kdelibs/kjs/interpreter.cpp
2014-11-13 01:04:59 +02:00

1033 lines
32 KiB
C++

// -*- c-basic-offset: 2 -*-
/*
* This file is part of the KDE libraries
* Copyright (C) 1999-2001 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003 Apple Computer, Inc.
* Copyright (C) 2008, 2009 Maksim Orlovich (maksim@kde.org)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "interpreter.h"
#include <config-kjs.h>
#include "SavedBuiltins.h"
#include "array_object.h"
#include "bool_object.h"
#include "collector.h"
#include "date_object.h"
#include "debugger.h"
#include "error_object.h"
#include "function_object.h"
#include "internal.h"
#include "math_object.h"
#include "nodes.h"
#include "number_object.h"
#include "object.h"
#include "object_object.h"
#include "operations.h"
#include "regexp_object.h"
#include "string_object.h"
#include "types.h"
#include "value.h"
#include "lexer.h"
#include "json_object.h"
#if USE(BINDINGS)
#include "runtime.h"
#endif
#if defined _WIN32 || defined _WIN64
#undef HAVE_SYS_TIME_H // no setitimer in kdewin32
#endif
#if HAVE(SYS_TIME_H)
#include <sys/time.h>
#endif
#include <assert.h>
#include <cstdlib>
#include <math.h>
#include <signal.h>
#include <stdio.h>
#if defined(HAVE_UNISTD_H)
#include <unistd.h>
#endif
namespace KJS {
class TimeoutChecker {
public:
void startTimeoutCheck(Interpreter*);
void stopTimeoutCheck(Interpreter*);
void pauseTimeoutCheck(Interpreter*);
void resumeTimeoutCheck(Interpreter*);
private:
#if HAVE(SYS_TIME_H)
static Interpreter* s_executingInterpreter;
static void alarmHandler(int);
Interpreter* m_oldInterpreter;
itimerval m_oldtv;
itimerval m_pausetv;
void (*m_oldAlarmHandler)(int);
#endif
};
#if HAVE(SYS_TIME_H)
Interpreter* TimeoutChecker::s_executingInterpreter = 0;
#endif
void TimeoutChecker::startTimeoutCheck(Interpreter *interpreter)
{
if (!interpreter->m_timeoutTime)
return;
interpreter->m_startTimeoutCheckCount++;
#if HAVE(SYS_TIME_H)
if (s_executingInterpreter == interpreter)
return;
// Block signals
m_oldAlarmHandler = signal(SIGALRM, SIG_IGN);
m_oldInterpreter = s_executingInterpreter;
s_executingInterpreter = interpreter;
itimerval tv = {
{ interpreter->m_timeoutTime / 1000, (interpreter->m_timeoutTime % 1000) * 1000 },
{ interpreter->m_timeoutTime / 1000, (interpreter->m_timeoutTime % 1000) * 1000 }
};
setitimer(ITIMER_REAL, &tv, &m_oldtv);
// Unblock signals
signal(SIGALRM, alarmHandler);
#endif
}
void TimeoutChecker::stopTimeoutCheck(Interpreter* interpreter)
{
if (!interpreter->m_timeoutTime)
return;
ASSERT(interpreter->m_startTimeoutCheckCount > 0);
interpreter->m_startTimeoutCheckCount--;
if (interpreter->m_startTimeoutCheckCount != 0)
return;
#if HAVE(SYS_TIME_H)
signal(SIGALRM, SIG_IGN);
s_executingInterpreter = m_oldInterpreter;
setitimer(ITIMER_REAL, &m_oldtv, 0L);
signal(SIGALRM, m_oldAlarmHandler);
#endif
}
#if HAVE(SYS_TIME_H)
void TimeoutChecker::alarmHandler(int)
{
s_executingInterpreter->m_timedOut = true;
}
#endif
void TimeoutChecker::pauseTimeoutCheck(Interpreter* interpreter)
{
if (interpreter->m_startTimeoutCheckCount == 0)
return;
#if HAVE(SYS_TIME_H)
ASSERT(interpreter == s_executingInterpreter);
void (*currentSignalHandler)(int);
// Block signal
currentSignalHandler = signal(SIGALRM, SIG_IGN);
if (currentSignalHandler != alarmHandler) {
signal(SIGALRM, currentSignalHandler);
return;
}
setitimer(ITIMER_REAL, 0L, &m_pausetv);
#endif
interpreter->m_pauseTimeoutCheckCount++;
}
void TimeoutChecker::resumeTimeoutCheck(Interpreter* interpreter)
{
if (interpreter->m_startTimeoutCheckCount == 0)
return;
#if HAVE(SYS_TIME_H)
ASSERT(interpreter == s_executingInterpreter);
#endif
interpreter->m_pauseTimeoutCheckCount--;
if (interpreter->m_pauseTimeoutCheckCount != 0)
return;
#if HAVE(SYS_TIME_H)
void (*currentSignalHandler)(int);
// Check so we have the right handler
currentSignalHandler = signal(SIGALRM, SIG_IGN);
if (currentSignalHandler != SIG_IGN) {
signal(SIGALRM, currentSignalHandler);
return;
}
setitimer(ITIMER_REAL, &m_pausetv, 0L);
// Unblock signal
currentSignalHandler = signal(SIGALRM, alarmHandler);
#endif
}
Interpreter* Interpreter::s_hook = 0;
Interpreter::Interpreter(JSGlobalObject* globalObject)
: m_globalObject(globalObject),
m_globalExec(this, globalObject),
globPkg(0)
{
init();
}
Interpreter::Interpreter()
: m_globalObject(new JSGlobalObject()),
m_globalExec(this, m_globalObject),
globPkg(0)
{
init();
}
void Interpreter::init()
{
JSLock lock;
initInternedStringsTable();
m_refCount = 0;
m_timeoutTime = 0;
m_recursion = 0;
m_debugger= 0;
m_execState = 0;
m_timedOut = false;
m_timeoutChecker = 0;
m_startTimeoutCheckCount = 0;
m_pauseTimeoutCheckCount = 0;
m_compatMode = NativeMode;
const int initialStackSize = 8192;
stackBase = (unsigned char*)std::malloc(initialStackSize);
stackPtr = stackBase;
stackEnd = stackBase + initialStackSize;
m_numCachedActivations = 0;
m_globalObject->setInterpreter(this);
if (s_hook) {
prev = s_hook;
next = s_hook->next;
s_hook->next->prev = this;
s_hook->next = this;
} else {
// This is the first interpreter
s_hook = next = prev = this;
}
initGlobalObject();
}
Interpreter::~Interpreter()
{
JSLock lock;
ASSERT (m_startTimeoutCheckCount == 0);
ASSERT (m_pauseTimeoutCheckCount == 0);
delete m_timeoutChecker;
if (m_debugger)
m_debugger->detach(this);
std::free(stackBase);
next->prev = prev;
prev->next = next;
s_hook = next;
if (s_hook == this) {
// This was the last interpreter
s_hook = 0;
}
m_globalObject->setInterpreter(0);
}
unsigned char* Interpreter::extendStack(size_t needed)
{
unsigned char* oldBase = stackBase; // needed for fixing up localStores
size_t curSize = stackEnd - stackBase;
size_t avail = stackEnd - stackPtr;
size_t extra = needed - avail;
if (extra < 8192)
extra = 8192;
size_t newSize = curSize + extra;
//printf("Grow stack:%d -> %d\n", curSize, newSize);
stackBase = (unsigned char*)std::malloc(newSize); // Not realloc since we need the old stuff
// ### seems optimizeable
std::memcpy(stackBase, oldBase, curSize);
stackPtr = stackBase + (stackPtr - oldBase);
stackEnd = stackBase + newSize;
// Now go through and fix up activations..
ExecState* e = m_execState;
while (e) {
if (e->codeType() == FunctionCode) {
ActivationImp* act = static_cast<ActivationImp*>(e->activationObject());
if (act->localStorage) {
act->localStorage = (LocalStorageEntry*)
(stackBase + ((unsigned char*)act->localStorage - oldBase));
e->updateLocalStorage(act->localStorage);
}
}
e = e->savedExecState();
}
std::free(oldBase);
return stackAlloc(needed);
}
void Interpreter::recycleActivation(ActivationImp* act)
{
ASSERT(act->localStorage == 0); // Should not refer to anything by now
if (m_numCachedActivations >= MaxCachedActivations)
return;
act->clearProperties();
m_cachedActivations[m_numCachedActivations] = act;
++m_numCachedActivations;
}
JSGlobalObject* Interpreter::globalObject() const
{
return m_globalObject;
}
void Interpreter::putNamedConstructor(const char* name, JSObject* value)
{
assert(value->implementsCall());
Identifier i(name);
m_globalObject->put(&m_globalExec, i, value, DontEnum);
static_cast<InternalFunctionImp*>(value)->setFunctionName(i);
}
void Interpreter::initGlobalObject()
{
FunctionPrototype *funcProto = new FunctionPrototype(&m_globalExec);
m_FunctionPrototype = funcProto;
ObjectPrototype *objProto = new ObjectPrototype(&m_globalExec, funcProto);
m_ObjectPrototype = objProto;
funcProto->setPrototype(m_ObjectPrototype);
ArrayPrototype *arrayProto = new ArrayPrototype(&m_globalExec, objProto);
m_ArrayPrototype = arrayProto;
StringPrototype *stringProto = new StringPrototype(&m_globalExec, objProto);
m_StringPrototype = stringProto;
BooleanPrototype *booleanProto = new BooleanPrototype(&m_globalExec, objProto, funcProto);
m_BooleanPrototype = booleanProto;
NumberPrototype *numberProto = new NumberPrototype(&m_globalExec, objProto, funcProto);
m_NumberPrototype = numberProto;
DatePrototype *dateProto = new DatePrototype(&m_globalExec, objProto);
m_DatePrototype = dateProto;
RegExpPrototype *regexpProto = new RegExpPrototype(&m_globalExec, objProto, funcProto);
m_RegExpPrototype = regexpProto;
ErrorPrototype *errorProto = new ErrorPrototype(&m_globalExec, objProto, funcProto);
m_ErrorPrototype = errorProto;
JSObject* o = m_globalObject;
while (o->prototype()->isObject())
o = static_cast<JSObject*>(o->prototype());
o->setPrototype(m_ObjectPrototype);
// Constructors (Object, Array, etc.)
m_Object = new ObjectObjectImp(&m_globalExec, objProto, funcProto);
m_Function = new FunctionObjectImp(&m_globalExec, funcProto);
m_Array = new ArrayObjectImp(&m_globalExec, funcProto, arrayProto);
m_String = new StringObjectImp(&m_globalExec, funcProto, stringProto);
m_Boolean = new BooleanObjectImp(&m_globalExec, funcProto, booleanProto);
m_Number = new NumberObjectImp(&m_globalExec, funcProto, numberProto);
m_Date = new DateObjectImp(&m_globalExec, funcProto, dateProto);
m_RegExp = new RegExpObjectImp(&m_globalExec, funcProto, regexpProto);
m_Error = new ErrorObjectImp(&m_globalExec, funcProto, errorProto);
// Error object prototypes
m_EvalErrorPrototype = new NativeErrorPrototype(&m_globalExec, errorProto, EvalError, "EvalError", "EvalError");
m_RangeErrorPrototype = new NativeErrorPrototype(&m_globalExec, errorProto, RangeError, "RangeError", "RangeError");
m_ReferenceErrorPrototype = new NativeErrorPrototype(&m_globalExec, errorProto, ReferenceError, "ReferenceError", "ReferenceError");
m_SyntaxErrorPrototype = new NativeErrorPrototype(&m_globalExec, errorProto, SyntaxError, "SyntaxError", "SyntaxError");
m_TypeErrorPrototype = new NativeErrorPrototype(&m_globalExec, errorProto, TypeError, "TypeError", "TypeError");
m_UriErrorPrototype = new NativeErrorPrototype(&m_globalExec, errorProto, URIError, "URIError", "URIError");
// Error objects
m_EvalError = new NativeErrorImp(&m_globalExec, funcProto, m_EvalErrorPrototype);
m_RangeError = new NativeErrorImp(&m_globalExec, funcProto, m_RangeErrorPrototype);
m_ReferenceError = new NativeErrorImp(&m_globalExec, funcProto, m_ReferenceErrorPrototype);
m_SyntaxError = new NativeErrorImp(&m_globalExec, funcProto, m_SyntaxErrorPrototype);
m_TypeError = new NativeErrorImp(&m_globalExec, funcProto, m_TypeErrorPrototype);
m_UriError = new NativeErrorImp(&m_globalExec, funcProto, m_UriErrorPrototype);
// ECMA 15.3.4.1
funcProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_Function, DontEnum);
putNamedConstructor("Object", m_Object);
putNamedConstructor("Function", m_Function);
putNamedConstructor("Array", m_Array);
putNamedConstructor("Boolean", m_Boolean);
putNamedConstructor("String", m_String);
putNamedConstructor("Number", m_Number);
putNamedConstructor("Date", m_Date);
putNamedConstructor("RegExp", m_RegExp);
putNamedConstructor("Error", m_Error);
putNamedConstructor("EvalError",m_EvalError);
putNamedConstructor("RangeError",m_RangeError);
putNamedConstructor("ReferenceError",m_ReferenceError);
putNamedConstructor("SyntaxError",m_SyntaxError);
putNamedConstructor("TypeError",m_TypeError);
putNamedConstructor("URIError",m_UriError);
// Set the constructorPropertyName property of all builtin constructors
objProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_Object, DontEnum);
funcProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_Function, DontEnum);
arrayProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_Array, DontEnum);
booleanProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_Boolean, DontEnum);
stringProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_String, DontEnum);
numberProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_Number, DontEnum);
dateProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_Date, DontEnum);
regexpProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_RegExp, DontEnum);
errorProto->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_Error, DontEnum);
m_EvalErrorPrototype->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_EvalError, DontEnum);
m_RangeErrorPrototype->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_RangeError, DontEnum);
m_ReferenceErrorPrototype->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_ReferenceError, DontEnum);
m_SyntaxErrorPrototype->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_SyntaxError, DontEnum);
m_TypeErrorPrototype->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_TypeError, DontEnum);
m_UriErrorPrototype->put(&m_globalExec, m_globalExec.propertyNames().constructor, m_UriError, DontEnum);
// built-in values
m_globalObject->put(&m_globalExec, "NaN", jsNaN(), DontEnum|DontDelete|ReadOnly);
m_globalObject->put(&m_globalExec, "Infinity", jsNumber(Inf), DontEnum|DontDelete|ReadOnly);
m_globalObject->put(&m_globalExec, "undefined", jsUndefined(), DontEnum|DontDelete|ReadOnly);
// built-in functions
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::Eval, 1, "eval"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::ParseInt, 2, "parseInt"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::ParseFloat, 1, "parseFloat"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::IsNaN, 1, "isNaN"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::IsFinite, 1, "isFinite"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::Escape, 1, "escape"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::UnEscape, 1, "unescape"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::DecodeURI, 1, "decodeURI"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::DecodeURIComponent, 1, "decodeURIComponent"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::EncodeURI, 1, "encodeURI"), DontEnum);
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::EncodeURIComponent, 1, "encodeURIComponent"), DontEnum);
#ifndef NDEBUG
m_globalObject->putDirectFunction(new GlobalFuncImp(&m_globalExec, funcProto, GlobalFuncImp::KJSPrint, 1, "kjsprint"), DontEnum);
#endif
// built-in objects
m_globalObject->put(&m_globalExec, "Math", new MathObjectImp(&m_globalExec, objProto), DontEnum);
m_globalObject->put(&m_globalExec, "JSON", new JSONObjectImp(&m_globalExec, objProto), DontEnum);
}
ExecState* Interpreter::globalExec()
{
return &m_globalExec;
}
void Interpreter::setGlobalPackage(Package* p)
{
globPkg = p;
}
Package* Interpreter::globalPackage()
{
return globPkg;
}
Completion Interpreter::checkSyntax(const UString& sourceURL, int startingLineNumber, const UString& code)
{
return checkSyntax(sourceURL, startingLineNumber, code.data(), code.size());
}
Completion Interpreter::checkSyntax(const UString& sourceURL, int startingLineNumber, const UChar* code, int codeLength)
{
JSLock lock;
int errLine;
UString errMsg;
RefPtr<ProgramNode> progNode = parser().parseProgram(sourceURL, startingLineNumber, code, codeLength, 0, &errLine, &errMsg);
if (!progNode)
return Completion(Throw, Error::create(&m_globalExec, SyntaxError, errMsg, errLine, 0, sourceURL));
return Completion(Normal);
}
Completion Interpreter::evaluate(const UString& sourceURL, int startingLineNumber, const UString& code, JSValue* thisV)
{
return evaluate(sourceURL, startingLineNumber, code.data(), code.size(), thisV);
}
Completion Interpreter::evaluate(const UString& sourceURL, int startingLineNumber, const UChar* code, int codeLength, JSValue* thisV)
{
JSLock lock;
// prevent against infinite recursion
if (m_recursion >= 20)
return Completion(Throw, Error::create(&m_globalExec, GeneralError, "Recursion too deep"));
// parse the source code
int sourceId;
int errLine;
UString errMsg;
RefPtr<ProgramNode> progNode = parser().parseProgram(sourceURL, startingLineNumber, code, codeLength, &sourceId, &errLine, &errMsg);
// notify debugger that source has been parsed
if (m_debugger) {
m_debugger->reportSourceParsed(&m_globalExec, progNode.get(), sourceId, sourceURL,
UString(code, codeLength), startingLineNumber, errLine, errMsg);
}
// no program node means a syntax error occurred
if (!progNode) {
Completion res(Throw, Error::create(&m_globalExec, SyntaxError, errMsg, errLine, sourceId, sourceURL));
if (m_debugger)
m_debugger->reportException(&m_globalExec, res.value());
if (shouldPrintExceptions())
printException(res, sourceURL);
return res;
}
m_globalExec.clearException();
m_recursion++;
JSGlobalObject* globalObj = m_globalObject;
JSObject* thisObj = globalObj;
// "this" must be an object... use same rules as Function.prototype.apply()
if (thisV && !thisV->isUndefinedOrNull())
thisObj = thisV->toObject(&m_globalExec);
Completion res;
if (m_globalExec.hadException())
// the thisV->toObject() conversion above might have thrown an exception - if so, propagate it
res = Completion(Throw, m_globalExec.exception());
else {
// execute the code
InterpreterExecState newExec(this, globalObj, thisObj, progNode.get());
if (m_debugger && !m_debugger->enterContext(&newExec, sourceId, startingLineNumber, 0, List::empty())) {
// debugger requested we stop execution.
m_debugger->imp()->abort();
return Completion(Break);
}
progNode->processDecls(&newExec);
res = progNode->execute(&newExec);
if (m_debugger && !m_debugger->exitContext(&newExec, sourceId, startingLineNumber, 0)) {
// debugger requested we stop execution.
m_debugger->imp()->abort();
return Completion(Break);
}
}
m_recursion--;
if (shouldPrintExceptions() && res.complType() == Throw)
printException(res, sourceURL);
return res;
}
bool Interpreter::normalizeCode(const UString& codeIn, UString* codeOut,
int* errLine, UString* errMsg)
{
assert(codeOut);
RefPtr<ProgramNode> progNode = parser().parseProgram("", // sourceURL
0, // line
codeIn.data(),
codeIn.size(),
0, // &sourceId
errLine, errMsg);
if (progNode) {
*codeOut = progNode->toString();
return true;
} else {
return false;
}
}
JSObject *Interpreter::builtinObject() const
{
return m_Object;
}
JSObject *Interpreter::builtinFunction() const
{
return m_Function;
}
JSObject *Interpreter::builtinArray() const
{
return m_Array;
}
JSObject *Interpreter::builtinBoolean() const
{
return m_Boolean;
}
JSObject *Interpreter::builtinString() const
{
return m_String;
}
JSObject *Interpreter::builtinNumber() const
{
return m_Number;
}
JSObject *Interpreter::builtinDate() const
{
return m_Date;
}
JSObject *Interpreter::builtinRegExp() const
{
return m_RegExp;
}
JSObject *Interpreter::builtinError() const
{
return m_Error;
}
JSObject *Interpreter::builtinObjectPrototype() const
{
return m_ObjectPrototype;
}
JSObject *Interpreter::builtinFunctionPrototype() const
{
return m_FunctionPrototype;
}
JSObject *Interpreter::builtinArrayPrototype() const
{
return m_ArrayPrototype;
}
JSObject *Interpreter::builtinBooleanPrototype() const
{
return m_BooleanPrototype;
}
JSObject *Interpreter::builtinStringPrototype() const
{
return m_StringPrototype;
}
JSObject *Interpreter::builtinNumberPrototype() const
{
return m_NumberPrototype;
}
JSObject *Interpreter::builtinDatePrototype() const
{
return m_DatePrototype;
}
JSObject *Interpreter::builtinRegExpPrototype() const
{
return m_RegExpPrototype;
}
JSObject *Interpreter::builtinErrorPrototype() const
{
return m_ErrorPrototype;
}
JSObject *Interpreter::builtinEvalError() const
{
return m_EvalError;
}
JSObject *Interpreter::builtinRangeError() const
{
return m_RangeError;
}
JSObject *Interpreter::builtinReferenceError() const
{
return m_ReferenceError;
}
JSObject *Interpreter::builtinSyntaxError() const
{
return m_SyntaxError;
}
JSObject *Interpreter::builtinTypeError() const
{
return m_TypeError;
}
JSObject *Interpreter::builtinURIError() const
{
return m_UriError;
}
JSObject *Interpreter::builtinEvalErrorPrototype() const
{
return m_EvalErrorPrototype;
}
JSObject *Interpreter::builtinRangeErrorPrototype() const
{
return m_RangeErrorPrototype;
}
JSObject *Interpreter::builtinReferenceErrorPrototype() const
{
return m_ReferenceErrorPrototype;
}
JSObject *Interpreter::builtinSyntaxErrorPrototype() const
{
return m_SyntaxErrorPrototype;
}
JSObject *Interpreter::builtinTypeErrorPrototype() const
{
return m_TypeErrorPrototype;
}
JSObject *Interpreter::builtinURIErrorPrototype() const
{
return m_UriErrorPrototype;
}
bool Interpreter::collect()
{
return Collector::collect();
}
void Interpreter::mark(bool)
{
if (m_execState)
m_execState->mark();
if (m_globalObject && !m_globalObject->marked())
m_globalObject->mark();
if (m_globalExec.exception() && !m_globalExec.exception()->marked())
m_globalExec.exception()->mark();
// Do not let cached activations survive the GC; as they have an unfortunate
// tendenacy to pin blocks, increasing their number and hence spreading out
// the objects somewhat
m_numCachedActivations = 0;
}
void Interpreter::markSourceCachedObjects()
{
markInternedStringsTable();
}
#ifdef KJS_DEBUG_MEM
void Interpreter::finalCheck()
{
fprintf(stderr,"Interpreter::finalCheck()\n");
Collector::collect();
// Node::finalCheck();
Collector::finalCheck();
}
#endif
static bool printExceptions = false;
bool Interpreter::shouldPrintExceptions()
{
return printExceptions;
}
void Interpreter::setShouldPrintExceptions(bool print)
{
printExceptions = print;
}
void Interpreter::printException(const Completion& c, const UString& sourceURL)
{
JSLock lock;
ExecState* exec = globalExec();
CString f = sourceURL.UTF8String();
CString message = c.value()->toObject(exec)->toString(exec).UTF8String();
int line = c.value()->toObject(exec)->get(exec, "line")->toUInt32(exec);
#if PLATFORM(WIN_OS)
printf("%s line %d: %s\n", f.c_str(), line, message.c_str());
#else
printf("[%d] %s line %d: %s\n", getpid(), f.c_str(), line, message.c_str());
#endif
}
// bindings are OS X WebKit-only for now
#if USE(BINDINGS)
void *Interpreter::createLanguageInstanceForValue(ExecState *exec, int language, JSObject *value, const Bindings::RootObject *origin, const Bindings::RootObject *current)
{
return Bindings::Instance::createLanguageInstanceForValue (exec, (Bindings::Instance::BindingLanguage)language, value, origin, current);
}
#endif
void Interpreter::saveBuiltins (SavedBuiltins& builtins) const
{
if (!builtins._internal)
builtins._internal = new SavedBuiltinsInternal;
builtins._internal->m_Object = m_Object;
builtins._internal->m_Function = m_Function;
builtins._internal->m_Array = m_Array;
builtins._internal->m_Boolean = m_Boolean;
builtins._internal->m_String = m_String;
builtins._internal->m_Number = m_Number;
builtins._internal->m_Date = m_Date;
builtins._internal->m_RegExp = m_RegExp;
builtins._internal->m_Error = m_Error;
builtins._internal->m_ObjectPrototype = m_ObjectPrototype;
builtins._internal->m_FunctionPrototype = m_FunctionPrototype;
builtins._internal->m_ArrayPrototype = m_ArrayPrototype;
builtins._internal->m_BooleanPrototype = m_BooleanPrototype;
builtins._internal->m_StringPrototype = m_StringPrototype;
builtins._internal->m_NumberPrototype = m_NumberPrototype;
builtins._internal->m_DatePrototype = m_DatePrototype;
builtins._internal->m_RegExpPrototype = m_RegExpPrototype;
builtins._internal->m_ErrorPrototype = m_ErrorPrototype;
builtins._internal->m_EvalError = m_EvalError;
builtins._internal->m_RangeError = m_RangeError;
builtins._internal->m_ReferenceError = m_ReferenceError;
builtins._internal->m_SyntaxError = m_SyntaxError;
builtins._internal->m_TypeError = m_TypeError;
builtins._internal->m_UriError = m_UriError;
builtins._internal->m_EvalErrorPrototype = m_EvalErrorPrototype;
builtins._internal->m_RangeErrorPrototype = m_RangeErrorPrototype;
builtins._internal->m_ReferenceErrorPrototype = m_ReferenceErrorPrototype;
builtins._internal->m_SyntaxErrorPrototype = m_SyntaxErrorPrototype;
builtins._internal->m_TypeErrorPrototype = m_TypeErrorPrototype;
builtins._internal->m_UriErrorPrototype = m_UriErrorPrototype;
}
void Interpreter::restoreBuiltins (const SavedBuiltins& builtins)
{
if (!builtins._internal)
return;
m_Object = builtins._internal->m_Object;
m_Function = builtins._internal->m_Function;
m_Array = builtins._internal->m_Array;
m_Boolean = builtins._internal->m_Boolean;
m_String = builtins._internal->m_String;
m_Number = builtins._internal->m_Number;
m_Date = builtins._internal->m_Date;
m_RegExp = builtins._internal->m_RegExp;
m_Error = builtins._internal->m_Error;
m_ObjectPrototype = builtins._internal->m_ObjectPrototype;
m_FunctionPrototype = builtins._internal->m_FunctionPrototype;
m_ArrayPrototype = builtins._internal->m_ArrayPrototype;
m_BooleanPrototype = builtins._internal->m_BooleanPrototype;
m_StringPrototype = builtins._internal->m_StringPrototype;
m_NumberPrototype = builtins._internal->m_NumberPrototype;
m_DatePrototype = builtins._internal->m_DatePrototype;
m_RegExpPrototype = builtins._internal->m_RegExpPrototype;
m_ErrorPrototype = builtins._internal->m_ErrorPrototype;
m_EvalError = builtins._internal->m_EvalError;
m_RangeError = builtins._internal->m_RangeError;
m_ReferenceError = builtins._internal->m_ReferenceError;
m_SyntaxError = builtins._internal->m_SyntaxError;
m_TypeError = builtins._internal->m_TypeError;
m_UriError = builtins._internal->m_UriError;
m_EvalErrorPrototype = builtins._internal->m_EvalErrorPrototype;
m_RangeErrorPrototype = builtins._internal->m_RangeErrorPrototype;
m_ReferenceErrorPrototype = builtins._internal->m_ReferenceErrorPrototype;
m_SyntaxErrorPrototype = builtins._internal->m_SyntaxErrorPrototype;
m_TypeErrorPrototype = builtins._internal->m_TypeErrorPrototype;
m_UriErrorPrototype = builtins._internal->m_UriErrorPrototype;
}
void Interpreter::startTimeoutCheck()
{
if (!m_timeoutChecker)
m_timeoutChecker = new TimeoutChecker;
m_timeoutChecker->startTimeoutCheck(this);
}
void Interpreter::stopTimeoutCheck()
{
ASSERT(m_timeoutChecker);
m_timeoutChecker->stopTimeoutCheck(this);
}
void Interpreter::restartTimeoutCheck()
{
if (!m_timeoutChecker || !m_startTimeoutCheckCount)
return;
m_timedOut = false;
m_timeoutChecker->stopTimeoutCheck(this);
m_timeoutChecker->startTimeoutCheck(this);
}
void Interpreter::pauseTimeoutCheck()
{
ASSERT(m_timeoutChecker);
m_timeoutChecker->pauseTimeoutCheck(this);
}
void Interpreter::resumeTimeoutCheck()
{
ASSERT(m_timeoutChecker);
m_timeoutChecker->resumeTimeoutCheck(this);
}
bool Interpreter::handleTimeout()
{
m_timedOut = false;
pauseTimeoutCheck();
bool retval = shouldInterruptScript();
resumeTimeoutCheck();
return retval;
}
Interpreter::InternedStringsTable* Interpreter::s_internedStrings;
void Interpreter::initInternedStringsTable()
{
if (!s_internedStrings)
s_internedStrings = new InternedStringsTable();
}
StringImp* Interpreter::internString(const UString& literal)
{
InternedStringsTable::iterator i = s_internedStrings->find(literal.rep());
if (i == s_internedStrings->end()) {
// Need to add. Note: we can't use ->add() above to avoid a double-hash
// as creation of a StringImp may cause a GC, which in turn may
// rearrange the hashtable, invalidating the iterator.
StringImp* si = static_cast<StringImp*>(jsOwnedString(literal));
s_internedStrings->add(literal.rep(), std::make_pair(si, 1));
return si;
} else {
++i.values()->second; // just bump the ref count
return i.values()->first;
}
}
void Interpreter::releaseInternedString(const UString& literal)
{
InternedStringsTable::iterator i = s_internedStrings->find(literal.rep());
--i.values()->second;
if (i.values()->second == 0)
s_internedStrings->remove(i);
}
void Interpreter::markInternedStringsTable()
{
for (InternedStringsTable::iterator i = s_internedStrings->begin();
i != s_internedStrings->end(); ++i) {
// Note: the StringImp* may be null here if we got called in the middle
// of internString.
if (i.values()->first && !i.values()->first->marked())
i.values()->first->mark();
}
}
SavedBuiltins::SavedBuiltins() :
_internal(0)
{
}
SavedBuiltins::~SavedBuiltins()
{
delete _internal;
}
UnicodeSupport::UnicodeSupport()
{
}
void UnicodeSupport::setIdentStartChecker(bool (*f)(int c))
{
Lexer::setIdentStartChecker(f);
}
void UnicodeSupport::setIdentPartChecker(bool (*f)(int c))
{
Lexer::setIdentPartChecker(f);
}
void UnicodeSupport::setToLowerFunction(StringConversionFunction f)
{
StringProtoFunc::setToLowerFunction(f);
}
void UnicodeSupport::setToUpperFunction(StringConversionFunction f)
{
StringProtoFunc::setToUpperFunction(f);
}
}
// kate: indent-width 2; replace-tabs on; tab-width 4; space-indent on;