kdelibs/kjs/math_object.cpp
2014-11-13 01:04:59 +02:00

369 lines
10 KiB
C++

// -*- c-basic-offset: 2 -*-
/*
* This file is part of the KDE libraries
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "math_object.h"
#include <config-kjs.h>
#include "math_object.lut.h"
#include "wtf/MathExtras.h"
#include "operations.h"
#include <math.h>
#include <time.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif /* M_PI */
#if COMPILER(MSVC)
static double cbrt(double x)
{
return pow(abs(x), 1.0 / 3.0);
}
static double log2(double x)
{
return log(x) / log(2);
}
#endif
using namespace KJS;
// ------------------------------ MathObjectImp --------------------------------
const ClassInfo MathObjectImp::info = { "Math", 0, &mathTable, 0 };
/* Source for math_object.lut.h
@begin mathTable 21
E MathObjectImp::Euler DontEnum|DontDelete|ReadOnly
LN2 MathObjectImp::Ln2 DontEnum|DontDelete|ReadOnly
LN10 MathObjectImp::Ln10 DontEnum|DontDelete|ReadOnly
LOG2E MathObjectImp::Log2E DontEnum|DontDelete|ReadOnly
LOG10E MathObjectImp::Log10E DontEnum|DontDelete|ReadOnly
PI MathObjectImp::Pi DontEnum|DontDelete|ReadOnly
SQRT1_2 MathObjectImp::Sqrt1_2 DontEnum|DontDelete|ReadOnly
SQRT2 MathObjectImp::Sqrt2 DontEnum|DontDelete|ReadOnly
abs MathObjectImp::Abs DontEnum|Function 1
acos MathObjectImp::ACos DontEnum|Function 1
asin MathObjectImp::ASin DontEnum|Function 1
atan MathObjectImp::ATan DontEnum|Function 1
atan2 MathObjectImp::ATan2 DontEnum|Function 2
ceil MathObjectImp::Ceil DontEnum|Function 1
cos MathObjectImp::Cos DontEnum|Function 1
exp MathObjectImp::Exp DontEnum|Function 1
floor MathObjectImp::Floor DontEnum|Function 1
log MathObjectImp::Log DontEnum|Function 1
max MathObjectImp::Max DontEnum|Function 2
min MathObjectImp::Min DontEnum|Function 2
pow MathObjectImp::Pow DontEnum|Function 2
random MathObjectImp::Random DontEnum|Function 0
round MathObjectImp::Round DontEnum|Function 1
sin MathObjectImp::Sin DontEnum|Function 1
sqrt MathObjectImp::Sqrt DontEnum|Function 1
tan MathObjectImp::Tan DontEnum|Function 1
acosh MathObjectImp::ACosH DontEnum|Function 1
acosh MathObjectImp::ASinH DontEnum|Function 1
atanh MathObjectImp::ATanH DontEnum|Function 1
cbrt MathObjectImp::Cbrt DontEnum|Function 1
cosh MathObjectImp::CosH DontEnum|Function 1
exmp1 MathObjectImp::Exmp1 DontEnum|Function 1
log1p MathObjectImp::Log1p DontEnum|Function 1
log10 MathObjectImp::Log10 DontEnum|Function 1
log2 MathObjectImp::Log2 DontEnum|Function 1
sign MathObjectImp::Sign DontEnum|Function 1
sinh MathObjectImp::SinH DontEnum|Function 1
tanh MathObjectImp::TanH DontEnum|Function 1
trunc MathObjectImp::Trunc DontEnum|Function 1
hypot MathObjectImp::Hypot DontEnum|Function 0
imul MathObjectImp::Imul DontEnum|Function 2
fround MathObjectImp::FRound DontEnum|Function 1
@end
*/
MathObjectImp::MathObjectImp(ExecState * /*exec*/,
ObjectPrototype *objProto)
: JSObject(objProto)
{
}
// ECMA 15.8
bool MathObjectImp::getOwnPropertySlot(ExecState *exec, const Identifier& propertyName, PropertySlot &slot)
{
return getStaticPropertySlot<MathFuncImp, MathObjectImp, JSObject>(exec, &mathTable, this, propertyName, slot);
}
JSValue *MathObjectImp::getValueProperty(ExecState *, int token) const
{
switch (token) {
case Euler:
return jsNumber(exp(1.0));
case Ln2:
return jsNumber(log(2.0));
case Ln10:
return jsNumber(log(10.0));
case Log2E:
return jsNumber(1.0/log(2.0));
case Log10E:
return jsNumber(1.0/log(10.0));
case Pi:
return jsNumber(piDouble);
case Sqrt1_2:
return jsNumber(sqrt(0.5));
case Sqrt2:
return jsNumber(sqrt(2.0));
}
assert(0);
return 0;
}
// ------------------------------ MathObjectImp --------------------------------
static bool randomSeeded = false;
MathFuncImp::MathFuncImp(ExecState* exec, int i, int l, const Identifier& name)
: InternalFunctionImp(static_cast<FunctionPrototype*>(exec->lexicalInterpreter()->builtinFunctionPrototype()), name)
, id(i)
{
putDirect(exec->propertyNames().length, l, DontDelete|ReadOnly|DontEnum);
}
JSValue *MathFuncImp::callAsFunction(ExecState *exec, JSObject* /*thisObj*/, const List &args)
{
double arg = args[0]->toNumber(exec);
double arg2 = args[1]->toNumber(exec);
double result;
switch (id) {
case MathObjectImp::Abs:
result = ( arg < 0 || arg == -0) ? (-arg) : arg;
break;
case MathObjectImp::ACos:
result = ::acos(arg);
break;
case MathObjectImp::ASin:
result = ::asin(arg);
break;
case MathObjectImp::ATan:
result = ::atan(arg);
break;
case MathObjectImp::ATan2:
result = ::atan2(arg, arg2);
break;
case MathObjectImp::Ceil:
result = ::ceil(arg);
break;
case MathObjectImp::Cos:
result = ::cos(arg);
break;
case MathObjectImp::Exp:
result = ::exp(arg);
break;
case MathObjectImp::Floor:
result = ::floor(arg);
break;
case MathObjectImp::Log:
result = ::log(arg);
break;
case MathObjectImp::Max: {
unsigned int argsCount = args.size();
result = -Inf;
for ( unsigned int k = 0 ; k < argsCount ; ++k ) {
double val = args[k]->toNumber(exec);
if ( isNaN( val ) )
{
result = NaN;
break;
}
if ( val > result || (val == 0 && result == 0 && !signbit(val)) )
result = val;
}
break;
}
case MathObjectImp::Min: {
unsigned int argsCount = args.size();
result = +Inf;
for ( unsigned int k = 0 ; k < argsCount ; ++k ) {
double val = args[k]->toNumber(exec);
if ( isNaN( val ) )
{
result = NaN;
break;
}
if ( val < result || (val == 0 && result == 0 && signbit(val)) )
result = val;
}
break;
}
case MathObjectImp::Pow:
// ECMA 15.8.2.1.13 (::pow takes care of most of the critera)
if (isNaN(arg2))
result = NaN;
else if (isNaN(arg) && arg2 != 0)
result = NaN;
else if (::fabs(arg) == 1 && isInf(arg2))
result = NaN;
else if (arg2 == 0 && arg != 0)
result = 1;
else
result = ::pow(arg, arg2);
break;
case MathObjectImp::Random:
if (!randomSeeded) {
srand(static_cast<unsigned>(time(0)));
randomSeeded = true;
}
result = (double)rand() / RAND_MAX;
break;
case MathObjectImp::Round:
if (signbit(arg) && arg >= -0.5)
result = -0.0;
else
result = ::floor(arg + 0.5);
break;
case MathObjectImp::Sin:
result = ::sin(arg);
break;
case MathObjectImp::Sqrt:
result = ::sqrt(arg);
break;
case MathObjectImp::Tan:
result = ::tan(arg);
break;
//ES6 (draft 08.11.2013)
case MathObjectImp::ACosH:
result = ::acosh(arg);
break;
case MathObjectImp::ASinH:
result = ::asinh(arg);
break;
case MathObjectImp::ATanH:
result = ::atanh(arg);
break;
case MathObjectImp::Cbrt:
result = ::cbrt(arg);
break;
case MathObjectImp::CosH:
result = ::cosh(arg);
break;
case MathObjectImp::Exmp1:
result = ::expm1(arg);
break;
case MathObjectImp::Log1p:
result = ::log1p(arg);
break;
case MathObjectImp::Log10:
result = ::log10(arg);
break;
case MathObjectImp::Log2:
result = ::log2(arg);
break;
case MathObjectImp::Sign:
if (isNaN(arg))
{
result = KJS::NaN;
}
else if (signbit(arg))
{
if (arg == 0)
result = -0.0;
else
result = -1.0;
}
else
{
if (arg == 0)
result = 0.0;
else
result = 1.0;
}
break;
case MathObjectImp::SinH:
result = ::sinh(arg);
break;
case MathObjectImp::TanH:
result = ::tanh(arg);
break;
case MathObjectImp::Trunc:
result = ::trunc(arg);
break;
case MathObjectImp::Hypot:
{
if (args.size() == 0)
{
result = 0;
break;
}
double sum = 0.0;
bool foundNaN = false;
for (int i = 0; i < args.size(); ++i)
{
double num = args[i]->toNumber(exec);
if (isInf(num))
return jsNumber(KJS::Inf);
if (foundNaN)
continue;
if (isNaN(num))
{
foundNaN = true;
continue;
}
sum += ::pow(num, 2);
}
if (foundNaN)
return jsNumber(KJS::NaN);
result = ::sqrt(sum);
break;
}
case MathObjectImp::Imul:
{
if (args.size() < 2)
return jsUndefined();
int32_t a = args[0]->toInt32(exec);
if (exec->hadException())
return jsNumber(a);
int32_t b = args[1]->toInt32(exec);
if (exec->hadException())
return jsNumber(b);
result = a * b;
break;
}
case MathObjectImp::FRound:
if (isNaN(arg) || isInf(arg))
return jsNumber(arg);
result = static_cast<double>(static_cast<float>(arg));
break;
default:
result = 0.0;
assert(0);
}
return jsNumber(result);
}