mirror of
https://bitbucket.org/smil3y/kdelibs.git
synced 2025-02-24 10:52:49 +00:00
1474 lines
35 KiB
C++
1474 lines
35 KiB
C++
// -*- c-basic-offset: 2 -*-
|
|
/*
|
|
* This file is part of the KDE libraries
|
|
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
|
|
* Copyright (C) 2004, 2005, 2006, 2007 Apple Inc. All rights reserved.
|
|
* Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public License
|
|
* along with this library; see the file COPYING.LIB. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301, USA.
|
|
*
|
|
*/
|
|
|
|
#include "ustring.h"
|
|
#include <config-kjs.h>
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include "wtf/DisallowCType.h"
|
|
#include "wtf/ASCIICType.h"
|
|
#if HAVE(STRING_H)
|
|
#include <string.h>
|
|
#endif
|
|
#if HAVE(STRINGS_H)
|
|
#include <strings.h>
|
|
#endif
|
|
#include <limits.h>
|
|
|
|
#include "operations.h"
|
|
#include "function.h"
|
|
#include "identifier.h"
|
|
#include <math.h>
|
|
#include "dtoa.h"
|
|
#include "collector.h"
|
|
#include "commonunicode.h"
|
|
|
|
#include <wtf/Vector.h>
|
|
|
|
using std::max;
|
|
|
|
// GCC cstring uses these automatically, but not all implementations do.
|
|
using std::strlen;
|
|
using std::strcpy;
|
|
using std::strncpy;
|
|
using std::memset;
|
|
using std::memcpy;
|
|
|
|
using namespace WTF;
|
|
|
|
namespace KJS {
|
|
|
|
extern const double NaN;
|
|
extern const double Inf;
|
|
|
|
static inline size_t overflowIndicator() { return std::numeric_limits<size_t>::max(); }
|
|
static inline size_t maxUChars() { return std::numeric_limits<size_t>::max() / sizeof(UChar); }
|
|
|
|
static inline UChar* allocChars(size_t length)
|
|
{
|
|
assert(length);
|
|
if (length > maxUChars())
|
|
return 0;
|
|
return static_cast<UChar*>(fastMalloc(sizeof(UChar) * length));
|
|
}
|
|
|
|
static inline UChar* reallocChars(UChar* buffer, size_t length)
|
|
{
|
|
ASSERT(length);
|
|
if (length > maxUChars())
|
|
return 0;
|
|
return static_cast<UChar*>(fastRealloc(buffer, sizeof(UChar) * length));
|
|
}
|
|
|
|
CString::CString(const char *c)
|
|
{
|
|
length = strlen(c);
|
|
data = new char[length+1];
|
|
memcpy(data, c, length + 1);
|
|
}
|
|
|
|
CString::CString(const char *c, size_t len)
|
|
{
|
|
length = len;
|
|
data = new char[len+1];
|
|
memcpy(data, c, len);
|
|
data[len] = 0;
|
|
}
|
|
|
|
CString::CString(const CString &b)
|
|
{
|
|
length = b.length;
|
|
if (length > 0 && b.data) {
|
|
data = new char[length+1];
|
|
memcpy(data, b.data, length + 1);
|
|
}
|
|
else
|
|
data = 0;
|
|
}
|
|
|
|
CString::~CString()
|
|
{
|
|
delete [] data;
|
|
}
|
|
|
|
CString &CString::operator=(const char *c)
|
|
{
|
|
if (data)
|
|
delete [] data;
|
|
length = strlen(c);
|
|
data = new char[length+1];
|
|
memcpy(data, c, length + 1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
CString &CString::operator=(const CString &str)
|
|
{
|
|
if (this == &str)
|
|
return *this;
|
|
|
|
if (data)
|
|
delete [] data;
|
|
length = str.length;
|
|
if (str.data) {
|
|
data = new char[length + 1];
|
|
memcpy(data, str.data, length + 1);
|
|
}
|
|
else
|
|
data = 0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const CString& c1, const CString& c2)
|
|
{
|
|
size_t len = c1.size();
|
|
return len == c2.size() && (len == 0 || memcmp(c1.c_str(), c2.c_str(), len) == 0);
|
|
}
|
|
|
|
// Hack here to avoid a global with a constructor; point to an unsigned short instead of a UChar.
|
|
static unsigned short almostUChar;
|
|
UString::Rep UString::Rep::null = { 0, 0, 1, 0, 0, &UString::Rep::null, 0, 0, 0, 0, 0, 0 };
|
|
UString::Rep UString::Rep::empty = { 0, 0, 1, 0, 0, &UString::Rep::empty, 0, reinterpret_cast<UChar*>(&almostUChar), 0, 0, 0, 0 };
|
|
const int normalStatBufferSize = 4096;
|
|
static char *statBuffer = 0; // FIXME: This buffer is never deallocated.
|
|
static int statBufferSize = 0;
|
|
|
|
PassRefPtr<UString::Rep> UString::Rep::createCopying (const UChar* d, int length)
|
|
{
|
|
UChar* copyD = allocChars(length);
|
|
memcpy(copyD, d, length * sizeof(UChar));
|
|
|
|
return create(copyD, length);
|
|
}
|
|
|
|
PassRefPtr<UString::Rep> UString::Rep::create(UChar *d, int l)
|
|
{
|
|
Rep* r = new Rep;
|
|
r->offset = 0;
|
|
r->len = l;
|
|
r->rc = 1;
|
|
r->_hash = 0;
|
|
r->isIdentifier = 0;
|
|
r->baseString = r;
|
|
r->reportedCost = 0;
|
|
r->buf = d;
|
|
r->usedCapacity = l;
|
|
r->capacity = l;
|
|
r->usedPreCapacity = 0;
|
|
r->preCapacity = 0;
|
|
|
|
// steal the single reference this Rep was created with
|
|
return adoptRef(r);
|
|
}
|
|
|
|
PassRefPtr<UString::Rep> UString::Rep::create(PassRefPtr<Rep> base, int offset, int length)
|
|
{
|
|
assert(base);
|
|
|
|
int baseOffset = base->offset;
|
|
|
|
base = base->baseString;
|
|
|
|
assert(-(offset + baseOffset) <= base->usedPreCapacity);
|
|
assert(offset + baseOffset + length <= base->usedCapacity);
|
|
|
|
Rep* r = new Rep;
|
|
r->offset = baseOffset + offset;
|
|
r->len = length;
|
|
r->rc = 1;
|
|
r->_hash = 0;
|
|
r->isIdentifier = 0;
|
|
r->baseString = base.releaseRef();
|
|
r->reportedCost = 0;
|
|
r->buf = 0;
|
|
r->usedCapacity = 0;
|
|
r->capacity = 0;
|
|
r->usedPreCapacity = 0;
|
|
r->preCapacity = 0;
|
|
|
|
// steal the single reference this Rep was created with
|
|
return adoptRef(r);
|
|
}
|
|
|
|
void UString::Rep::destroy()
|
|
{
|
|
if (isIdentifier)
|
|
Identifier::remove(this);
|
|
if (baseString != this) {
|
|
baseString->deref();
|
|
} else {
|
|
fastFree(buf);
|
|
}
|
|
delete this;
|
|
}
|
|
|
|
// Golden ratio - arbitrary start value to avoid mapping all 0's to all 0's
|
|
// or anything like that.
|
|
const unsigned PHI = 0x9e3779b9U;
|
|
|
|
// Paul Hsieh's SuperFastHash
|
|
// http://www.azillionmonkeys.com/qed/hash.html
|
|
unsigned UString::Rep::computeHash(const UChar *s, int len)
|
|
{
|
|
unsigned l = len;
|
|
uint32_t hash = PHI;
|
|
uint32_t tmp;
|
|
|
|
int rem = l & 1;
|
|
l >>= 1;
|
|
|
|
// Main loop
|
|
for (; l > 0; l--) {
|
|
hash += s[0].uc;
|
|
tmp = (s[1].uc << 11) ^ hash;
|
|
hash = (hash << 16) ^ tmp;
|
|
s += 2;
|
|
hash += hash >> 11;
|
|
}
|
|
|
|
// Handle end case
|
|
if (rem) {
|
|
hash += s[0].uc;
|
|
hash ^= hash << 11;
|
|
hash += hash >> 17;
|
|
}
|
|
|
|
// Force "avalanching" of final 127 bits
|
|
hash ^= hash << 3;
|
|
hash += hash >> 5;
|
|
hash ^= hash << 2;
|
|
hash += hash >> 15;
|
|
hash ^= hash << 10;
|
|
|
|
// this avoids ever returning a hash code of 0, since that is used to
|
|
// signal "hash not computed yet", using a value that is likely to be
|
|
// effectively the same as 0 when the low bits are masked
|
|
if (hash == 0)
|
|
hash = 0x80000000;
|
|
|
|
return hash;
|
|
}
|
|
|
|
// Paul Hsieh's SuperFastHash
|
|
// http://www.azillionmonkeys.com/qed/hash.html
|
|
unsigned UString::Rep::computeHash(const char* s, int len)
|
|
{
|
|
// This hash is designed to work on 16-bit chunks at a time. But since the normal case
|
|
// (above) is to hash UTF-16 characters, we just treat the 8-bit chars as if they
|
|
// were 16-bit chunks, which should give matching results
|
|
|
|
uint32_t hash = PHI;
|
|
uint32_t tmp;
|
|
unsigned l = len;
|
|
|
|
int rem = l & 1;
|
|
l >>= 1;
|
|
|
|
// Main loop
|
|
for (; l > 0; l--) {
|
|
hash += (unsigned char)s[0];
|
|
tmp = ((unsigned char)s[1] << 11) ^ hash;
|
|
hash = (hash << 16) ^ tmp;
|
|
s += 2;
|
|
hash += hash >> 11;
|
|
}
|
|
|
|
// Handle end case
|
|
if (rem) {
|
|
hash += (unsigned char)s[0];
|
|
hash ^= hash << 11;
|
|
hash += hash >> 17;
|
|
}
|
|
|
|
// Force "avalanching" of final 127 bits
|
|
hash ^= hash << 3;
|
|
hash += hash >> 5;
|
|
hash ^= hash << 2;
|
|
hash += hash >> 15;
|
|
hash ^= hash << 10;
|
|
|
|
// this avoids ever returning a hash code of 0, since that is used to
|
|
// signal "hash not computed yet", using a value that is likely to be
|
|
// effectively the same as 0 when the low bits are masked
|
|
if (hash == 0)
|
|
hash = 0x80000000;
|
|
|
|
return hash;
|
|
}
|
|
|
|
unsigned UString::Rep::computeHash(const char* s)
|
|
{
|
|
return computeHash(s, strlen(s));
|
|
}
|
|
|
|
// put these early so they can be inlined
|
|
inline size_t UString::expandedSize(size_t size, size_t otherSize) const
|
|
{
|
|
// Do the size calculation in two parts, returning overflowIndicator if
|
|
// we overflow the maximum value that we can handle.
|
|
|
|
if (size > maxUChars())
|
|
return overflowIndicator();
|
|
|
|
size_t expandedSize = ((size + 10) / 10 * 11) + 1;
|
|
if (maxUChars() - expandedSize < otherSize)
|
|
return overflowIndicator();
|
|
|
|
return expandedSize + otherSize;
|
|
}
|
|
|
|
inline int UString::usedCapacity() const
|
|
{
|
|
return m_rep->baseString->usedCapacity;
|
|
}
|
|
|
|
inline int UString::usedPreCapacity() const
|
|
{
|
|
return m_rep->baseString->usedPreCapacity;
|
|
}
|
|
|
|
void UString::expandCapacity(int requiredLength)
|
|
{
|
|
Rep* r = m_rep->baseString;
|
|
|
|
if (requiredLength > r->capacity) {
|
|
size_t newCapacity = expandedSize(requiredLength, r->preCapacity);
|
|
UChar* oldBuf = r->buf;
|
|
r->buf = reallocChars(r->buf, newCapacity);
|
|
if (!r->buf) {
|
|
r->buf = oldBuf;
|
|
m_rep = &Rep::null;
|
|
return;
|
|
}
|
|
r->capacity = newCapacity - r->preCapacity;
|
|
}
|
|
if (requiredLength > r->usedCapacity) {
|
|
r->usedCapacity = requiredLength;
|
|
}
|
|
}
|
|
|
|
void UString::expandPreCapacity(int requiredPreCap)
|
|
{
|
|
Rep* r = m_rep->baseString;
|
|
|
|
if (requiredPreCap > r->preCapacity) {
|
|
size_t newCapacity = expandedSize(requiredPreCap, r->capacity);
|
|
int delta = newCapacity - r->capacity - r->preCapacity;
|
|
|
|
UChar* newBuf = allocChars(newCapacity);
|
|
if (!newBuf) {
|
|
m_rep = &Rep::null;
|
|
return;
|
|
}
|
|
memcpy(newBuf + delta, r->buf, (r->capacity + r->preCapacity) * sizeof(UChar));
|
|
fastFree(r->buf);
|
|
r->buf = newBuf;
|
|
|
|
r->preCapacity = newCapacity - r->capacity;
|
|
}
|
|
if (requiredPreCap > r->usedPreCapacity) {
|
|
r->usedPreCapacity = requiredPreCap;
|
|
}
|
|
}
|
|
|
|
|
|
UString::UString(Empty)
|
|
: m_rep(&Rep::empty)
|
|
{
|
|
}
|
|
|
|
UString::UString(char c)
|
|
: m_rep(Rep::create(allocChars(1), 1))
|
|
{
|
|
m_rep->buf[0] = static_cast<unsigned char>(c);
|
|
}
|
|
|
|
UString::UString(const char* c)
|
|
{
|
|
if (!c) {
|
|
m_rep = &Rep::null;
|
|
return;
|
|
}
|
|
|
|
if (!c[0]) {
|
|
m_rep = &Rep::empty;
|
|
return;
|
|
}
|
|
|
|
size_t length = strlen(c);
|
|
UChar *d = allocChars(length);
|
|
if (!d)
|
|
m_rep = &Rep::null;
|
|
else {
|
|
for (size_t i = 0; i < length; i++)
|
|
d[i].uc = c[i];
|
|
m_rep = Rep::create(d, static_cast<int>(length));
|
|
}
|
|
}
|
|
|
|
UString::UString(const char* c, size_t length)
|
|
{
|
|
if (!c) {
|
|
m_rep = &Rep::null;
|
|
return;
|
|
}
|
|
|
|
if (length == 0) {
|
|
m_rep = &Rep::empty;
|
|
return;
|
|
}
|
|
|
|
UChar* d = allocChars(length);
|
|
if (!d)
|
|
m_rep = &Rep::null;
|
|
else {
|
|
for (size_t i = 0; i < length; i++)
|
|
d[i].uc = c[i];
|
|
m_rep = Rep::create(d, static_cast<int>(length));
|
|
}
|
|
}
|
|
|
|
UString::UString(const UChar* c, int length)
|
|
{
|
|
if (length == 0)
|
|
m_rep = &Rep::empty;
|
|
else
|
|
m_rep = Rep::createCopying(c, length);
|
|
}
|
|
|
|
UString::UString(UChar* c, int length, bool copy)
|
|
{
|
|
if (length == 0)
|
|
m_rep = &Rep::empty;
|
|
else if (copy)
|
|
m_rep = Rep::createCopying(c, length);
|
|
else
|
|
m_rep = Rep::create(c, length);
|
|
}
|
|
|
|
UString::UString(const Vector<UChar>& buffer)
|
|
{
|
|
if (!buffer.size())
|
|
m_rep = &Rep::empty;
|
|
else
|
|
m_rep = Rep::createCopying(buffer.data(), buffer.size());
|
|
}
|
|
|
|
|
|
UString::UString(const UString &a, const UString &b)
|
|
{
|
|
int aSize = a.size();
|
|
int aOffset = a.m_rep->offset;
|
|
int bSize = b.size();
|
|
int bOffset = b.m_rep->offset;
|
|
int length = aSize + bSize;
|
|
|
|
// possible cases:
|
|
|
|
if (aSize == 0) {
|
|
// a is empty
|
|
m_rep = b.m_rep;
|
|
} else if (bSize == 0) {
|
|
// b is empty
|
|
m_rep = a.m_rep;
|
|
} else if (aOffset + aSize == a.usedCapacity() && aSize >= minShareSize && 4 * aSize >= bSize &&
|
|
(-bOffset != b.usedPreCapacity() || aSize >= bSize)) {
|
|
// - a reaches the end of its buffer so it qualifies for shared append
|
|
// - also, it's at least a quarter the length of b - appending to a much shorter
|
|
// string does more harm than good
|
|
// - however, if b qualifies for prepend and is longer than a, we'd rather prepend
|
|
UString x(a);
|
|
x.expandCapacity(aOffset + length);
|
|
if (a.data() && x.data()) {
|
|
memcpy(const_cast<UChar *>(a.data() + aSize), b.data(), bSize * sizeof(UChar));
|
|
m_rep = Rep::create(a.m_rep, 0, length);
|
|
} else
|
|
m_rep = &Rep::null;
|
|
} else if (-bOffset == b.usedPreCapacity() && bSize >= minShareSize && 4 * bSize >= aSize) {
|
|
// - b reaches the beginning of its buffer so it qualifies for shared prepend
|
|
// - also, it's at least a quarter the length of a - prepending to a much shorter
|
|
// string does more harm than good
|
|
UString y(b);
|
|
y.expandPreCapacity(-bOffset + aSize);
|
|
if (b.data() && y.data()) {
|
|
memcpy(const_cast<UChar *>(b.data() - aSize), a.data(), aSize * sizeof(UChar));
|
|
m_rep = Rep::create(b.m_rep, -aSize, length);
|
|
} else
|
|
m_rep = &Rep::null;
|
|
} else {
|
|
// a does not qualify for append, and b does not qualify for prepend, gotta make a whole new string
|
|
size_t newCapacity = expandedSize(length, 0);
|
|
UChar* d = allocChars(newCapacity);
|
|
if (!d)
|
|
m_rep = &Rep::null;
|
|
else {
|
|
memcpy(d, a.data(), aSize * sizeof(UChar));
|
|
memcpy(d + aSize, b.data(), bSize * sizeof(UChar));
|
|
m_rep = Rep::create(d, length);
|
|
m_rep->capacity = newCapacity;
|
|
}
|
|
}
|
|
}
|
|
|
|
const UString &UString::null()
|
|
{
|
|
static UString* n = new UString;
|
|
return *n;
|
|
}
|
|
|
|
UString UString::from(int i)
|
|
{
|
|
UChar buf[1 + sizeof(i) * 3];
|
|
UChar *end = buf + sizeof(buf) / sizeof(UChar);
|
|
UChar *p = end;
|
|
|
|
if (i == 0) {
|
|
*--p = '0';
|
|
} else if (i == INT_MIN) {
|
|
char minBuf[1 + sizeof(i) * 3];
|
|
sprintf(minBuf, "%d", INT_MIN);
|
|
return UString(minBuf);
|
|
} else {
|
|
bool negative = false;
|
|
if (i < 0) {
|
|
negative = true;
|
|
i = -i;
|
|
}
|
|
while (i) {
|
|
*--p = (unsigned short)((i % 10) + '0');
|
|
i /= 10;
|
|
}
|
|
if (negative) {
|
|
*--p = '-';
|
|
}
|
|
}
|
|
|
|
return UString(p, static_cast<int>(end - p));
|
|
}
|
|
|
|
UString UString::from(unsigned int u)
|
|
{
|
|
UChar buf[sizeof(u) * 3];
|
|
UChar *end = buf + sizeof(buf) / sizeof(UChar);
|
|
UChar *p = end;
|
|
|
|
if (u == 0) {
|
|
*--p = '0';
|
|
} else {
|
|
while (u) {
|
|
*--p = (unsigned short)((u % 10) + '0');
|
|
u /= 10;
|
|
}
|
|
}
|
|
|
|
return UString(p, static_cast<int>(end - p));
|
|
}
|
|
|
|
UString UString::from(long l)
|
|
{
|
|
UChar buf[1 + sizeof(l) * 3];
|
|
UChar *end = buf + sizeof(buf) / sizeof(UChar);
|
|
UChar *p = end;
|
|
|
|
if (l == 0) {
|
|
*--p = '0';
|
|
} else if (l == LONG_MIN) {
|
|
char minBuf[1 + sizeof(l) * 3];
|
|
sprintf(minBuf, "%ld", LONG_MIN);
|
|
return UString(minBuf);
|
|
} else {
|
|
bool negative = false;
|
|
if (l < 0) {
|
|
negative = true;
|
|
l = -l;
|
|
}
|
|
while (l) {
|
|
*--p = (unsigned short)((l % 10) + '0');
|
|
l /= 10;
|
|
}
|
|
if (negative) {
|
|
*--p = '-';
|
|
}
|
|
}
|
|
|
|
return UString(p, static_cast<int>(end - p));
|
|
}
|
|
|
|
UString UString::from(double d)
|
|
{
|
|
// avoid ever printing -NaN, in JS conceptually there is only one NaN value
|
|
if (isNaN(d))
|
|
return UString("NaN", 3);
|
|
|
|
char buf[80];
|
|
int decimalPoint;
|
|
int sign;
|
|
|
|
char *result = kjs_dtoa(d, 0, 0, &decimalPoint, &sign, NULL);
|
|
int length = static_cast<int>(strlen(result));
|
|
|
|
int i = 0;
|
|
if (sign) {
|
|
buf[i++] = '-';
|
|
}
|
|
|
|
if (decimalPoint <= 0 && decimalPoint > -6) {
|
|
buf[i++] = '0';
|
|
buf[i++] = '.';
|
|
for (int j = decimalPoint; j < 0; j++) {
|
|
buf[i++] = '0';
|
|
}
|
|
strcpy(buf + i, result);
|
|
i += length;
|
|
} else if (decimalPoint <= 21 && decimalPoint > 0) {
|
|
if (length <= decimalPoint) {
|
|
strcpy(buf + i, result);
|
|
i += length;
|
|
for (int j = 0; j < decimalPoint - length; j++) {
|
|
buf[i++] = '0';
|
|
}
|
|
// buf[i] = '\0';
|
|
} else {
|
|
strncpy(buf + i, result, decimalPoint);
|
|
i += decimalPoint;
|
|
buf[i++] = '.';
|
|
strcpy(buf + i, result + decimalPoint);
|
|
i += length - decimalPoint;
|
|
}
|
|
} else if (result[0] < '0' || result[0] > '9') {
|
|
strcpy(buf + i, result);
|
|
i += length;
|
|
} else {
|
|
buf[i++] = result[0];
|
|
if (length > 1) {
|
|
buf[i++] = '.';
|
|
strcpy(buf + i, result + 1);
|
|
i += length - 1;
|
|
}
|
|
|
|
buf[i++] = 'e';
|
|
buf[i++] = (decimalPoint >= 0) ? '+' : '-';
|
|
// decimalPoint can't be more than 3 digits decimal given the
|
|
// nature of float representation
|
|
int exponential = decimalPoint - 1;
|
|
if (exponential < 0) {
|
|
exponential = exponential * -1;
|
|
}
|
|
if (exponential >= 100) {
|
|
buf[i++] = '0' + exponential / 100;
|
|
}
|
|
if (exponential >= 10) {
|
|
buf[i++] = '0' + (exponential % 100) / 10;
|
|
}
|
|
buf[i++] = '0' + exponential % 10;
|
|
// buf[i++] = '\0';
|
|
}
|
|
|
|
kjs_freedtoa(result);
|
|
|
|
return UString(buf, i);
|
|
}
|
|
|
|
UString UString::spliceSubstringsWithSeparators(const Range *substringRanges, int rangeCount, const UString *separators, int separatorCount) const
|
|
{
|
|
if (rangeCount == 1 && separatorCount == 0) {
|
|
int thisSize = size();
|
|
int position = substringRanges[0].position;
|
|
int length = substringRanges[0].length;
|
|
if (position <= 0 && length >= thisSize)
|
|
return *this;
|
|
return UString::Rep::create(m_rep, maxInt(0, position), minInt(thisSize, length));
|
|
}
|
|
|
|
int totalLength = 0;
|
|
for (int i = 0; i < rangeCount; i++)
|
|
totalLength += substringRanges[i].length;
|
|
for (int i = 0; i < separatorCount; i++)
|
|
totalLength += separators[i].size();
|
|
|
|
if (totalLength == 0)
|
|
return "";
|
|
|
|
UChar* buffer = allocChars(totalLength);
|
|
if (!buffer)
|
|
return null();
|
|
|
|
int maxCount = max(rangeCount, separatorCount);
|
|
int bufferPos = 0;
|
|
for (int i = 0; i < maxCount; i++) {
|
|
if (i < rangeCount) {
|
|
memcpy(buffer + bufferPos, data() + substringRanges[i].position, substringRanges[i].length * sizeof(UChar));
|
|
bufferPos += substringRanges[i].length;
|
|
}
|
|
if (i < separatorCount) {
|
|
memcpy(buffer + bufferPos, separators[i].data(), separators[i].size() * sizeof(UChar));
|
|
bufferPos += separators[i].size();
|
|
}
|
|
}
|
|
|
|
return UString::Rep::create(buffer, totalLength);
|
|
}
|
|
|
|
// Append a sub-string of <subStr> to this string.
|
|
// Equivalent to append(subStr.substr(subPos, subLength))
|
|
|
|
UString& UString::append(const UString& subStr, int subPos, int subLength)
|
|
{
|
|
int subSize = subStr.size();
|
|
|
|
if (subPos < 0)
|
|
subPos = 0;
|
|
else if (subPos >= subSize)
|
|
subPos = subSize;
|
|
if (subLength < 0)
|
|
subLength = subSize;
|
|
if (subPos + subLength >= subSize)
|
|
subLength = subSize - subPos;
|
|
|
|
return append(UString(subStr.data() + subPos, subLength));
|
|
}
|
|
|
|
UString &UString::append(const UString &t)
|
|
{
|
|
int thisSize = size();
|
|
int thisOffset = m_rep->offset;
|
|
int tSize = t.size();
|
|
int length = thisSize + tSize;
|
|
|
|
// possible cases:
|
|
if (thisSize == 0) {
|
|
// this is empty
|
|
*this = t;
|
|
} else if (tSize == 0) {
|
|
// t is empty
|
|
} else if (m_rep->baseIsSelf() && m_rep->rc == 1) {
|
|
// this is direct and has refcount of 1 (so we can just alter it directly)
|
|
expandCapacity(thisOffset + length);
|
|
if (data()) {
|
|
memcpy(const_cast<UChar*>(data() + thisSize), t.data(), tSize * sizeof(UChar));
|
|
m_rep->len = length;
|
|
m_rep->_hash = 0;
|
|
}
|
|
} else if (thisOffset + thisSize == usedCapacity() && thisSize >= minShareSize) {
|
|
// this reaches the end of the buffer - extend it if it's long enough to append to
|
|
expandCapacity(thisOffset + length);
|
|
if (data()) {
|
|
memcpy(const_cast<UChar*>(data() + thisSize), t.data(), tSize * sizeof(UChar));
|
|
m_rep = Rep::create(m_rep, 0, length);
|
|
}
|
|
} else {
|
|
// this is shared with someone using more capacity, gotta make a whole new string
|
|
size_t newCapacity = expandedSize(length, 0);
|
|
UChar* d = allocChars(newCapacity);
|
|
if (!d)
|
|
m_rep = &Rep::null;
|
|
else {
|
|
memcpy(d, data(), thisSize * sizeof(UChar));
|
|
memcpy(const_cast<UChar*>(d + thisSize), t.data(), tSize * sizeof(UChar));
|
|
m_rep = Rep::create(d, length);
|
|
m_rep->capacity = newCapacity;
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
UString &UString::append(const char *t)
|
|
{
|
|
int thisSize = size();
|
|
int thisOffset = m_rep->offset;
|
|
int tSize = static_cast<int>(strlen(t));
|
|
int length = thisSize + tSize;
|
|
|
|
// possible cases:
|
|
if (thisSize == 0) {
|
|
// this is empty
|
|
*this = t;
|
|
} else if (tSize == 0) {
|
|
// t is empty, we'll just return *this below.
|
|
} else if (m_rep->baseIsSelf() && m_rep->rc == 1) {
|
|
// this is direct and has refcount of 1 (so we can just alter it directly)
|
|
expandCapacity(thisOffset + length);
|
|
UChar *d = const_cast<UChar *>(data());
|
|
if (d) {
|
|
for (int i = 0; i < tSize; ++i)
|
|
d[thisSize + i] = t[i];
|
|
m_rep->len = length;
|
|
m_rep->_hash = 0;
|
|
}
|
|
} else if (thisOffset + thisSize == usedCapacity() && thisSize >= minShareSize) {
|
|
// this string reaches the end of the buffer - extend it
|
|
expandCapacity(thisOffset + length);
|
|
UChar *d = const_cast<UChar *>(data());
|
|
if (d) {
|
|
for (int i = 0; i < tSize; ++i)
|
|
d[thisSize + i] = t[i];
|
|
m_rep = Rep::create(m_rep, 0, length);
|
|
}
|
|
} else {
|
|
// this is shared with someone using more capacity, gotta make a whole new string
|
|
size_t newCapacity = expandedSize(length, 0);
|
|
UChar* d = allocChars(newCapacity);
|
|
if (!d)
|
|
m_rep = &Rep::null;
|
|
else {
|
|
memcpy(d, data(), thisSize * sizeof(UChar));
|
|
for (int i = 0; i < tSize; ++i)
|
|
d[thisSize + i] = t[i];
|
|
m_rep = Rep::create(d, length);
|
|
m_rep->capacity = newCapacity;
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
UString &UString::append(unsigned short c)
|
|
{
|
|
int thisOffset = m_rep->offset;
|
|
int length = size();
|
|
|
|
// possible cases:
|
|
if (length == 0) {
|
|
// this is empty - must make a new m_rep because we don't want to pollute the shared empty one
|
|
size_t newCapacity = expandedSize(1, 0);
|
|
UChar* d = allocChars(newCapacity);
|
|
if (!d)
|
|
m_rep = &Rep::null;
|
|
else {
|
|
d[0] = c;
|
|
m_rep = Rep::create(d, 1);
|
|
m_rep->capacity = newCapacity;
|
|
}
|
|
} else if (m_rep->baseIsSelf() && m_rep->rc == 1) {
|
|
// this is direct and has refcount of 1 (so we can just alter it directly)
|
|
expandCapacity(thisOffset + length + 1);
|
|
UChar *d = const_cast<UChar *>(data());
|
|
if (d) {
|
|
d[length] = c;
|
|
m_rep->len = length + 1;
|
|
m_rep->_hash = 0;
|
|
}
|
|
} else if (thisOffset + length == usedCapacity() && length >= minShareSize) {
|
|
// this reaches the end of the string - extend it and share
|
|
expandCapacity(thisOffset + length + 1);
|
|
UChar *d = const_cast<UChar *>(data());
|
|
if (d) {
|
|
d[length] = c;
|
|
m_rep = Rep::create(m_rep, 0, length + 1);
|
|
}
|
|
} else {
|
|
// this is shared with someone using more capacity, gotta make a whole new string
|
|
size_t newCapacity = expandedSize(length + 1, 0);
|
|
UChar* d = allocChars(newCapacity);
|
|
if (!d)
|
|
m_rep = &Rep::null;
|
|
else {
|
|
memcpy(d, data(), length * sizeof(UChar));
|
|
d[length] = c;
|
|
m_rep = Rep::create(d, length + 1);
|
|
m_rep->capacity = newCapacity;
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
CString UString::cstring() const
|
|
{
|
|
return ascii();
|
|
}
|
|
|
|
char *UString::ascii() const
|
|
{
|
|
// Never make the buffer smaller than normalStatBufferSize.
|
|
// Thus we almost never need to reallocate.
|
|
int length = size();
|
|
int neededSize = length + 1;
|
|
if (neededSize < normalStatBufferSize) {
|
|
neededSize = normalStatBufferSize;
|
|
}
|
|
if (neededSize != statBufferSize) {
|
|
delete [] statBuffer;
|
|
statBuffer = new char [neededSize];
|
|
statBufferSize = neededSize;
|
|
}
|
|
|
|
const UChar *p = data();
|
|
char *q = statBuffer;
|
|
const UChar *limit = p + length;
|
|
while (p != limit) {
|
|
*q = static_cast<char>(p->uc);
|
|
++p;
|
|
++q;
|
|
}
|
|
*q = '\0';
|
|
|
|
return statBuffer;
|
|
}
|
|
|
|
UString& UString::operator=(Empty)
|
|
{
|
|
m_rep = &Rep::empty;
|
|
|
|
return *this;
|
|
}
|
|
|
|
UString& UString::operator=(const char* c)
|
|
{
|
|
set(c, c ? strlen(c) : 0);
|
|
|
|
return *this;
|
|
}
|
|
|
|
void UString::set(const char* c, int l)
|
|
{
|
|
if (!c) {
|
|
m_rep = &Rep::null;
|
|
return;
|
|
}
|
|
|
|
if (l == 0) {
|
|
m_rep = &Rep::empty;
|
|
return;
|
|
}
|
|
|
|
UChar *d;
|
|
if (m_rep->rc == 1 && l <= m_rep->capacity && m_rep->baseIsSelf() && m_rep->offset == 0 && m_rep->preCapacity == 0) {
|
|
d = m_rep->buf;
|
|
m_rep->_hash = 0;
|
|
m_rep->len = l;
|
|
} else {
|
|
d = allocChars(l);
|
|
if (!d) {
|
|
m_rep = &Rep::null;
|
|
return;
|
|
}
|
|
m_rep = Rep::create(d, l);
|
|
}
|
|
for (int i = 0; i < l; i++)
|
|
d[i].uc = static_cast<unsigned char>(c[i]);
|
|
}
|
|
|
|
bool UString::is8Bit() const
|
|
{
|
|
const UChar *u = data();
|
|
const UChar *limit = u + size();
|
|
while (u < limit) {
|
|
if (u->uc > 0xFF)
|
|
return false;
|
|
++u;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const UChar UString::operator[](int pos) const
|
|
{
|
|
if (pos >= size())
|
|
return '\0';
|
|
return data()[pos];
|
|
}
|
|
|
|
double UString::toDouble(bool tolerateTrailingJunk, bool tolerateEmptyString) const
|
|
{
|
|
double d;
|
|
|
|
const int length = size();
|
|
int leadingSpaces = 0;
|
|
|
|
// skip leading white space
|
|
while (leadingSpaces < length && CommonUnicode::isStrWhiteSpace(data()[leadingSpaces].uc))
|
|
++leadingSpaces;
|
|
|
|
UString whitespaceSkipped = substr(leadingSpaces, length - leadingSpaces);
|
|
|
|
// FIXME: If tolerateTrailingJunk is true, then we want to tolerate non-8-bit junk
|
|
// after the number, so is8Bit is too strict a check.
|
|
if (!whitespaceSkipped.is8Bit())
|
|
return NaN;
|
|
|
|
const char *c = whitespaceSkipped.ascii();
|
|
|
|
// empty string ?
|
|
if (*c == '\0')
|
|
return tolerateEmptyString ? 0.0 : NaN;
|
|
|
|
// hex number ?
|
|
if (*c == '0' && (*(c+1) == 'x' || *(c+1) == 'X')) {
|
|
const char* firstDigitPosition = c + 2;
|
|
c++;
|
|
d = 0.0;
|
|
while (*(++c)) {
|
|
if (*c >= '0' && *c <= '9')
|
|
d = d * 16.0 + *c - '0';
|
|
else if ((*c >= 'A' && *c <= 'F') || (*c >= 'a' && *c <= 'f'))
|
|
d = d * 16.0 + (*c & 0xdf) - 'A' + 10.0;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (d >= mantissaOverflowLowerBound)
|
|
d = parseIntOverflow(firstDigitPosition, c - firstDigitPosition, 16);
|
|
} else {
|
|
// regular number ?
|
|
char *end;
|
|
d = kjs_strtod(c, &end);
|
|
if ((d != 0.0 || end != c) && d != Inf && d != -Inf) {
|
|
c = end;
|
|
} else {
|
|
double sign = 1.0;
|
|
|
|
if (*c == '+')
|
|
c++;
|
|
else if (*c == '-') {
|
|
sign = -1.0;
|
|
c++;
|
|
}
|
|
|
|
// We used strtod() to do the conversion. However, strtod() handles
|
|
// infinite values slightly differently than JavaScript in that it
|
|
// converts the string "inf" with any capitalization to infinity,
|
|
// whereas the ECMA spec requires that it be converted to NaN.
|
|
|
|
if (strncmp(c, "Infinity", 8) == 0) {
|
|
d = sign * Inf;
|
|
c += 8;
|
|
} else if ((d == Inf || d == -Inf) && *c != 'I' && *c != 'i')
|
|
c = end;
|
|
else
|
|
return NaN;
|
|
}
|
|
}
|
|
|
|
// allow trailing white space
|
|
while (isASCIISpace(*c))
|
|
c++;
|
|
// don't allow anything after - unless tolerant=true
|
|
if (!tolerateTrailingJunk && *c != '\0')
|
|
d = NaN;
|
|
|
|
return d;
|
|
}
|
|
|
|
#ifdef __FAST_MATH__
|
|
# error "KJS does not work correctly with -ffast-math"
|
|
#endif
|
|
|
|
double UString::toDouble(bool tolerateTrailingJunk) const
|
|
{
|
|
return toDouble(tolerateTrailingJunk, true);
|
|
}
|
|
|
|
double UString::toDouble() const
|
|
{
|
|
return toDouble(false, true);
|
|
}
|
|
|
|
uint32_t UString::toStrictUInt32(bool *ok) const
|
|
{
|
|
if (ok)
|
|
*ok = false;
|
|
|
|
// Empty string is not OK.
|
|
int len = m_rep->len;
|
|
if (len == 0)
|
|
return 0;
|
|
const UChar *p = m_rep->data();
|
|
unsigned short c = p->unicode();
|
|
|
|
// If the first digit is 0, only 0 itself is OK.
|
|
if (c == '0') {
|
|
if (len == 1 && ok)
|
|
*ok = true;
|
|
return 0;
|
|
}
|
|
|
|
// Convert to UInt32, checking for overflow.
|
|
uint32_t i = 0;
|
|
while (1) {
|
|
// Process character, turning it into a digit.
|
|
if (c < '0' || c > '9')
|
|
return 0;
|
|
const unsigned d = c - '0';
|
|
|
|
// Multiply by 10, checking for overflow out of 32 bits.
|
|
if (i > 0xFFFFFFFFU / 10)
|
|
return 0;
|
|
i *= 10;
|
|
|
|
// Add in the digit, checking for overflow out of 32 bits.
|
|
const unsigned max = 0xFFFFFFFFU - d;
|
|
if (i > max)
|
|
return 0;
|
|
i += d;
|
|
|
|
// Handle end of string.
|
|
if (--len == 0) {
|
|
if (ok)
|
|
*ok = true;
|
|
return i;
|
|
}
|
|
|
|
// Get next character.
|
|
c = (++p)->unicode();
|
|
}
|
|
}
|
|
|
|
int UString::find(const UString &f, int pos) const
|
|
{
|
|
int sz = size();
|
|
int fsz = f.size();
|
|
if (sz < fsz)
|
|
return -1;
|
|
if (pos < 0)
|
|
pos = 0;
|
|
if (fsz == 0)
|
|
return pos;
|
|
const UChar* data_ = data();
|
|
const UChar* end = data_ + sz - fsz;
|
|
int fsizeminusone = (fsz - 1) * sizeof(UChar);
|
|
const UChar *fdata = f.data();
|
|
unsigned short fchar = fdata->uc;
|
|
++fdata;
|
|
for (const UChar* c = data_ + pos; c <= end; c++)
|
|
if (c->uc == fchar && !memcmp(c + 1, fdata, fsizeminusone))
|
|
return (c - data_);
|
|
|
|
return -1;
|
|
}
|
|
|
|
int UString::find(UChar ch, int pos) const
|
|
{
|
|
if (pos < 0)
|
|
pos = 0;
|
|
const UChar* data_ = data();
|
|
const UChar *end = data_ + size();
|
|
for (const UChar *c = data_ + pos; c < end; c++)
|
|
if (*c == ch)
|
|
return (c - data_);
|
|
|
|
return -1;
|
|
}
|
|
|
|
int UString::rfind(const UString &f, int pos) const
|
|
{
|
|
int sz = size();
|
|
int fsz = f.size();
|
|
if (sz < fsz)
|
|
return -1;
|
|
if (pos < 0)
|
|
pos = 0;
|
|
if (pos > sz - fsz)
|
|
pos = sz - fsz;
|
|
if (fsz == 0)
|
|
return pos;
|
|
int fsizeminusone = (fsz - 1) * sizeof(UChar);
|
|
const UChar *fdata = f.data();
|
|
const UChar* data_ = data();
|
|
for (const UChar* c = data_ + pos; c >= data_; c--) {
|
|
if (*c == *fdata && !memcmp(c + 1, fdata + 1, fsizeminusone))
|
|
return (c - data_);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
int UString::rfind(UChar ch, int pos) const
|
|
{
|
|
if (isEmpty())
|
|
return -1;
|
|
if (pos + 1 >= size())
|
|
pos = size() - 1;
|
|
const UChar* data_ = data();
|
|
for (const UChar* c = data_ + pos; c >= data_; c--) {
|
|
if (*c == ch)
|
|
return (c - data_);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
UString UString::substr(int pos, int len) const
|
|
{
|
|
int s = size();
|
|
|
|
if (pos < 0)
|
|
pos = 0;
|
|
else if (pos >= s)
|
|
pos = s;
|
|
if (len < 0)
|
|
len = s;
|
|
if (pos + len >= s)
|
|
len = s - pos;
|
|
|
|
if (pos == 0 && len == s)
|
|
return *this;
|
|
|
|
return UString(Rep::create(m_rep, pos, len));
|
|
}
|
|
|
|
void UString::copyForWriting()
|
|
{
|
|
int l = size();
|
|
if (!l) return; // Not going to touch anything anyway.
|
|
if (m_rep->rc > 1 || !m_rep->baseIsSelf()) {
|
|
UChar* n = allocChars(l);
|
|
memcpy(n, data(), l * sizeof(UChar));
|
|
m_rep = Rep::create(n, l);
|
|
}
|
|
}
|
|
|
|
bool operator==(const UString& s1, const UString& s2)
|
|
{
|
|
#if 0
|
|
if (s1.m_rep == s2.m_rep)
|
|
return true;
|
|
#endif
|
|
|
|
if (s1.m_rep->len != s2.m_rep->len)
|
|
return false;
|
|
|
|
return (memcmp(s1.m_rep->data(), s2.m_rep->data(),
|
|
s1.m_rep->len * sizeof(UChar)) == 0);
|
|
}
|
|
|
|
bool operator==(const UString& s1, const char *s2)
|
|
{
|
|
if (s2 == 0) {
|
|
return s1.isEmpty();
|
|
}
|
|
|
|
const UChar *u = s1.data();
|
|
const UChar *uend = u + s1.size();
|
|
while (u != uend && *s2) {
|
|
if (u->uc != (unsigned char)*s2)
|
|
return false;
|
|
s2++;
|
|
u++;
|
|
}
|
|
|
|
return u == uend && *s2 == 0;
|
|
}
|
|
|
|
bool operator<(const UString& s1, const UString& s2)
|
|
{
|
|
const int l1 = s1.size();
|
|
const int l2 = s2.size();
|
|
const int lmin = l1 < l2 ? l1 : l2;
|
|
const UChar *c1 = s1.data();
|
|
const UChar *c2 = s2.data();
|
|
int l = 0;
|
|
while (l < lmin && *c1 == *c2) {
|
|
c1++;
|
|
c2++;
|
|
l++;
|
|
}
|
|
if (l < lmin)
|
|
return (c1->uc < c2->uc);
|
|
|
|
return (l1 < l2);
|
|
}
|
|
|
|
bool UString::equal(const UString::Rep *r, const UString::Rep *b)
|
|
{
|
|
if (r == b)
|
|
return true;
|
|
|
|
int length = r->len;
|
|
if (length != b->len)
|
|
return false;
|
|
|
|
const UChar *d = r->data();
|
|
const UChar *s = b->data();
|
|
for (int i = 0; i != length; ++i)
|
|
if (d[i].uc != s[i].uc)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
int compare(const UString& s1, const UString& s2)
|
|
{
|
|
const int l1 = s1.size();
|
|
const int l2 = s2.size();
|
|
const int lmin = l1 < l2 ? l1 : l2;
|
|
const UChar *c1 = s1.data();
|
|
const UChar *c2 = s2.data();
|
|
int l = 0;
|
|
while (l < lmin && *c1 == *c2) {
|
|
c1++;
|
|
c2++;
|
|
l++;
|
|
}
|
|
|
|
if (l < lmin)
|
|
return (c1->uc > c2->uc) ? 1 : -1;
|
|
|
|
if (l1 == l2)
|
|
return 0;
|
|
|
|
return (l1 > l2) ? 1 : -1;
|
|
}
|
|
|
|
inline int inlineUTF8SequenceLengthNonASCII(char b0)
|
|
{
|
|
if ((b0 & 0xC0) != 0xC0)
|
|
return 0;
|
|
if ((b0 & 0xE0) == 0xC0)
|
|
return 2;
|
|
if ((b0 & 0xF0) == 0xE0)
|
|
return 3;
|
|
if ((b0 & 0xF8) == 0xF0)
|
|
return 4;
|
|
return 0;
|
|
}
|
|
|
|
int UTF8SequenceLengthNonASCII(char b0)
|
|
{
|
|
return inlineUTF8SequenceLengthNonASCII(b0);
|
|
}
|
|
|
|
inline int inlineUTF8SequenceLength(char b0)
|
|
{
|
|
return (b0 & 0x80) == 0 ? 1 : UTF8SequenceLengthNonASCII(b0);
|
|
}
|
|
|
|
// Given a first byte, gives the length of the UTF-8 sequence it begins.
|
|
// Returns 0 for bytes that are not legal starts of UTF-8 sequences.
|
|
// Only allows sequences of up to 4 bytes, since that works for all Unicode characters (U-00000000 to U-0010FFFF).
|
|
int UTF8SequenceLength(char b0)
|
|
{
|
|
return (b0 & 0x80) == 0 ? 1 : inlineUTF8SequenceLengthNonASCII(b0);
|
|
}
|
|
|
|
// Takes a null-terminated C-style string with a UTF-8 sequence in it and converts it to a character.
|
|
// Only allows Unicode characters (U-00000000 to U-0010FFFF).
|
|
// Returns -1 if the sequence is not valid (including presence of extra bytes).
|
|
int decodeUTF8Sequence(const char *sequence)
|
|
{
|
|
// Handle 0-byte sequences (never valid).
|
|
const unsigned char b0 = sequence[0];
|
|
const int length = inlineUTF8SequenceLength(b0);
|
|
if (length == 0)
|
|
return -1;
|
|
|
|
// Handle 1-byte sequences (plain ASCII).
|
|
const unsigned char b1 = sequence[1];
|
|
if (length == 1) {
|
|
if (b1)
|
|
return -1;
|
|
return b0;
|
|
}
|
|
|
|
// Handle 2-byte sequences.
|
|
if ((b1 & 0xC0) != 0x80)
|
|
return -1;
|
|
const unsigned char b2 = sequence[2];
|
|
if (length == 2) {
|
|
if (b2)
|
|
return -1;
|
|
const int c = ((b0 & 0x1F) << 6) | (b1 & 0x3F);
|
|
if (c < 0x80)
|
|
return -1;
|
|
return c;
|
|
}
|
|
|
|
// Handle 3-byte sequences.
|
|
if ((b2 & 0xC0) != 0x80)
|
|
return -1;
|
|
const unsigned char b3 = sequence[3];
|
|
if (length == 3) {
|
|
if (b3)
|
|
return -1;
|
|
const int c = ((b0 & 0xF) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F);
|
|
if (c < 0x800)
|
|
return -1;
|
|
// UTF-16 surrogates should never appear in UTF-8 data.
|
|
if (c >= 0xD800 && c <= 0xDFFF)
|
|
return -1;
|
|
// Backwards BOM and U+FFFF should never appear in UTF-8 data.
|
|
if (c == 0xFFFE || c == 0xFFFF)
|
|
return -1;
|
|
return c;
|
|
}
|
|
|
|
// Handle 4-byte sequences.
|
|
if ((b3 & 0xC0) != 0x80)
|
|
return -1;
|
|
const unsigned char b4 = sequence[4];
|
|
if (length == 4) {
|
|
if (b4)
|
|
return -1;
|
|
const int c = ((b0 & 0x7) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F);
|
|
if (c < 0x10000 || c > 0x10FFFF)
|
|
return -1;
|
|
return c;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
CString UString::UTF8String() const
|
|
{
|
|
// Allocate a buffer big enough to hold all the characters.
|
|
const int length = size();
|
|
Vector<char, 1024> buffer(length * 3);
|
|
|
|
// Convert to runs of 8-bit characters.
|
|
char *p = buffer.begin();
|
|
const unsigned short* d = &data()->uc;
|
|
for (int i = 0; i != length; ++i) {
|
|
unsigned int c = d[i], sc;
|
|
if (c < 0x80) {
|
|
*p++ = (char)c;
|
|
} else if (c < 0x800) {
|
|
*p++ = (char)((c >> 6) | 0xC0); // C0 is the 2-byte flag for UTF-8
|
|
*p++ = (char)((c | 0x80) & 0xBF); // next 6 bits, with high bit set
|
|
} else if (c >= 0xD800 && c <= 0xDBFF && (i+1) < length &&
|
|
(sc = d[i+1]) >= 0xDC00 && sc <= 0xDFFF) {
|
|
sc = 0x10000 + (((c & 0x3FF) << 10) | (sc & 0x3FF));
|
|
*p++ = (char)((sc >> 18) | 0xF0); // F0 is the 4-byte flag for UTF-8
|
|
*p++ = (char)(((sc >> 12) | 0x80) & 0xBF); // next 6 bits, with high bit set
|
|
*p++ = (char)(((sc >> 6) | 0x80) & 0xBF); // next 6 bits, with high bit set
|
|
*p++ = (char)((sc | 0x80) & 0xBF); // next 6 bits, with high bit set
|
|
++i;
|
|
} else {
|
|
*p++ = (char)((c >> 12) | 0xE0); // E0 is the 3-byte flag for UTF-8
|
|
*p++ = (char)(((c >> 6) | 0x80) & 0xBF); // next 6 bits, with high bit set
|
|
*p++ = (char)((c | 0x80) & 0xBF); // next 6 bits, with high bit set
|
|
}
|
|
}
|
|
|
|
// Return the result as a C string.
|
|
CString result(buffer.data(), p - buffer.data());
|
|
|
|
return result;
|
|
}
|
|
|
|
} // namespace KJS
|