kde-workspace/ksysguard/ksysguardd/FreeBSD/cpuinfo.c
2014-11-13 19:30:51 +02:00

655 lines
18 KiB
C

/*
KSysGuard, the KDE System Guard
Copyright (c) 1999 Chris Schlaeger <cs@kde.org>
Copyright (c) 2010 David Naylor <naylor.b.david@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <devstat.h>
#include <fcntl.h>
#include <nlist.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cpuinfo.h"
#include "Command.h"
#include "ksysguardd.h"
#define FREQ_LEVEL_BUFFER 256
#define SYSCTL_ID_LEN 35
static void get_mmfreq(int, int*, int*);
static long percentages(int cnt, long *out, long *new, long *old, long *diffs);
static long (*cp_time)[CPUSTATES] = NULL;
static long (*cp_old)[CPUSTATES] = NULL;
static long (*cp_diff)[CPUSTATES] = NULL;
static int maxcpus = 1;
static int cpus = 1;
static int cores = 1;
static int (*freq)[3] = NULL;
static int *temp = NULL;
static long (*cpu_states)[CPUSTATES] = NULL;
void
initCpuInfo(struct SensorModul* sm)
{
size_t len;
int id;
char name[SYSCTL_ID_LEN];
int minfreq, maxfreq;
len = sizeof(cpus);
/* XXX: this is a guess */
sysctlbyname("kern.smp.active", &cpus, &len, NULL, 0);
/* NOTE: cpus may be 0, which implies 1 */
cpus = cpus ? cpus : 1;
len = sizeof(cores);
sysctlbyname("kern.smp.cpus", &cores, &len, NULL, 0);
len = sizeof(maxcpus);
sysctlbyname("kern.smp.maxcpus", &maxcpus, &len, NULL, 0);
/* Core/process count */
registerMonitor("system/processors", "integer", printNumCpus, printNumCpusInfo, sm);
registerMonitor("system/cores", "integer", printNumCores, printNumCoresInfo, sm);
/*
* CPU Loads
*/
if ((cp_time = malloc(sizeof(long) * CPUSTATES * (cores * 4 + 1))) == NULL) {
log_error("out of memory for cp_time");
return;
}
cp_old = &cp_time[cores];
cp_diff = &cp_old[cores];
cpu_states = &cp_diff[cores];
/* Total CPU load */
registerMonitor("cpu/system/user", "float", printCPUUser, printCPUUserInfo, sm);
registerMonitor("cpu/system/nice", "float", printCPUNice, printCPUNiceInfo, sm);
registerMonitor("cpu/system/sys", "float", printCPUSys, printCPUSysInfo, sm);
registerMonitor("cpu/system/TotalLoad", "float", printCPUTotalLoad, printCPUTotalLoadInfo, sm);
registerMonitor("cpu/system/intr", "float", printCPUIntr, printCPUIntrInfo, sm);
registerMonitor("cpu/system/idle", "float", printCPUIdle, printCPUIdleInfo, sm);
/* Monitor names changed from kde3 => kde4. Remain compatible with legacy requests when possible. */
registerLegacyMonitor("cpu/user", "float", printCPUUser, printCPUUserInfo, sm);
registerLegacyMonitor("cpu/nice", "float", printCPUNice, printCPUNiceInfo, sm);
registerLegacyMonitor("cpu/sys", "float", printCPUSys, printCPUSysInfo, sm);
registerLegacyMonitor("cpu/idle", "float", printCPUIdle, printCPUIdleInfo, sm);
for (id = 0; id < cores; ++id) {
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/user", id);
registerMonitor(name, "float", printCPUxUser, printCPUxUserInfo, sm);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/nice", id);
registerMonitor(name, "float", printCPUxNice, printCPUxNiceInfo, sm);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/sys", id);
registerMonitor(name, "float", printCPUxSys, printCPUxSysInfo, sm);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/TotalLoad", id);
registerMonitor(name, "float", printCPUxTotalLoad, printCPUxTotalLoadInfo, sm);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/intr", id);
registerMonitor(name, "float", printCPUxIntr, printCPUxIntrInfo, sm);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/idle", id);
registerMonitor(name, "float", printCPUxIdle, printCPUxIdleInfo, sm);
}
/*
* CPU frequencies
*/
if ((freq = malloc(sizeof(int) * 3 * (cores + 1))) == NULL) {
log_error("out of memory for freq");
return;
}
registerMonitor("cpu/system/AverageClock", "float", printCPUClock, printCPUClockInfo, sm);
for (id = 0; id < cores; ++id) {
len = sizeof(int);
snprintf(name, SYSCTL_ID_LEN, "dev.cpu.%d.freq", id);
if (!sysctlbyname(name, &freq[id][0], &len, NULL, 0)) {
get_mmfreq(id, &freq[id][1], &freq[id][2]);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/clock", id);
registerMonitor(name, "integer", printCPUxClock, printCPUxClockInfo, sm);
} else {
freq[id][0] = -1;
freq[id][1] = 0;
freq[id][2] = 0;
}
}
minfreq = freq[0][1];
maxfreq = freq[0][2];
for (id = 1; id < cores; ++id)
if (freq[id][0] != -1) {
minfreq = minfreq > freq[id][1] ? freq[id][1] : minfreq;
maxfreq = maxfreq < freq[id][2] ? freq[id][2] : maxfreq;
}
freq[cores][1] = minfreq;
freq[cores][2] = maxfreq;
/*
* CPU temperature
*/
if ((temp = malloc(sizeof(int) * (cores + 1))) == NULL) {
log_error("out of memory for temp");
return;
}
registerMonitor("cpu/system/AverageTemperature", "float", printCPUTemperature, printCPUTemperatureInfo, sm);
for (id = 0; id < cores; ++id) {
len = sizeof(int);
snprintf(name, SYSCTL_ID_LEN, "dev.cpu.%d.temperature", id);
if (!sysctlbyname(name, &temp[id], &len, NULL, 0)) {
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/temperature", id);
registerMonitor(name, "float", printCPUxTemperature, printCPUxTemperatureInfo, sm);
} else
temp[id] = -1;
}
updateCpuInfo();
}
void
exitCpuInfo(void)
{
int id;
char name[SYSCTL_ID_LEN];
removeMonitor("system/processors");
removeMonitor("system/cores");
if (cp_time != NULL) {
removeMonitor("cpu/system/user");
removeMonitor("cpu/system/nice");
removeMonitor("cpu/system/sys");
removeMonitor("cpu/system/TotalLoad");
removeMonitor("cpu/system/intr");
removeMonitor("cpu/system/idle");
/* These were registered as legacy monitors */
removeMonitor("cpu/user");
removeMonitor("cpu/nice");
removeMonitor("cpu/sys");
removeMonitor("cpu/idle");
for (id = 0; id < cores; ++id) {
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/user", id);
removeMonitor(name);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/nice", id);
removeMonitor(name);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/sys", id);
removeMonitor(name);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/TotalLoad", id);
removeMonitor(name);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/intr", id);
removeMonitor(name);
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/idle", id);
removeMonitor(name);
if (freq != NULL && freq[id][0] != -1) {
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/clock", id);
removeMonitor(name);
}
if (temp != NULL && temp[id] != -1) {
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/temperature", id);
removeMonitor(name);
}
}
free(cp_time);
cp_time = NULL;
}
if (freq != NULL) {
removeMonitor("cpu/system/AverageClock");
for (id = 0; id < cores; ++id)
if (freq[id][0] != -1) {
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/clock", id);
removeMonitor(name);
}
free(freq);
freq = NULL;
}
if (temp != NULL) {
removeMonitor("cpu/system/AverageTemperature");
for (id = 0; id < cores; ++id)
if (temp[id] != -1) {
snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/temperature", id);
removeMonitor(name);
}
free(temp);
temp = NULL;
}
}
int
updateCpuInfo(void)
{
int sid, id, tot_freq = 0, tot_temp = 0, freq_count = 0, temp_count = 0;
char name[SYSCTL_ID_LEN];
if (cp_time == NULL || freq == NULL || temp == NULL)
return (0);
size_t len = sizeof(long) * CPUSTATES * cores;
sysctlbyname("kern.cp_times", cp_time, &len, NULL, 0);
for (sid = 0; sid < CPUSTATES; ++sid)
cpu_states[cores][sid] = 0;
for (id = 0; id < cores; ++id) {
percentages(CPUSTATES, cpu_states[id], cp_time[id], cp_old[id], cp_diff[id]);
for (sid = 0; sid < CPUSTATES; ++sid)
cpu_states[cores][sid] += cpu_states[id][sid];
}
for (id = 0; id < cores; ++id) {
if (freq[id][0] != -1) {
len = sizeof(int);
snprintf(name, SYSCTL_ID_LEN, "dev.cpu.%d.freq", id);
freq[id][0] = 0;
if (!sysctlbyname(name, &freq[id][0], &len, NULL, 0)) {
freq_count += 1;
tot_freq += freq[id][0];
}
}
if (temp[id] != -1) {
len = sizeof(int);
snprintf(name, SYSCTL_ID_LEN, "dev.cpu.%d.temperature", id);
temp[id] = 0.0;
if (!sysctlbyname(name, &temp[id], &len, NULL, 0)) {
temp_count += 1;
tot_temp += temp[id];
}
}
}
freq[cores][0] = freq_count == 0 ? 0 : tot_freq * 100 / freq_count;
temp[cores] = temp_count == 0 ? 0.0 : tot_temp * 100 / temp_count;
return (0);
}
void
printCPUUser(const char* cmd)
{
fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_USER] / 10.0 / cores);
}
void
printCPUUserInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU User Load\t0\t100\t%%\n");
}
void
printCPUNice(const char* cmd)
{
fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_NICE] / 10.0 / cores);
}
void
printCPUNiceInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU Nice Load\t0\t100\t%%\n");
}
void
printCPUSys(const char* cmd)
{
fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_SYS] / 10.0 / cores);
}
void
printCPUSysInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU System Load\t0\t100\t%%\n");
}
void
printCPUTotalLoad(const char* cmd)
{
fprintf(CurrentClient, "%f\n", (cpu_states[cores][CP_SYS] + cpu_states[cores][CP_USER] +
cpu_states[cores][CP_NICE] + cpu_states[cores][CP_INTR]) / 10.0 / cores);
}
void
printCPUTotalLoadInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU Total Load\t0\t100\t%%\n");
}
void
printCPUIntr(const char* cmd)
{
fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_INTR] / 10.0 / cores);
}
void
printCPUIntrInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU Interrupt Load\t0\t100\t%%\n");
}
void
printCPUIdle(const char* cmd)
{
fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_IDLE] / 10.0 / cores);
}
void
printCPUIdleInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU Idle Load\t0\t100\t%%\n");
}
void
printCPUxUser(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_USER] / 10.0);
}
void
printCPUxUserInfo(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "CPU%d User Load\t0\t100\t%%\n", id + 1);
}
void
printCPUxNice(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_NICE] / 10.0);
}
void
printCPUxNiceInfo(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "CPU%d Nice Load\t0\t100\t%%\n", id + 1);
}
void
printCPUxSys(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_SYS] / 10.0);
}
void
printCPUxSysInfo(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "CPU%d System Load\t0\t100\t%%\n", id + 1);
}
void
printCPUxTotalLoad(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "%f\n", (cpu_states[id][CP_SYS] + cpu_states[id][CP_USER] +
cpu_states[id][CP_NICE] + cpu_states[id][CP_INTR]) / 10.0);
}
void
printCPUxTotalLoadInfo(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "CPU%d Total Load\t0\t100\t%%\n", id + 1);
}
void
printCPUxIntr(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_INTR] / 10.0);
}
void
printCPUxIntrInfo(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "CPU%d Interrupt Load\t0\t100\t%%\n", id + 1);
}
void
printCPUxIdle(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_IDLE] / 10.0);
}
void
printCPUxIdleInfo(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "CPU%d Idle Load\t0\t100\t%%\n", id + 1);
}
void printCPUxClock(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "%d\n", freq[id][0]);
}
void printCPUxClockInfo(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "CPU%d Clock Frequency\t%d\t%d\tMHz\n", id + 1,
freq[id][1], freq[id][2]);
}
void printCPUClock(const char* cmd)
{
fprintf(CurrentClient, "%f\n", freq[cores][0] / 100.0);
}
void printCPUClockInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU Clock Frequency\t%d\t%d\tMHz\n", freq[cores][1], freq[cores][2]);
}
void printCPUxTemperature(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "%0.1f\n", (temp[id] - 2732) / 10.0);
}
void printCPUxTemperatureInfo(const char* cmd)
{
int id;
sscanf(cmd + 7, "%d", &id);
fprintf(CurrentClient, "CPU%d Temperature\t0\t0\tC\n", id + 1);
}
void printCPUTemperature(const char* cmd)
{
fprintf(CurrentClient, "%0.3f\n", (temp[cores] - 273200) / 1000.0);
}
void printCPUTemperatureInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU Temperature\t0\t0\tC\n");
}
void printNumCpus(const char* cmd)
{
fprintf(CurrentClient, "%d\n", cpus);
}
void printNumCpusInfo(const char* cmd)
{
fprintf(CurrentClient, "Number of physical CPUs\t0\t%d\t\n", maxcpus);
}
void printNumCores(const char* cmd)
{
fprintf(CurrentClient, "%d\n", cores);
}
void printNumCoresInfo(const char* cmd)
{
fprintf(CurrentClient, "Total number of processor cores\t0\t%d\t\n", maxcpus);
}
void get_mmfreq(int id, int* minfreq, int* maxfreq)
{
char buf[FREQ_LEVEL_BUFFER];
char mid[SYSCTL_ID_LEN];
size_t len = FREQ_LEVEL_BUFFER;
*minfreq = 0;
*maxfreq = 0;
snprintf(mid, sizeof(mid), "dev.cpu.%d.freq_levels", id);
if (!sysctlbyname(mid, buf, &len, NULL, 0))
{
char *start = buf;
char *end;
/*
* The string is ([[freq]]/[[num]] )*([[freq]]/[[num]] ), so
* for each frequency we get we must also skip over another
* set of numbers
*/
while (1)
{
/* Get the first number */
int number = strtol(start, &end, 10);
if (start == end)
break;
if (!*maxfreq)
*maxfreq = number;
else
*minfreq = number;
if (!*end)
break;
start = end + 1;
/* Skip over the next number */
strtol(start, &end, 10);
if (start == end || !*end)
break;
start = end + 1;
}
}
}
/* The part ripped from top... */
/*
* Top users/processes display for Unix
* Version 3
*
* This program may be freely redistributed,
* but this entire comment MUST remain intact.
*
* Copyright (c) 1984, 1989, William LeFebvre, Rice University
* Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University
*/
/*
* percentages(cnt, out, new, old, diffs) - calculate percentage change
* between array "old" and "new", putting the percentages i "out".
* "cnt" is size of each array and "diffs" is used for scratch space.
* The array "old" is updated on each call.
* The routine assumes modulo arithmetic. This function is especially
* useful on BSD mchines for calculating cpu state percentages.
*/
long percentages(int cnt, long *out, long *new, long *old, long *diffs)
{
int i;
long change;
long total_change;
long *dp;
long half_total;
/* initialization */
total_change = 0;
dp = diffs;
/* calculate changes for each state and the overall change */
for (i = 0; i < cnt; i++)
{
if ((change = *new - *old) < 0)
{
/* this only happens when the counter wraps */
change = (int)
((unsigned long)*new-(unsigned long)*old);
}
total_change += (*dp++ = change);
*old++ = *new++;
}
/* avoid divide by zero potential */
if (total_change == 0)
{
total_change = 1;
}
/* calculate percentages based on overall change, rounding up */
half_total = total_change / 2l;
/* Do not divide by 0. Causes Floating point exception */
for (i = 0; i < cnt; i++)
{
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
}
/* return the total in case the caller wants to use it */
return(total_change);
}