/* KSysGuard, the KDE System Guard Copyright (c) 1999 Chris Schlaeger Copyright (c) 2010 David Naylor This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include "cpuinfo.h" #include "Command.h" #include "ksysguardd.h" #define FREQ_LEVEL_BUFFER 256 #define SYSCTL_ID_LEN 35 static void get_mmfreq(int, int*, int*); static long percentages(int cnt, long *out, long *new, long *old, long *diffs); static long (*cp_time)[CPUSTATES] = NULL; static long (*cp_old)[CPUSTATES] = NULL; static long (*cp_diff)[CPUSTATES] = NULL; static int maxcpus = 1; static int cpus = 1; static int cores = 1; static int (*freq)[3] = NULL; static int *temp = NULL; static long (*cpu_states)[CPUSTATES] = NULL; void initCpuInfo(struct SensorModul* sm) { size_t len; int id; char name[SYSCTL_ID_LEN]; int minfreq, maxfreq; len = sizeof(cpus); /* XXX: this is a guess */ sysctlbyname("kern.smp.active", &cpus, &len, NULL, 0); /* NOTE: cpus may be 0, which implies 1 */ cpus = cpus ? cpus : 1; len = sizeof(cores); sysctlbyname("kern.smp.cpus", &cores, &len, NULL, 0); len = sizeof(maxcpus); sysctlbyname("kern.smp.maxcpus", &maxcpus, &len, NULL, 0); /* Core/process count */ registerMonitor("system/processors", "integer", printNumCpus, printNumCpusInfo, sm); registerMonitor("system/cores", "integer", printNumCores, printNumCoresInfo, sm); /* * CPU Loads */ if ((cp_time = malloc(sizeof(long) * CPUSTATES * (cores * 4 + 1))) == NULL) { log_error("out of memory for cp_time"); return; } cp_old = &cp_time[cores]; cp_diff = &cp_old[cores]; cpu_states = &cp_diff[cores]; /* Total CPU load */ registerMonitor("cpu/system/user", "float", printCPUUser, printCPUUserInfo, sm); registerMonitor("cpu/system/nice", "float", printCPUNice, printCPUNiceInfo, sm); registerMonitor("cpu/system/sys", "float", printCPUSys, printCPUSysInfo, sm); registerMonitor("cpu/system/TotalLoad", "float", printCPUTotalLoad, printCPUTotalLoadInfo, sm); registerMonitor("cpu/system/intr", "float", printCPUIntr, printCPUIntrInfo, sm); registerMonitor("cpu/system/idle", "float", printCPUIdle, printCPUIdleInfo, sm); /* Monitor names changed from kde3 => kde4. Remain compatible with legacy requests when possible. */ registerLegacyMonitor("cpu/user", "float", printCPUUser, printCPUUserInfo, sm); registerLegacyMonitor("cpu/nice", "float", printCPUNice, printCPUNiceInfo, sm); registerLegacyMonitor("cpu/sys", "float", printCPUSys, printCPUSysInfo, sm); registerLegacyMonitor("cpu/idle", "float", printCPUIdle, printCPUIdleInfo, sm); for (id = 0; id < cores; ++id) { snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/user", id); registerMonitor(name, "float", printCPUxUser, printCPUxUserInfo, sm); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/nice", id); registerMonitor(name, "float", printCPUxNice, printCPUxNiceInfo, sm); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/sys", id); registerMonitor(name, "float", printCPUxSys, printCPUxSysInfo, sm); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/TotalLoad", id); registerMonitor(name, "float", printCPUxTotalLoad, printCPUxTotalLoadInfo, sm); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/intr", id); registerMonitor(name, "float", printCPUxIntr, printCPUxIntrInfo, sm); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/idle", id); registerMonitor(name, "float", printCPUxIdle, printCPUxIdleInfo, sm); } /* * CPU frequencies */ if ((freq = malloc(sizeof(int) * 3 * (cores + 1))) == NULL) { log_error("out of memory for freq"); return; } registerMonitor("cpu/system/AverageClock", "float", printCPUClock, printCPUClockInfo, sm); for (id = 0; id < cores; ++id) { len = sizeof(int); snprintf(name, SYSCTL_ID_LEN, "dev.cpu.%d.freq", id); if (sysctlbyname(name, &freq[id][0], &len, NULL, 0) != -1) { get_mmfreq(id, &freq[id][1], &freq[id][2]); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/clock", id); registerMonitor(name, "integer", printCPUxClock, printCPUxClockInfo, sm); } else { freq[id][0] = -1; freq[id][1] = 0; freq[id][2] = 0; } } minfreq = freq[0][1]; maxfreq = freq[0][2]; for (id = 1; id < cores; ++id) if (freq[id][0] != -1) { minfreq = minfreq > freq[id][1] ? freq[id][1] : minfreq; maxfreq = maxfreq < freq[id][2] ? freq[id][2] : maxfreq; } freq[cores][1] = minfreq; freq[cores][2] = maxfreq; /* * CPU temperature */ if ((temp = malloc(sizeof(int) * (cores + 1))) == NULL) { log_error("out of memory for temp"); return; } registerMonitor("cpu/system/AverageTemperature", "float", printCPUTemperature, printCPUTemperatureInfo, sm); for (id = 0; id < cores; ++id) { len = sizeof(int); snprintf(name, SYSCTL_ID_LEN, "dev.cpu.%d.temperature", id); if (sysctlbyname(name, &temp[id], &len, NULL, 0) != -1) { snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/temperature", id); registerMonitor(name, "float", printCPUxTemperature, printCPUxTemperatureInfo, sm); } else { temp[id] = -1; } } updateCpuInfo(); } void exitCpuInfo(void) { int id; char name[SYSCTL_ID_LEN]; removeMonitor("system/processors"); removeMonitor("system/cores"); if (cp_time != NULL) { removeMonitor("cpu/system/user"); removeMonitor("cpu/system/nice"); removeMonitor("cpu/system/sys"); removeMonitor("cpu/system/TotalLoad"); removeMonitor("cpu/system/intr"); removeMonitor("cpu/system/idle"); /* These were registered as legacy monitors */ removeMonitor("cpu/user"); removeMonitor("cpu/nice"); removeMonitor("cpu/sys"); removeMonitor("cpu/idle"); for (id = 0; id < cores; ++id) { snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/user", id); removeMonitor(name); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/nice", id); removeMonitor(name); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/sys", id); removeMonitor(name); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/TotalLoad", id); removeMonitor(name); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/intr", id); removeMonitor(name); snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/idle", id); removeMonitor(name); if (freq != NULL && freq[id][0] != -1) { snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/clock", id); removeMonitor(name); } if (temp != NULL && temp[id] != -1) { snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/temperature", id); removeMonitor(name); } } free(cp_time); cp_time = NULL; } if (freq != NULL) { removeMonitor("cpu/system/AverageClock"); for (id = 0; id < cores; ++id) if (freq[id][0] != -1) { snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/clock", id); removeMonitor(name); } free(freq); freq = NULL; } if (temp != NULL) { removeMonitor("cpu/system/AverageTemperature"); for (id = 0; id < cores; ++id) if (temp[id] != -1) { snprintf(name, SYSCTL_ID_LEN, "cpu/cpu%d/temperature", id); removeMonitor(name); } free(temp); temp = NULL; } } int updateCpuInfo(void) { int sid, id, tot_freq = 0, tot_temp = 0, freq_count = 0, temp_count = 0; char name[SYSCTL_ID_LEN]; if (cp_time == NULL || freq == NULL || temp == NULL) return (0); size_t len = sizeof(long) * CPUSTATES * cores; sysctlbyname("kern.cp_times", cp_time, &len, NULL, 0); for (sid = 0; sid < CPUSTATES; ++sid) cpu_states[cores][sid] = 0; for (id = 0; id < cores; ++id) { percentages(CPUSTATES, cpu_states[id], cp_time[id], cp_old[id], cp_diff[id]); for (sid = 0; sid < CPUSTATES; ++sid) cpu_states[cores][sid] += cpu_states[id][sid]; } for (id = 0; id < cores; ++id) { if (freq[id][0] != -1) { len = sizeof(int); snprintf(name, SYSCTL_ID_LEN, "dev.cpu.%d.freq", id); freq[id][0] = 0; if (sysctlbyname(name, &freq[id][0], &len, NULL, 0) != -1) { freq_count += 1; tot_freq += freq[id][0]; } } if (temp[id] != -1) { len = sizeof(int); snprintf(name, SYSCTL_ID_LEN, "dev.cpu.%d.temperature", id); temp[id] = 0.0; if (sysctlbyname(name, &temp[id], &len, NULL, 0) != -1) { temp_count += 1; tot_temp += temp[id]; } } } freq[cores][0] = freq_count == 0 ? 0 : tot_freq * 100 / freq_count; temp[cores] = temp_count == 0 ? 0.0 : tot_temp * 100 / temp_count; return (0); } void printCPUUser(const char* cmd) { fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_USER] / 10.0 / cores); } void printCPUUserInfo(const char* cmd) { fprintf(CurrentClient, "CPU User Load\t0\t100\t%%\n"); } void printCPUNice(const char* cmd) { fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_NICE] / 10.0 / cores); } void printCPUNiceInfo(const char* cmd) { fprintf(CurrentClient, "CPU Nice Load\t0\t100\t%%\n"); } void printCPUSys(const char* cmd) { fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_SYS] / 10.0 / cores); } void printCPUSysInfo(const char* cmd) { fprintf(CurrentClient, "CPU System Load\t0\t100\t%%\n"); } void printCPUTotalLoad(const char* cmd) { fprintf(CurrentClient, "%f\n", (cpu_states[cores][CP_SYS] + cpu_states[cores][CP_USER] + cpu_states[cores][CP_NICE] + cpu_states[cores][CP_INTR]) / 10.0 / cores); } void printCPUTotalLoadInfo(const char* cmd) { fprintf(CurrentClient, "CPU Total Load\t0\t100\t%%\n"); } void printCPUIntr(const char* cmd) { fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_INTR] / 10.0 / cores); } void printCPUIntrInfo(const char* cmd) { fprintf(CurrentClient, "CPU Interrupt Load\t0\t100\t%%\n"); } void printCPUIdle(const char* cmd) { fprintf(CurrentClient, "%f\n", cpu_states[cores][CP_IDLE] / 10.0 / cores); } void printCPUIdleInfo(const char* cmd) { fprintf(CurrentClient, "CPU Idle Load\t0\t100\t%%\n"); } void printCPUxUser(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_USER] / 10.0); } void printCPUxUserInfo(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "CPU%d User Load\t0\t100\t%%\n", id + 1); } void printCPUxNice(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_NICE] / 10.0); } void printCPUxNiceInfo(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "CPU%d Nice Load\t0\t100\t%%\n", id + 1); } void printCPUxSys(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_SYS] / 10.0); } void printCPUxSysInfo(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "CPU%d System Load\t0\t100\t%%\n", id + 1); } void printCPUxTotalLoad(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "%f\n", (cpu_states[id][CP_SYS] + cpu_states[id][CP_USER] + cpu_states[id][CP_NICE] + cpu_states[id][CP_INTR]) / 10.0); } void printCPUxTotalLoadInfo(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "CPU%d Total Load\t0\t100\t%%\n", id + 1); } void printCPUxIntr(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_INTR] / 10.0); } void printCPUxIntrInfo(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "CPU%d Interrupt Load\t0\t100\t%%\n", id + 1); } void printCPUxIdle(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "%0.1f\n", cpu_states[id][CP_IDLE] / 10.0); } void printCPUxIdleInfo(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "CPU%d Idle Load\t0\t100\t%%\n", id + 1); } void printCPUxClock(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "%d\n", freq[id][0]); } void printCPUxClockInfo(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "CPU%d Clock Frequency\t%d\t%d\tMHz\n", id + 1, freq[id][1], freq[id][2]); } void printCPUClock(const char* cmd) { fprintf(CurrentClient, "%f\n", freq[cores][0] / 100.0); } void printCPUClockInfo(const char* cmd) { fprintf(CurrentClient, "CPU Clock Frequency\t%d\t%d\tMHz\n", freq[cores][1], freq[cores][2]); } void printCPUxTemperature(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "%0.1f\n", (temp[id] - 2732) / 10.0); } void printCPUxTemperatureInfo(const char* cmd) { int id; sscanf(cmd + 7, "%d", &id); fprintf(CurrentClient, "CPU%d Temperature\t0\t0\tC\n", id + 1); } void printCPUTemperature(const char* cmd) { fprintf(CurrentClient, "%0.3f\n", (temp[cores] - 273200) / 1000.0); } void printCPUTemperatureInfo(const char* cmd) { fprintf(CurrentClient, "CPU Temperature\t0\t0\tC\n"); } void printNumCpus(const char* cmd) { fprintf(CurrentClient, "%d\n", cpus); } void printNumCpusInfo(const char* cmd) { fprintf(CurrentClient, "Number of physical CPUs\t0\t%d\t\n", maxcpus); } void printNumCores(const char* cmd) { fprintf(CurrentClient, "%d\n", cores); } void printNumCoresInfo(const char* cmd) { fprintf(CurrentClient, "Total number of processor cores\t0\t%d\t\n", maxcpus); } void get_mmfreq(int id, int* minfreq, int* maxfreq) { char buf[FREQ_LEVEL_BUFFER]; char mid[SYSCTL_ID_LEN]; size_t len = FREQ_LEVEL_BUFFER; *minfreq = 0; *maxfreq = 0; snprintf(mid, sizeof(mid), "dev.cpu.%d.freq_levels", id); if (sysctlbyname(mid, buf, &len, NULL, 0) != -1) { char *start = buf; char *end; /* * The string is ([[freq]]/[[num]] )*([[freq]]/[[num]] ), so * for each frequency we get we must also skip over another * set of numbers */ while (1) { /* Get the first number */ int number = strtol(start, &end, 10); if (start == end) break; if (!*maxfreq) *maxfreq = number; else *minfreq = number; if (!*end) break; start = end + 1; /* Skip over the next number */ strtol(start, &end, 10); if (start == end || !*end) break; start = end + 1; } } } /* The part ripped from top... */ /* * Top users/processes display for Unix * Version 3 * * This program may be freely redistributed, * but this entire comment MUST remain intact. * * Copyright (c) 1984, 1989, William LeFebvre, Rice University * Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University */ /* * percentages(cnt, out, new, old, diffs) - calculate percentage change * between array "old" and "new", putting the percentages i "out". * "cnt" is size of each array and "diffs" is used for scratch space. * The array "old" is updated on each call. * The routine assumes modulo arithmetic. This function is especially * useful on BSD mchines for calculating cpu state percentages. */ long percentages(int cnt, long *out, long *new, long *old, long *diffs) { int i; long change; long total_change; long *dp; long half_total; /* initialization */ total_change = 0; dp = diffs; /* calculate changes for each state and the overall change */ for (i = 0; i < cnt; i++) { if ((change = *new - *old) < 0) { /* this only happens when the counter wraps */ change = (int) ((unsigned long)*new-(unsigned long)*old); } total_change += (*dp++ = change); *old++ = *new++; } /* avoid divide by zero potential */ if (total_change == 0) { total_change = 1; } /* calculate percentages based on overall change, rounding up */ half_total = total_change / 2l; /* Do not divide by 0. Causes Floating point exception */ for (i = 0; i < cnt; i++) { *out++ = (int)((*diffs++ * 1000 + half_total) / total_change); } /* return the total in case the caller wants to use it */ return(total_change); }