kde-workspace/ksplash/ksplashx/scale.cpp
2014-11-13 19:30:51 +02:00

1054 lines
37 KiB
C++

// This code is Imlib2 code, additionally modified by Mosfet, and with few small
// modifications for Gwenview. The MMX scaling code also belongs to it.
// The original license texts follow.
/**
* This is the normal smoothscale method, based on Imlib2's smoothscale.
*
* Originally I took the algorithm used in NetPBM and Qt and added MMX/3dnow
* optimizations. It ran in about 1/2 the time as Qt. Then I ported Imlib's
* C algorithm and it ran at about the same speed as my MMX optimized one...
* Finally I ported Imlib's MMX version and it ran in less than half the
* time as my MMX algorithm, (taking only a quarter of the time Qt does).
*
* Changes include formatting, namespaces and other C++'ings, removal of old
* #ifdef'ed code, and removal of unneeded border calculation code.
*
* Imlib2 is (C) Carsten Haitzler and various contributors. The MMX code
* is by Willem Monsuwe <willem@stack.nl>. All other modifications are
* (C) Daniel M. Duley.
*/
/*
Copyright (C) 2004 Daniel M. Duley <dan.duley@verizon.net>
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Copyright (C) 2000 Carsten Haitzler and various contributors (see AUTHORS)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies of the Software and its Copyright notices. In addition publicly
documented acknowledgment must be given that this software has been used if no
source code of this software is made available publicly. This includes
acknowledgments in either Copyright notices, Manuals, Publicity and Marketing
documents or any documentation provided with any product containing this
software. This License does not apply to any software that links to the
libraries provided by this software (statically or dynamically), but only to
the software provided.
Please see the COPYING.PLAIN for a plain-english explanation of this notice
and it's intent.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <config-workspace.h>
#include "scale.h"
#include <string.h>
#include "kcpuinfo.h"
#include "qcolor.h"
namespace MImageScale{
typedef struct __mimage_scale_info
{
int *xpoints;
unsigned int **ypoints;
int *xapoints, *yapoints;
int xup_yup;
} MImageScaleInfo;
unsigned int** mimageCalcYPoints(unsigned int *src, int sw, int sh,
int dh);
int* mimageCalcXPoints(int sw, int dw);
int* mimageCalcApoints(int s, int d, int up);
MImageScaleInfo* mimageFreeScaleInfo(MImageScaleInfo *isi);
MImageScaleInfo *mimageCalcScaleInfo(QImage &img, int sw, int sh,
int dw, int dh, char aa);
void mimageSampleRGBA(MImageScaleInfo *isi, unsigned int *dest, int dxx,
int dyy, int dx, int dy, int dw, int dh, int dow);
void mimageScaleAARGBA(MImageScaleInfo *isi, unsigned int *dest, int dxx,
int dyy, int dx, int dy, int dw, int dh, int dow,
int sow);
void mimageScaleAARGB(MImageScaleInfo *isi, unsigned int *dest, int dxx,
int dyy, int dx, int dy, int dw, int dh, int dow, int
sow);
QImage smoothScale(const QImage& img, int dw, int dh);
}
#ifdef HAVE_X86_MMX
extern "C" {
void __mimageScale_mmx_AARGBA(MImageScale::MImageScaleInfo *isi,
unsigned int *dest, int dxx, int dyy,
int dx, int dy, int dw, int dh,
int dow, int sow);
};
#endif
using namespace MImageScale;
QImage MImageScale::smoothScale(const QImage& image, int dw, int dh)
{
QImage img = image.depth() < 32 ? image.convertDepth( 32 ) : image;
int w = img.width();
int h = img.height();
MImageScaleInfo *scaleinfo =
mimageCalcScaleInfo(img, w, h, dw, dh, true);
if(!scaleinfo)
return QImage();
QImage buffer(dw, dh, 32);
buffer.setAlphaBuffer(img.hasAlphaBuffer());
#ifdef HAVE_X86_MMX
//#warning Using MMX Smoothscale
bool haveMMX = KCPUInfo::haveExtension( KCPUInfo::IntelMMX );
if(haveMMX){
__mimageScale_mmx_AARGBA(scaleinfo, (unsigned int *)buffer.scanLine(0),
0, 0, 0, 0, dw, dh, dw, w);
}
else
#endif
{
if(img.hasAlphaBuffer())
mimageScaleAARGBA(scaleinfo, (unsigned int *)buffer.scanLine(0), 0, 0,
0, 0, dw, dh, dw, w);
else
mimageScaleAARGB(scaleinfo, (unsigned int *)buffer.scanLine(0), 0, 0,
0, 0, dw, dh, dw, w);
}
mimageFreeScaleInfo(scaleinfo);
return(buffer);
}
//
// Code ported from Imlib...
//
// FIXME: replace with mRed, etc... These work on pointers to pixels, not
// pixel values
#if BYTE_ORDER == BIG_ENDIAN
#define A_VAL(p) ((unsigned char *)(p))[0]
#define R_VAL(p) ((unsigned char *)(p))[1]
#define G_VAL(p) ((unsigned char *)(p))[2]
#define B_VAL(p) ((unsigned char *)(p))[3]
#elif BYTE_ORDER == LITTLE_ENDIAN
#define A_VAL(p) ((unsigned char *)(p))[3]
#define R_VAL(p) ((unsigned char *)(p))[2]
#define G_VAL(p) ((unsigned char *)(p))[1]
#define B_VAL(p) ((unsigned char *)(p))[0]
#else
#error "BYTE_ORDER is not defined"
#endif
#define INV_XAP (256 - xapoints[x])
#define XAP (xapoints[x])
#define INV_YAP (256 - yapoints[dyy + y])
#define YAP (yapoints[dyy + y])
unsigned int** MImageScale::mimageCalcYPoints(unsigned int *src,
int sw, int sh, int dh)
{
unsigned int **p;
int i, j = 0;
int val, inc, rv = 0;
if(dh < 0){
dh = -dh;
rv = 1;
}
p = new unsigned int* [dh+1];
val = 0;
inc = (sh << 16) / dh;
for(i = 0; i < dh; i++){
p[j++] = src + ((val >> 16) * sw);
val += inc;
}
if(rv){
for(i = dh / 2; --i >= 0; ){
unsigned int *tmp = p[i];
p[i] = p[dh - i - 1];
p[dh - i - 1] = tmp;
}
}
return(p);
}
int* MImageScale::mimageCalcXPoints(int sw, int dw)
{
int *p, i, j = 0;
int val, inc, rv = 0;
if(dw < 0){
dw = -dw;
rv = 1;
}
p = new int[dw+1];
val = 0;
inc = (sw << 16) / dw;
for(i = 0; i < dw; i++){
p[j++] = (val >> 16);
val += inc;
}
if(rv){
for(i = dw / 2; --i >= 0; ){
int tmp = p[i];
p[i] = p[dw - i - 1];
p[dw - i - 1] = tmp;
}
}
return(p);
}
int* MImageScale::mimageCalcApoints(int s, int d, int up)
{
int *p, i, j = 0, rv = 0;
if(d < 0){
rv = 1;
d = -d;
}
p = new int[d];
/* scaling up */
if(up){
int val, inc;
val = 0;
inc = (s << 16) / d;
for(i = 0; i < d; i++){
p[j++] = (val >> 8) - ((val >> 8) & 0xffffff00);
if((val >> 16) >= (s - 1))
p[j - 1] = 0;
val += inc;
}
}
/* scaling down */
else{
int val, inc, ap, Cp;
val = 0;
inc = (s << 16) / d;
Cp = ((d << 14) / s) + 1;
for(i = 0; i < d; i++){
ap = ((0x100 - ((val >> 8) & 0xff)) * Cp) >> 8;
p[j] = ap | (Cp << 16);
j++;
val += inc;
}
}
if(rv){
int tmp;
for(i = d / 2; --i >= 0; ){
tmp = p[i];
p[i] = p[d - i - 1];
p[d - i - 1] = tmp;
}
}
return(p);
}
MImageScaleInfo* MImageScale::mimageFreeScaleInfo(MImageScaleInfo *isi)
{
if(isi){
delete[] isi->xpoints;
delete[] isi->ypoints;
delete[] isi->xapoints;
delete[] isi->yapoints;
delete isi;
}
return(NULL);
}
MImageScaleInfo* MImageScale::mimageCalcScaleInfo(QImage &img, int sw, int sh,
int dw, int dh, char aa)
{
MImageScaleInfo *isi;
int scw, sch;
scw = dw * img.width() / sw;
sch = dh * img.height() / sh;
isi = new MImageScaleInfo;
if(!isi)
return(NULL);
memset(isi, 0, sizeof(MImageScaleInfo));
isi->xup_yup = (abs(dw) >= sw) + ((abs(dh) >= sh) << 1);
isi->xpoints = mimageCalcXPoints(img.width(), scw);
if(!isi->xpoints)
return(mimageFreeScaleInfo(isi));
isi->ypoints = mimageCalcYPoints((unsigned int *)img.scanLine(0),
img.width(), img.height(), sch);
if (!isi->ypoints)
return(mimageFreeScaleInfo(isi));
if(aa){
isi->xapoints = mimageCalcApoints(img.width(), scw, isi->xup_yup & 1);
if(!isi->xapoints)
return(mimageFreeScaleInfo(isi));
isi->yapoints = mimageCalcApoints(img.height(), sch, isi->xup_yup & 2);
if(!isi->yapoints)
return(mimageFreeScaleInfo(isi));
}
return(isi);
}
/* scale by pixel sampling only */
void MImageScale::mimageSampleRGBA(MImageScaleInfo *isi, unsigned int *dest,
int dxx, int dyy, int dx, int dy, int dw,
int dh, int dow)
{
unsigned int *sptr, *dptr;
int x, y, end;
unsigned int **ypoints = isi->ypoints;
int *xpoints = isi->xpoints;
/* whats the last pixel ont he line so we stop there */
end = dxx + dw;
/* go through every scanline in the output buffer */
for(y = 0; y < dh; y++){
/* get the pointer to the start of the destination scanline */
dptr = dest + dx + ((y + dy) * dow);
/* calculate the source line we'll scan from */
sptr = ypoints[dyy + y];
/* go thru the scanline and copy across */
for(x = dxx; x < end; x++)
*dptr++ = sptr[xpoints[x]];
}
}
/* FIXME: NEED to optimise ScaleAARGBA - currently it is "ok" but needs work*/
/* scale by area sampling */
void MImageScale::mimageScaleAARGBA(MImageScaleInfo *isi, unsigned int *dest,
int dxx, int dyy, int dx, int dy, int dw,
int dh, int dow, int sow)
{
unsigned int *sptr, *dptr;
int x, y, end;
unsigned int **ypoints = isi->ypoints;
int *xpoints = isi->xpoints;
int *xapoints = isi->xapoints;
int *yapoints = isi->yapoints;
end = dxx + dw;
/* scaling up both ways */
if(isi->xup_yup == 3){
/* go through every scanline in the output buffer */
for(y = 0; y < dh; y++){
/* calculate the source line we'll scan from */
dptr = dest + dx + ((y + dy) * dow);
sptr = ypoints[dyy + y];
if(YAP > 0){
for(x = dxx; x < end; x++){
int r, g, b, a;
int rr, gg, bb, aa;
unsigned int *pix;
if(XAP > 0){
pix = ypoints[dyy + y] + xpoints[x];
r = R_VAL(pix) * INV_XAP;
g = G_VAL(pix) * INV_XAP;
b = B_VAL(pix) * INV_XAP;
a = A_VAL(pix) * INV_XAP;
pix++;
r += R_VAL(pix) * XAP;
g += G_VAL(pix) * XAP;
b += B_VAL(pix) * XAP;
a += A_VAL(pix) * XAP;
pix += sow;
rr = R_VAL(pix) * XAP;
gg = G_VAL(pix) * XAP;
bb = B_VAL(pix) * XAP;
aa = A_VAL(pix) * XAP;
pix--;
rr += R_VAL(pix) * INV_XAP;
gg += G_VAL(pix) * INV_XAP;
bb += B_VAL(pix) * INV_XAP;
aa += A_VAL(pix) * INV_XAP;
r = ((rr * YAP) + (r * INV_YAP)) >> 16;
g = ((gg * YAP) + (g * INV_YAP)) >> 16;
b = ((bb * YAP) + (b * INV_YAP)) >> 16;
a = ((aa * YAP) + (a * INV_YAP)) >> 16;
*dptr++ = qRgba(r, g, b, a);
}
else{
pix = ypoints[dyy + y] + xpoints[x];
r = R_VAL(pix) * INV_YAP;
g = G_VAL(pix) * INV_YAP;
b = B_VAL(pix) * INV_YAP;
a = A_VAL(pix) * INV_YAP;
pix += sow;
r += R_VAL(pix) * YAP;
g += G_VAL(pix) * YAP;
b += B_VAL(pix) * YAP;
a += A_VAL(pix) * YAP;
r >>= 8;
g >>= 8;
b >>= 8;
a >>= 8;
*dptr++ = qRgba(r, g, b, a);
}
}
}
else{
for(x = dxx; x < end; x++){
int r, g, b, a;
unsigned int *pix;
if(XAP > 0){
pix = ypoints[dyy + y] + xpoints[x];
r = R_VAL(pix) * INV_XAP;
g = G_VAL(pix) * INV_XAP;
b = B_VAL(pix) * INV_XAP;
a = A_VAL(pix) * INV_XAP;
pix++;
r += R_VAL(pix) * XAP;
g += G_VAL(pix) * XAP;
b += B_VAL(pix) * XAP;
a += A_VAL(pix) * XAP;
r >>= 8;
g >>= 8;
b >>= 8;
a >>= 8;
*dptr++ = qRgba(r, g, b, a);
}
else
*dptr++ = sptr[xpoints[x] ];
}
}
}
}
/* if we're scaling down vertically */
else if(isi->xup_yup == 1){
/*\ 'Correct' version, with math units prepared for MMXification \*/
int Cy, j;
unsigned int *pix;
int r, g, b, a, rr, gg, bb, aa;
int yap;
/* go through every scanline in the output buffer */
for(y = 0; y < dh; y++){
Cy = YAP >> 16;
yap = YAP & 0xffff;
dptr = dest + dx + ((y + dy) * dow);
for(x = dxx; x < end; x++){
pix = ypoints[dyy + y] + xpoints[x];
r = (R_VAL(pix) * yap) >> 10;
g = (G_VAL(pix) * yap) >> 10;
b = (B_VAL(pix) * yap) >> 10;
a = (A_VAL(pix) * yap) >> 10;
for(j = (1 << 14) - yap; j > Cy; j -= Cy){
pix += sow;
r += (R_VAL(pix) * Cy) >> 10;
g += (G_VAL(pix) * Cy) >> 10;
b += (B_VAL(pix) * Cy) >> 10;
a += (A_VAL(pix) * Cy) >> 10;
}
if(j > 0){
pix += sow;
r += (R_VAL(pix) * j) >> 10;
g += (G_VAL(pix) * j) >> 10;
b += (B_VAL(pix) * j) >> 10;
a += (A_VAL(pix) * j) >> 10;
}
if(XAP > 0){
pix = ypoints[dyy + y] + xpoints[x] + 1;
rr = (R_VAL(pix) * yap) >> 10;
gg = (G_VAL(pix) * yap) >> 10;
bb = (B_VAL(pix) * yap) >> 10;
aa = (A_VAL(pix) * yap) >> 10;
for(j = (1 << 14) - yap; j > Cy; j -= Cy){
pix += sow;
rr += (R_VAL(pix) * Cy) >> 10;
gg += (G_VAL(pix) * Cy) >> 10;
bb += (B_VAL(pix) * Cy) >> 10;
aa += (A_VAL(pix) * Cy) >> 10;
}
if(j > 0){
pix += sow;
rr += (R_VAL(pix) * j) >> 10;
gg += (G_VAL(pix) * j) >> 10;
bb += (B_VAL(pix) * j) >> 10;
aa += (A_VAL(pix) * j) >> 10;
}
r = r * INV_XAP;
g = g * INV_XAP;
b = b * INV_XAP;
a = a * INV_XAP;
r = (r + ((rr * XAP))) >> 12;
g = (g + ((gg * XAP))) >> 12;
b = (b + ((bb * XAP))) >> 12;
a = (a + ((aa * XAP))) >> 12;
}
else{
r >>= 4;
g >>= 4;
b >>= 4;
a >>= 4;
}
*dptr = qRgba(r, g, b, a);
dptr++;
}
}
}
/* if we're scaling down horizontally */
else if(isi->xup_yup == 2){
/*\ 'Correct' version, with math units prepared for MMXification \*/
int Cx, j;
unsigned int *pix;
int r, g, b, a, rr, gg, bb, aa;
int xap;
/* go through every scanline in the output buffer */
for(y = 0; y < dh; y++){
dptr = dest + dx + ((y + dy) * dow);
for(x = dxx; x < end; x++){
Cx = XAP >> 16;
xap = XAP & 0xffff;
pix = ypoints[dyy + y] + xpoints[x];
r = (R_VAL(pix) * xap) >> 10;
g = (G_VAL(pix) * xap) >> 10;
b = (B_VAL(pix) * xap) >> 10;
a = (A_VAL(pix) * xap) >> 10;
for(j = (1 << 14) - xap; j > Cx; j -= Cx){
pix++;
r += (R_VAL(pix) * Cx) >> 10;
g += (G_VAL(pix) * Cx) >> 10;
b += (B_VAL(pix) * Cx) >> 10;
a += (A_VAL(pix) * Cx) >> 10;
}
if(j > 0){
pix++;
r += (R_VAL(pix) * j) >> 10;
g += (G_VAL(pix) * j) >> 10;
b += (B_VAL(pix) * j) >> 10;
a += (A_VAL(pix) * j) >> 10;
}
if(YAP > 0){
pix = ypoints[dyy + y] + xpoints[x] + sow;
rr = (R_VAL(pix) * xap) >> 10;
gg = (G_VAL(pix) * xap) >> 10;
bb = (B_VAL(pix) * xap) >> 10;
aa = (A_VAL(pix) * xap) >> 10;
for(j = (1 << 14) - xap; j > Cx; j -= Cx){
pix++;
rr += (R_VAL(pix) * Cx) >> 10;
gg += (G_VAL(pix) * Cx) >> 10;
bb += (B_VAL(pix) * Cx) >> 10;
aa += (A_VAL(pix) * Cx) >> 10;
}
if(j > 0){
pix++;
rr += (R_VAL(pix) * j) >> 10;
gg += (G_VAL(pix) * j) >> 10;
bb += (B_VAL(pix) * j) >> 10;
aa += (A_VAL(pix) * j) >> 10;
}
r = r * INV_YAP;
g = g * INV_YAP;
b = b * INV_YAP;
a = a * INV_YAP;
r = (r + ((rr * YAP))) >> 12;
g = (g + ((gg * YAP))) >> 12;
b = (b + ((bb * YAP))) >> 12;
a = (a + ((aa * YAP))) >> 12;
}
else{
r >>= 4;
g >>= 4;
b >>= 4;
a >>= 4;
}
*dptr = qRgba(r, g, b, a);
dptr++;
}
}
}
/* if we're scaling down horizontally & vertically */
else{
/*\ 'Correct' version, with math units prepared for MMXification:
|*| The operation 'b = (b * c) >> 16' translates to pmulhw,
|*| so the operation 'b = (b * c) >> d' would translate to
|*| psllw (16 - d), %mmb; pmulh %mmc, %mmb
\*/
int Cx, Cy, i, j;
unsigned int *pix;
int a, r, g, b, ax, rx, gx, bx;
int xap, yap;
for(y = 0; y < dh; y++){
Cy = YAP >> 16;
yap = YAP & 0xffff;
dptr = dest + dx + ((y + dy) * dow);
for(x = dxx; x < end; x++){
Cx = XAP >> 16;
xap = XAP & 0xffff;
sptr = ypoints[dyy + y] + xpoints[x];
pix = sptr;
sptr += sow;
rx = (R_VAL(pix) * xap) >> 9;
gx = (G_VAL(pix) * xap) >> 9;
bx = (B_VAL(pix) * xap) >> 9;
ax = (A_VAL(pix) * xap) >> 9;
pix++;
for(i = (1 << 14) - xap; i > Cx; i -= Cx){
rx += (R_VAL(pix) * Cx) >> 9;
gx += (G_VAL(pix) * Cx) >> 9;
bx += (B_VAL(pix) * Cx) >> 9;
ax += (A_VAL(pix) * Cx) >> 9;
pix++;
}
if(i > 0){
rx += (R_VAL(pix) * i) >> 9;
gx += (G_VAL(pix) * i) >> 9;
bx += (B_VAL(pix) * i) >> 9;
ax += (A_VAL(pix) * i) >> 9;
}
r = (rx * yap) >> 14;
g = (gx * yap) >> 14;
b = (bx * yap) >> 14;
a = (ax * yap) >> 14;
for(j = (1 << 14) - yap; j > Cy; j -= Cy){
pix = sptr;
sptr += sow;
rx = (R_VAL(pix) * xap) >> 9;
gx = (G_VAL(pix) * xap) >> 9;
bx = (B_VAL(pix) * xap) >> 9;
ax = (A_VAL(pix) * xap) >> 9;
pix++;
for(i = (1 << 14) - xap; i > Cx; i -= Cx){
rx += (R_VAL(pix) * Cx) >> 9;
gx += (G_VAL(pix) * Cx) >> 9;
bx += (B_VAL(pix) * Cx) >> 9;
ax += (A_VAL(pix) * Cx) >> 9;
pix++;
}
if(i > 0){
rx += (R_VAL(pix) * i) >> 9;
gx += (G_VAL(pix) * i) >> 9;
bx += (B_VAL(pix) * i) >> 9;
ax += (A_VAL(pix) * i) >> 9;
}
r += (rx * Cy) >> 14;
g += (gx * Cy) >> 14;
b += (bx * Cy) >> 14;
a += (ax * Cy) >> 14;
}
if(j > 0){
pix = sptr;
sptr += sow;
rx = (R_VAL(pix) * xap) >> 9;
gx = (G_VAL(pix) * xap) >> 9;
bx = (B_VAL(pix) * xap) >> 9;
ax = (A_VAL(pix) * xap) >> 9;
pix++;
for(i = (1 << 14) - xap; i > Cx; i -= Cx){
rx += (R_VAL(pix) * Cx) >> 9;
gx += (G_VAL(pix) * Cx) >> 9;
bx += (B_VAL(pix) * Cx) >> 9;
ax += (A_VAL(pix) * Cx) >> 9;
pix++;
}
if(i > 0){
rx += (R_VAL(pix) * i) >> 9;
gx += (G_VAL(pix) * i) >> 9;
bx += (B_VAL(pix) * i) >> 9;
ax += (A_VAL(pix) * i) >> 9;
}
r += (rx * j) >> 14;
g += (gx * j) >> 14;
b += (bx * j) >> 14;
a += (ax * j) >> 14;
}
R_VAL(dptr) = r >> 5;
G_VAL(dptr) = g >> 5;
B_VAL(dptr) = b >> 5;
A_VAL(dptr) = a >> 5;
dptr++;
}
}
}
}
/* scale by area sampling - IGNORE the ALPHA byte*/
void MImageScale::mimageScaleAARGB(MImageScaleInfo *isi, unsigned int *dest,
int dxx, int dyy, int dx, int dy, int dw,
int dh, int dow, int sow)
{
unsigned int *sptr, *dptr;
int x, y, end;
unsigned int **ypoints = isi->ypoints;
int *xpoints = isi->xpoints;
int *xapoints = isi->xapoints;
int *yapoints = isi->yapoints;
end = dxx + dw;
/* scaling up both ways */
if(isi->xup_yup == 3){
/* go through every scanline in the output buffer */
for(y = 0; y < dh; y++){
/* calculate the source line we'll scan from */
dptr = dest + dx + ((y + dy) * dow);
sptr = ypoints[dyy + y];
if(YAP > 0){
for(x = dxx; x < end; x++){
int r = 0, g = 0, b = 0;
int rr = 0, gg = 0, bb = 0;
unsigned int *pix;
if(XAP > 0){
pix = ypoints[dyy + y] + xpoints[x];
r = R_VAL(pix) * INV_XAP;
g = G_VAL(pix) * INV_XAP;
b = B_VAL(pix) * INV_XAP;
pix++;
r += R_VAL(pix) * XAP;
g += G_VAL(pix) * XAP;
b += B_VAL(pix) * XAP;
pix += sow;
rr = R_VAL(pix) * XAP;
gg = G_VAL(pix) * XAP;
bb = B_VAL(pix) * XAP;
pix --;
rr += R_VAL(pix) * INV_XAP;
gg += G_VAL(pix) * INV_XAP;
bb += B_VAL(pix) * INV_XAP;
r = ((rr * YAP) + (r * INV_YAP)) >> 16;
g = ((gg * YAP) + (g * INV_YAP)) >> 16;
b = ((bb * YAP) + (b * INV_YAP)) >> 16;
*dptr++ = qRgba(r, g, b, 0xff);
}
else{
pix = ypoints[dyy + y] + xpoints[x];
r = R_VAL(pix) * INV_YAP;
g = G_VAL(pix) * INV_YAP;
b = B_VAL(pix) * INV_YAP;
pix += sow;
r += R_VAL(pix) * YAP;
g += G_VAL(pix) * YAP;
b += B_VAL(pix) * YAP;
r >>= 8;
g >>= 8;
b >>= 8;
*dptr++ = qRgba(r, g, b, 0xff);
}
}
}
else{
for(x = dxx; x < end; x++){
int r = 0, g = 0, b = 0;
unsigned int *pix;
if(XAP > 0){
pix = ypoints[dyy + y] + xpoints[x];
r = R_VAL(pix) * INV_XAP;
g = G_VAL(pix) * INV_XAP;
b = B_VAL(pix) * INV_XAP;
pix++;
r += R_VAL(pix) * XAP;
g += G_VAL(pix) * XAP;
b += B_VAL(pix) * XAP;
r >>= 8;
g >>= 8;
b >>= 8;
*dptr++ = qRgba(r, g, b, 0xff);
}
else
*dptr++ = sptr[xpoints[x] ];
}
}
}
}
/* if we're scaling down vertically */
else if(isi->xup_yup == 1){
/*\ 'Correct' version, with math units prepared for MMXification \*/
int Cy, j;
unsigned int *pix;
int r, g, b, rr, gg, bb;
int yap;
/* go through every scanline in the output buffer */
for(y = 0; y < dh; y++){
Cy = YAP >> 16;
yap = YAP & 0xffff;
dptr = dest + dx + ((y + dy) * dow);
for(x = dxx; x < end; x++){
pix = ypoints[dyy + y] + xpoints[x];
r = (R_VAL(pix) * yap) >> 10;
g = (G_VAL(pix) * yap) >> 10;
b = (B_VAL(pix) * yap) >> 10;
pix += sow;
for(j = (1 << 14) - yap; j > Cy; j -= Cy){
r += (R_VAL(pix) * Cy) >> 10;
g += (G_VAL(pix) * Cy) >> 10;
b += (B_VAL(pix) * Cy) >> 10;
pix += sow;
}
if(j > 0){
r += (R_VAL(pix) * j) >> 10;
g += (G_VAL(pix) * j) >> 10;
b += (B_VAL(pix) * j) >> 10;
}
if(XAP > 0){
pix = ypoints[dyy + y] + xpoints[x] + 1;
rr = (R_VAL(pix) * yap) >> 10;
gg = (G_VAL(pix) * yap) >> 10;
bb = (B_VAL(pix) * yap) >> 10;
pix += sow;
for(j = (1 << 14) - yap; j > Cy; j -= Cy){
rr += (R_VAL(pix) * Cy) >> 10;
gg += (G_VAL(pix) * Cy) >> 10;
bb += (B_VAL(pix) * Cy) >> 10;
pix += sow;
}
if(j > 0){
rr += (R_VAL(pix) * j) >> 10;
gg += (G_VAL(pix) * j) >> 10;
bb += (B_VAL(pix) * j) >> 10;
}
r = r * INV_XAP;
g = g * INV_XAP;
b = b * INV_XAP;
r = (r + ((rr * XAP))) >> 12;
g = (g + ((gg * XAP))) >> 12;
b = (b + ((bb * XAP))) >> 12;
}
else{
r >>= 4;
g >>= 4;
b >>= 4;
}
*dptr = qRgba(r, g, b, 0xff);
dptr++;
}
}
}
/* if we're scaling down horizontally */
else if(isi->xup_yup == 2){
/*\ 'Correct' version, with math units prepared for MMXification \*/
int Cx, j;
unsigned int *pix;
int r, g, b, rr, gg, bb;
int xap;
/* go through every scanline in the output buffer */
for(y = 0; y < dh; y++){
dptr = dest + dx + ((y + dy) * dow);
for(x = dxx; x < end; x++){
Cx = XAP >> 16;
xap = XAP & 0xffff;
pix = ypoints[dyy + y] + xpoints[x];
r = (R_VAL(pix) * xap) >> 10;
g = (G_VAL(pix) * xap) >> 10;
b = (B_VAL(pix) * xap) >> 10;
pix++;
for(j = (1 << 14) - xap; j > Cx; j -= Cx){
r += (R_VAL(pix) * Cx) >> 10;
g += (G_VAL(pix) * Cx) >> 10;
b += (B_VAL(pix) * Cx) >> 10;
pix++;
}
if(j > 0){
r += (R_VAL(pix) * j) >> 10;
g += (G_VAL(pix) * j) >> 10;
b += (B_VAL(pix) * j) >> 10;
}
if(YAP > 0){
pix = ypoints[dyy + y] + xpoints[x] + sow;
rr = (R_VAL(pix) * xap) >> 10;
gg = (G_VAL(pix) * xap) >> 10;
bb = (B_VAL(pix) * xap) >> 10;
pix++;
for(j = (1 << 14) - xap; j > Cx; j -= Cx){
rr += (R_VAL(pix) * Cx) >> 10;
gg += (G_VAL(pix) * Cx) >> 10;
bb += (B_VAL(pix) * Cx) >> 10;
pix++;
}
if(j > 0){
rr += (R_VAL(pix) * j) >> 10;
gg += (G_VAL(pix) * j) >> 10;
bb += (B_VAL(pix) * j) >> 10;
}
r = r * INV_YAP;
g = g * INV_YAP;
b = b * INV_YAP;
r = (r + ((rr * YAP))) >> 12;
g = (g + ((gg * YAP))) >> 12;
b = (b + ((bb * YAP))) >> 12;
}
else{
r >>= 4;
g >>= 4;
b >>= 4;
}
*dptr = qRgba(r, g, b, 0xff);
dptr++;
}
}
}
/* fully optimized (i think) - onyl change of algorithm can help */
/* if we're scaling down horizontally & vertically */
else{
/*\ 'Correct' version, with math units prepared for MMXification \*/
int Cx, Cy, i, j;
unsigned int *pix;
int r, g, b, rx, gx, bx;
int xap, yap;
for(y = 0; y < dh; y++){
Cy = YAP >> 16;
yap = YAP & 0xffff;
dptr = dest + dx + ((y + dy) * dow);
for(x = dxx; x < end; x++){
Cx = XAP >> 16;
xap = XAP & 0xffff;
sptr = ypoints[dyy + y] + xpoints[x];
pix = sptr;
sptr += sow;
rx = (R_VAL(pix) * xap) >> 9;
gx = (G_VAL(pix) * xap) >> 9;
bx = (B_VAL(pix) * xap) >> 9;
pix++;
for(i = (1 << 14) - xap; i > Cx; i -= Cx){
rx += (R_VAL(pix) * Cx) >> 9;
gx += (G_VAL(pix) * Cx) >> 9;
bx += (B_VAL(pix) * Cx) >> 9;
pix++;
}
if(i > 0){
rx += (R_VAL(pix) * i) >> 9;
gx += (G_VAL(pix) * i) >> 9;
bx += (B_VAL(pix) * i) >> 9;
}
r = (rx * yap) >> 14;
g = (gx * yap) >> 14;
b = (bx * yap) >> 14;
for(j = (1 << 14) - yap; j > Cy; j -= Cy){
pix = sptr;
sptr += sow;
rx = (R_VAL(pix) * xap) >> 9;
gx = (G_VAL(pix) * xap) >> 9;
bx = (B_VAL(pix) * xap) >> 9;
pix++;
for(i = (1 << 14) - xap; i > Cx; i -= Cx){
rx += (R_VAL(pix) * Cx) >> 9;
gx += (G_VAL(pix) * Cx) >> 9;
bx += (B_VAL(pix) * Cx) >> 9;
pix++;
}
if(i > 0){
rx += (R_VAL(pix) * i) >> 9;
gx += (G_VAL(pix) * i) >> 9;
bx += (B_VAL(pix) * i) >> 9;
}
r += (rx * Cy) >> 14;
g += (gx * Cy) >> 14;
b += (bx * Cy) >> 14;
}
if(j > 0){
pix = sptr;
sptr += sow;
rx = (R_VAL(pix) * xap) >> 9;
gx = (G_VAL(pix) * xap) >> 9;
bx = (B_VAL(pix) * xap) >> 9;
pix++;
for(i = (1 << 14) - xap; i > Cx; i -= Cx){
rx += (R_VAL(pix) * Cx) >> 9;
gx += (G_VAL(pix) * Cx) >> 9;
bx += (B_VAL(pix) * Cx) >> 9;
pix++;
}
if(i > 0){
rx += (R_VAL(pix) * i) >> 9;
gx += (G_VAL(pix) * i) >> 9;
bx += (B_VAL(pix) * i) >> 9;
}
r += (rx * j) >> 14;
g += (gx * j) >> 14;
b += (bx * j) >> 14;
}
R_VAL(dptr) = r >> 5;
G_VAL(dptr) = g >> 5;
B_VAL(dptr) = b >> 5;
dptr++;
}
}
}
}
QImage scale(const QImage& image, int width, int height)
{
if( image.isNull()) return image.copy();
QSize newSize( width, height );
newSize = newSize.expandedTo( QSize( 1, 1 )); // make sure it doesn't become null
if ( newSize == image.size() ) return image.copy();
width = newSize.width();
height = newSize.height();
// return image.smoothScale( width, height );
return MImageScale::smoothScale( image, width, height );
}