = -1;
if (c >= '0' && c <= '9') {
digit = c - '0';
} else if (c >= 'A' && c <= 'Z') {
digit = c - 'A' + 10;
} else if (c >= 'a' && c <= 'z') {
digit = c - 'a' + 10;
}
if (digit >= radix)
return -1;
return digit;
}
double parseIntOverflow(const char* s, int length, int radix)
{
double number = 0.0;
double radixMultiplier = 1.0;
for (const char* p = s + length - 1; p >= s; p--) {
if (radixMultiplier == Inf) {
if (*p != '0') {
number = Inf;
break;
}
} else {
int digit = parseDigit(*p, radix);
number += digit * radixMultiplier;
}
radixMultiplier *= radix;
}
return number;
}
double parseInt(const UString &s, int radix)
{
int length = s.size();
int p = 0;
while (p < length && CommonUnicode::isStrWhiteSpace(s[p].uc)) {
++p;
}
double sign = 1;
if (p < length) {
if (s[p] == '+') {
++p;
} else if (s[p] == '-') {
sign = -1;
++p;
}
}
if ((radix == 0 || radix == 16) && length - p >= 2 && s[p] == '0' && (s[p + 1] == 'x' || s[p + 1] == 'X')) {
radix = 16;
p += 2;
} else if (radix == 0) {
// ECMAscript test262 S15.1.2.2_A5.1_T1 says we should no longer accept octal. To fix remove next 3 lines.
if (p < length && s[p] == '0')
radix = 8;
else
radix = 10;
}
if (radix < 2 || radix > 36)
return NaN;
int firstDigitPosition = p;
bool sawDigit = false;
double number = 0;
while (p < length) {
int digit = parseDigit(s[p].uc, radix);
if (digit == -1)
break;
sawDigit = true;
number *= radix;
number += digit;
++p;
}
if (number >= mantissaOverflowLowerBound) {
if (radix == 10)
number = kjs_strtod(s.substr(firstDigitPosition, p - firstDigitPosition).ascii(), 0);
else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32)
number = parseIntOverflow(s.substr(firstDigitPosition, p - firstDigitPosition).ascii(), p - firstDigitPosition, radix);
}
if (!sawDigit)
return NaN;
return sign * number;
}
double parseFloat(const UString &s)
{
// Check for 0x prefix here, because toDouble allows it, but we must treat it as 0.
// Need to skip any whitespace and then one + or - sign.
int length = s.size();
int p = 0;
while (p < length && CommonUnicode::isStrWhiteSpace(s[p].uc)) {
++p;
}
if (p < length && (s[p] == '+' || s[p] == '-')) {
++p;
}
if (length - p >= 2 && s[p] == '0' && (s[p + 1] == 'x' || s[p + 1] == 'X')) {
return 0;
}
return s.toDouble( true /*tolerant*/, false /* NaN for empty string */ );
}
JSValue *GlobalFuncImp::callAsFunction(ExecState *exec, JSObject * /*thisObj*/, const List &args)
{
JSValue *res = jsUndefined();
static const char do_not_escape[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"*+-./@_";
static const char do_not_escape_when_encoding_URI_component[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"!'()*-._~";
static const char do_not_escape_when_encoding_URI[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"!#$&'()*+,-./:;=?@_~";
static const char do_not_unescape_when_decoding_URI[] =
"#$&+,/:;=?@";
switch (id) {
case Eval: { // eval()
JSValue *x = args[0];
if (!x->isString())
return x;
else {
UString s = x->toString(exec);
int sourceId;
int errLine;
UString errMsg;
RefPtr<ProgramNode> progNode(parser().parseProgram(UString(), 0, s.data(), s.size(), &sourceId, &errLine, &errMsg));
Debugger *dbg = exec->dynamicInterpreter()->debugger();
if (dbg) {
dbg->reportSourceParsed(exec, progNode.get(), sourceId, UString(), s, 0, errLine, errMsg);
}
// no program node means a syntax occurred
if (!progNode)
return throwError(exec, SyntaxError, errMsg, errLine, sourceId, NULL);
// If the variable object we're working with is an activation, we better
// tear it off since stuff inside eval can capture it in a closure
if (exec->variableObject()->isActivation())
static_cast<ActivationImp*>(exec->variableObject())->requestTearOff();
// enter a new execution context
EvalExecState newExec(exec->dynamicInterpreter(),
exec->dynamicInterpreter()->globalObject(),
progNode.get(),
exec);
if (exec->hadException())
newExec.setException(exec->exception());
if (dbg) {
bool cont = dbg->enterContext(&newExec, sourceId, 0, 0, List::empty());
if (!cont) {
dbg->imp()->abort();
return jsUndefined();
}
}
// execute the code
progNode->processDecls(&newExec);
Completion c = progNode->execute(&newExec);
dbg = exec->dynamicInterpreter()->debugger();
if (dbg) {
bool cont = dbg->exitContext(&newExec, sourceId, 0, 0);
if (!cont) {
dbg->imp()->abort();
return jsUndefined();
}
}
// if an exception occurred, propagate it back to the previous execution object
if (newExec.hadException())
exec->setException(newExec.exception());
res = jsUndefined();
if (c.complType() == Throw)
exec->setException(c.value());
else if (c.isValueCompletion())
res = c.value();
}
break;
}
case ParseInt:
res = jsNumber(parseInt(args[0]->toString(exec), args[1]->toInt32(exec)));
break;
case ParseFloat:
res = jsNumber(parseFloat(args[0]->toString(exec)));
break;
case IsNaN:
res = jsBoolean(isNaN(args[0]->toNumber(exec)));
break;
case IsFinite: {
double n = args[0]->toNumber(exec);
res = jsBoolean(!isNaN(n) && !isInf(n));
break;
}
case DecodeURI:
res = decode(exec, args, do_not_unescape_when_decoding_URI);
break;
case DecodeURIComponent:
res = decode(exec, args, "");
break;
case EncodeURI:
res = encode(exec, args, do_not_escape_when_encoding_URI);
break;
case EncodeURIComponent:
res = encode(exec, args, do_not_escape_when_encoding_URI_component);
break;
case Escape:
{
UString r = "", s, str = args[0]->toString(exec);
const UChar* c = str.data();
for (int k = 0; k < str.size(); k++, c++) {
int u = c->uc;
if (u > 255) {
char tmp[7];
sprintf(tmp, "%%u%04X", u);
s = UString(tmp);
} else if (u != 0 && strchr(do_not_escape, (char)u)) {
s = UString(c, 1);
} else {
char tmp[4];
sprintf(tmp, "%%%02X", u);
s = UString(tmp);
}
r += s;
}
res = jsString(r);
break;
}
case UnEscape:
{
UString s = "", str = args[0]->toString(exec);
int k = 0, len = str.size();
while (k < len) {
const UChar* c = str.data() + k;
UChar u;
if (*c == UChar('%') && k <= len - 6 && *(c+1) == UChar('u')) {
if (Lexer::isHexDigit((c+2)->uc) && Lexer::isHexDigit((c+3)->uc) &&
Lexer::isHexDigit((c+4)->uc) && Lexer::isHexDigit((c+5)->uc)) {
u = Lexer::convertUnicode((c+2)->uc, (c+3)->uc,
(c+4)->uc, (c+5)->uc);
c = &u;
k += 5;
}
} else if (*c == UChar('%') && k <= len - 3 &&
Lexer::isHexDigit((c+1)->uc) && Lexer::isHexDigit((c+2)->uc)) {
u = UChar(Lexer::convertHex((c+1)->uc, (c+2)->uc));
c = &u;
k += 2;
}
k++;
s += UString(c, 1);
}
res = jsString(s);
break;
}
#ifndef NDEBUG
case KJSPrint:
puts(args[0]->toString(exec).ascii());
break;
#endif
}
return res;
}
} // namespace
// kate: indent-width 4; replace-tabs on; tab-width 4; space-indent on;