generic: indent and format

Signed-off-by: Ivailo Monev <xakepa10@gmail.com>
This commit is contained in:
Ivailo Monev 2021-02-04 01:01:16 +02:00
parent 052e4456b1
commit a433444a79
4 changed files with 462 additions and 481 deletions

View file

@ -47,91 +47,91 @@ CONTAINER ProcessList = 0;
typedef struct
{
/* This flag is set for all found processes at the beginning of the
* process list update. Processes that do not have this flag set will
* be assumed dead and removed from the list. The flag is cleared after
* each list update. */
int alive;
/* This flag is set for all found processes at the beginning of the
* process list update. Processes that do not have this flag set will
* be assumed dead and removed from the list. The flag is cleared after
* each list update. */
int alive;
/* the process ID */
pid_t pid;
/* the process ID */
pid_t pid;
/* the parent process ID */
pid_t ppid;
/* the parent process ID */
pid_t ppid;
/* the real user ID */
uid_t uid;
/* the real user ID */
uid_t uid;
/* the real group ID */
gid_t gid;
/* the real group ID */
gid_t gid;
/* a character description of the process status */
char status[16];
/* a character description of the process status */
char status[16];
/* the number of the tty the process owns */
int ttyNo;
/* the number of the tty the process owns */
int ttyNo;
/*
* The nice level. The range should be -20 to 20. I'm not sure
* whether this is true for all platforms.
*/
int niceLevel;
/*
* The nice level. The range should be -20 to 20. I'm not sure
* whether this is true for all platforms.
*/
int niceLevel;
/*
* The scheduling priority.
*/
int priority;
/*
* The scheduling priority.
*/
int priority;
/*
* The total amount of memory the process uses. This includes shared and
* swapped memory.
*/
unsigned int vmSize;
/*
* The total amount of memory the process uses. This includes shared and
* swapped memory.
*/
unsigned int vmSize;
/*
* The amount of physical memory the process currently uses.
*/
unsigned int vmRss;
/*
* The amount of physical memory the process currently uses.
*/
unsigned int vmRss;
/*
* The amount of memory (shared/swapped/etc) the process shares with
* other processes.
*/
unsigned int vmLib;
/*
* The amount of memory (shared/swapped/etc) the process shares with
* other processes.
*/
unsigned int vmLib;
/*
* The number of 1/100 of a second the process has spend in user space.
* If a machine has an uptime of 1 1/2 years or longer this is not a
* good idea. I never thought that the stability of UNIX could get me
* into trouble! ;)
*/
unsigned int userTime;
/*
* The number of 1/100 of a second the process has spend in user space.
* If a machine has an uptime of 1 1/2 years or longer this is not a
* good idea. I never thought that the stability of UNIX could get me
* into trouble! ;)
*/
unsigned int userTime;
/*
* The number of 1/100 of a second the process has spend in system space.
* If a machine has an uptime of 1 1/2 years or longer this is not a
* good idea. I never thought that the stability of UNIX could get me
* into trouble! ;)
*/
unsigned int sysTime;
/*
* The number of 1/100 of a second the process has spend in system space.
* If a machine has an uptime of 1 1/2 years or longer this is not a
* good idea. I never thought that the stability of UNIX could get me
* into trouble! ;)
*/
unsigned int sysTime;
/* system time as multime of 100ms */
int centStamp;
/* system time as multime of 100ms */
int centStamp;
/* the current CPU load (in %) from user space */
double userLoad;
/* the current CPU load (in %) from user space */
double userLoad;
/* the current CPU load (in %) from system space */
double sysLoad;
/* the current CPU load (in %) from system space */
double sysLoad;
/* the name of the process */
char name[64];
/* the name of the process */
char name[64];
/* the command used to start the process */
char cmdline[256];
/* the command used to start the process */
char cmdline[256];
/* the login name of the user that owns this process */
char userName[32];
/* the login name of the user that owns this process */
char userName[32];
} ProcessInfo;
static unsigned ProcessCount;
@ -139,146 +139,141 @@ static unsigned ProcessCount;
static int
processCmp(void* p1, void* p2)
{
return (((ProcessInfo*) p1)->pid - ((ProcessInfo*) p2)->pid);
return (((ProcessInfo*) p1)->pid - ((ProcessInfo*) p2)->pid);
}
static ProcessInfo*
findProcessInList(int pid)
{
ProcessInfo key;
long index;
ProcessInfo key;
long index;
key.pid = pid;
if ((index = search_ctnr(ProcessList, processCmp, &key)) < 0)
return (0);
key.pid = pid;
if ((index = search_ctnr(ProcessList, processCmp, &key)) < 0)
return (0);
return (get_ctnr(ProcessList, index));
return (get_ctnr(ProcessList, index));
}
static void
fillProcessCmdline(char *cmdline, struct kinfo_proc *p, size_t maxlen)
{
int mib[4];
int ret = -1;
static char *argbuf = NULL;
static size_t arglen = 0;
int mib[4];
int ret = -1;
static char *argbuf = NULL;
static size_t arglen = 0;
strlcpy(cmdline, p->p_comm, maxlen);
strlcpy(cmdline, p->p_comm, maxlen);
if (!argbuf) {
arglen = 1024;
argbuf = malloc(arglen);
}
mib[0] = CTL_KERN;
mib[1] = KERN_PROC_ARGS;
mib[2] = p->p_pid;
mib[3] = KERN_PROC_ARGV;
if (!argbuf) {
arglen = 1024;
argbuf = malloc(arglen);
}
mib[0] = CTL_KERN;
mib[1] = KERN_PROC_ARGS;
mib[2] = p->p_pid;
mib[3] = KERN_PROC_ARGV;
while (argbuf) {
ret = sysctl(mib, 4, argbuf, &arglen, NULL, 0);
if (ret == -1 && errno == ENOMEM) {
char *n;
n = realloc(argbuf, arglen * 2);
if (n != 0) {
argbuf = n;
arglen *= 2;
continue;
}
}
break;
}
while (argbuf) {
ret = sysctl(mib, 4, argbuf, &arglen, NULL, 0);
if (ret == -1 && errno == ENOMEM) {
char *n;
n = realloc(argbuf, arglen * 2);
if (n != 0) {
argbuf = n;
arglen *= 2;
continue;
}
}
break;
}
if (ret != 1) {
char **argv;
int argc;
if (ret != 1) {
char **argv;
int argc;
argv = (char **)argbuf;
if (argv[0] != NULL)
strlcpy(cmdline, argv[0], maxlen);
for (argc = 1; argv[argc] != NULL; argc++) {
strlcat(cmdline, " ", maxlen);
strlcat(cmdline, argv[argc], maxlen);
}
} else {
strlcpy(cmdline, p->p_comm, maxlen);
}
argv = (char **)argbuf;
if (argv[0] != NULL)
strlcpy(cmdline, argv[0], maxlen);
for (argc = 1; argv[argc] != NULL; argc++) {
strlcat(cmdline, " ", maxlen);
strlcat(cmdline, argv[argc], maxlen);
}
} else {
strlcpy(cmdline, p->p_comm, maxlen);
}
}
static int
updateProcess(struct kinfo_proc *p)
{
static const char * const statuses[] = { "idle","run","sleep","stop","zombie" };
ProcessInfo* ps;
struct passwd* pwent;
pid_t pid = p->p_pid;
static const char * const statuses[] = { "idle","run","sleep","stop","zombie" };
ProcessInfo* ps;
struct passwd* pwent;
pid_t pid = p->p_pid;
if ((ps = findProcessInList(pid)) == 0)
{
ps = (ProcessInfo*) malloc(sizeof(ProcessInfo));
ps->pid = pid;
ps->centStamp = 0;
push_ctnr(ProcessList, ps);
bsort_ctnr(ProcessList, processCmp);
}
if ((ps = findProcessInList(pid)) == 0) {
ps = (ProcessInfo*) malloc(sizeof(ProcessInfo));
ps->pid = pid;
ps->centStamp = 0;
push_ctnr(ProcessList, ps);
bsort_ctnr(ProcessList, processCmp);
}
ps->alive = 1;
ps->alive = 1;
ps->pid = p->p_pid;
ps->ppid = p->p_ppid;
ps->uid = p->p_uid;
ps->gid = p->p_gid;
ps->priority = p->p_priority;
ps->niceLevel = p->p_nice;
ps->pid = p->p_pid;
ps->ppid = p->p_ppid;
ps->uid = p->p_uid;
ps->gid = p->p_gid;
ps->priority = p->p_priority;
ps->niceLevel = p->p_nice;
/* this isn't usertime -- it's total time (??) */
ps->userTime = p->p_uutime_sec*100+p->p_uutime_usec/100;
ps->sysTime = 0;
ps->sysLoad = 0;
/* this isn't usertime -- it's total time (??) */
ps->userTime = p->p_uutime_sec*100+p->p_uutime_usec/100;
ps->sysTime = 0;
ps->sysLoad = 0;
/* memory, process name, process uid */
/* find out user name with process uid */
pwent = getpwuid(ps->uid);
strlcpy(ps->userName,pwent&&pwent->pw_name? pwent->pw_name:"????",sizeof(ps->userName));
ps->userName[sizeof(ps->userName)-1]='\0';
/* memory, process name, process uid */
/* find out user name with process uid */
pwent = getpwuid(ps->uid);
strlcpy(ps->userName,pwent&&pwent->pw_name? pwent->pw_name:"????",sizeof(ps->userName));
ps->userName[sizeof(ps->userName)-1]='\0';
ps->userLoad = p->p_pctcpu / 100;
ps->vmSize = (p->p_vm_tsize +
p->p_vm_dsize +
p->p_vm_ssize) * getpagesize();
ps->vmRss = p->p_vm_rssize * getpagesize();
strlcpy(ps->name,p->p_comm ? p->p_comm : "????", sizeof(ps->name));
strlcpy(ps->status,(p->p_stat>=1)&&(p->p_stat<=5)? statuses[p->p_stat-1]:"????", sizeof(ps->status));
ps->userLoad = p->p_pctcpu / 100;
ps->vmSize = (p->p_vm_tsize +
p->p_vm_dsize +
p->p_vm_ssize) * getpagesize();
ps->vmRss = p->p_vm_rssize * getpagesize();
strlcpy(ps->name,p->p_comm ? p->p_comm : "????", sizeof(ps->name));
strlcpy(ps->status,(p->p_stat>=1)&&(p->p_stat<=5)? statuses[p->p_stat-1]:"????", sizeof(ps->status));
fillProcessCmdline(ps->cmdline, p, sizeof(ps->cmdline));
/* process command line */
fillProcessCmdline(ps->cmdline, p, sizeof(ps->cmdline));
/* process command line */
return (0);
return (0);
}
static void
cleanupProcessList(void)
{
ProcessInfo* ps;
ProcessInfo* ps;
ProcessCount = 0;
/* All processes that do not have the active flag set are assumed dead
* and will be removed from the list. The alive flag is cleared. */
for (ps = first_ctnr(ProcessList); ps; ps = next_ctnr(ProcessList))
{
if (ps->alive)
{
/* Process is still alive. Just clear flag. */
ps->alive = 0;
ProcessCount++;
}
else
{
/* Process has probably died. We remove it from the list and
* destruct the data structure. */
free(remove_ctnr(ProcessList));
}
}
ProcessCount = 0;
/* All processes that do not have the active flag set are assumed dead
* and will be removed from the list. The alive flag is cleared. */
for (ps = first_ctnr(ProcessList); ps; ps = next_ctnr(ProcessList)) {
if (ps->alive) {
/* Process is still alive. Just clear flag. */
ps->alive = 0;
ProcessCount++;
} else {
/* Process has probably died. We remove it from the list and
destruct the data structure. */
free(remove_ctnr(ProcessList));
}
}
}
/*
@ -288,211 +283,203 @@ cleanupProcessList(void)
void
initProcessList(struct SensorModul* sm)
{
ProcessList = new_ctnr();
ProcessList = new_ctnr();
registerMonitor("ps", "table", printProcessList, printProcessListInfo, sm);
registerMonitor("pscount", "integer", printProcessCount, printProcessCountInfo, sm);
registerMonitor("ps", "table", printProcessList, printProcessListInfo, sm);
registerMonitor("pscount", "integer", printProcessCount, printProcessCountInfo, sm);
if (!RunAsDaemon)
{
registerCommand("kill", killProcess);
registerCommand("setpriority", setPriority);
}
if (!RunAsDaemon) {
registerCommand("kill", killProcess);
registerCommand("setpriority", setPriority);
}
updateProcessList();
updateProcessList();
}
void
exitProcessList(void)
{
removeMonitor("ps");
removeMonitor("pscount");
removeMonitor("ps");
removeMonitor("pscount");
if (ProcessList)
free (ProcessList);
if (ProcessList)
free (ProcessList);
}
int
updateProcessList(void)
{
int mib[6];
size_t len;
size_t num;
struct kinfo_proc *p;
int mib[6];
size_t len;
size_t num;
struct kinfo_proc *p;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_ALL;
mib[3] = 0;
mib[4] = sizeof(struct kinfo_proc);
mib[5] = 0;
if (sysctl(mib, 6, NULL, &len, NULL, 0) == -1)
return 0;
len = 5 * len / 4;
p = malloc(len);
if (!p)
return 0;
mib[5] = len/ sizeof(struct kinfo_proc);
if (sysctl(mib, 6, p, &len, NULL, 0) == -1)
return 0;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_ALL;
mib[3] = 0;
mib[4] = sizeof(struct kinfo_proc);
mib[5] = 0;
if (sysctl(mib, 6, NULL, &len, NULL, 0) == -1)
return 0;
len = 5 * len / 4;
p = malloc(len);
if (!p)
return 0;
mib[5] = len/ sizeof(struct kinfo_proc);
if (sysctl(mib, 6, p, &len, NULL, 0) == -1)
return 0;
for (num = 0; num < len / sizeof(struct kinfo_proc); num++)
updateProcess(&p[num]);
free(p);
cleanupProcessList();
for (num = 0; num < len / sizeof(struct kinfo_proc); num++)
updateProcess(&p[num]);
free(p);
cleanupProcessList();
return (0);
return (0);
}
void
printProcessListInfo(const char* cmd)
{
fprintf(CurrentClient, "Name\tPID\tPPID\tUID\tGID\tStatus\tUser%%\tSystem%%\tNice\tVmSize\tVmRss\tLogin\tCommand\n");
fprintf(CurrentClient, "s\td\td\td\td\tS\tf\tf\td\tD\tD\ts\ts\n");
fprintf(CurrentClient, "Name\tPID\tPPID\tUID\tGID\tStatus\tUser%%\tSystem%%\tNice\tVmSize\tVmRss\tLogin\tCommand\n");
fprintf(CurrentClient, "s\td\td\td\td\tS\tf\tf\td\tD\tD\ts\ts\n");
}
void
printProcessList(const char* cmd)
{
ProcessInfo* ps;
ProcessInfo* ps;
for (ps = first_ctnr(ProcessList); ps; ps = next_ctnr(ProcessList))
{
fprintf(CurrentClient, "%s\t%ld\t%ld\t%ld\t%ld\t%s\t%.2f\t%.2f\t%d\t%d\t%d\t%s\t%s\n",
ps->name, (long)ps->pid, (long)ps->ppid,
(long)ps->uid, (long)ps->gid, ps->status,
ps->userLoad, ps->sysLoad, ps->niceLevel,
ps->vmSize / 1024, ps->vmRss / 1024, ps->userName, ps->cmdline);
}
for (ps = first_ctnr(ProcessList); ps; ps = next_ctnr(ProcessList)) {
fprintf(CurrentClient, "%s\t%ld\t%ld\t%ld\t%ld\t%s\t%.2f\t%.2f\t%d\t%d\t%d\t%s\t%s\n",
ps->name, (long)ps->pid, (long)ps->ppid,
(long)ps->uid, (long)ps->gid, ps->status,
ps->userLoad, ps->sysLoad, ps->niceLevel,
ps->vmSize / 1024, ps->vmRss / 1024, ps->userName, ps->cmdline);
}
}
void
printProcessCount(const char* cmd)
{
fprintf(CurrentClient, "%d\n", ProcessCount);
fprintf(CurrentClient, "%d\n", ProcessCount);
}
void
printProcessCountInfo(const char* cmd)
{
fprintf(CurrentClient, "Number of Processes\t1\t65535\t\n");
fprintf(CurrentClient, "Number of Processes\t1\t65535\t\n");
}
void
killProcess(const char* cmd)
{
int sig, pid;
int sig, pid;
sscanf(cmd, "%*s %d %d", &pid, &sig);
switch(sig)
{
case MENU_ID_SIGABRT:
sig = SIGABRT;
break;
case MENU_ID_SIGALRM:
sig = SIGALRM;
break;
case MENU_ID_SIGCHLD:
sig = SIGCHLD;
break;
case MENU_ID_SIGCONT:
sig = SIGCONT;
break;
case MENU_ID_SIGFPE:
sig = SIGFPE;
break;
case MENU_ID_SIGHUP:
sig = SIGHUP;
break;
case MENU_ID_SIGILL:
sig = SIGILL;
break;
case MENU_ID_SIGINT:
sig = SIGINT;
break;
case MENU_ID_SIGKILL:
sig = SIGKILL;
break;
case MENU_ID_SIGPIPE:
sig = SIGPIPE;
break;
case MENU_ID_SIGQUIT:
sig = SIGQUIT;
break;
case MENU_ID_SIGSEGV:
sig = SIGSEGV;
break;
case MENU_ID_SIGSTOP:
sig = SIGSTOP;
break;
case MENU_ID_SIGTERM:
sig = SIGTERM;
break;
case MENU_ID_SIGTSTP:
sig = SIGTSTP;
break;
case MENU_ID_SIGTTIN:
sig = SIGTTIN;
break;
case MENU_ID_SIGTTOU:
sig = SIGTTOU;
break;
case MENU_ID_SIGUSR1:
sig = SIGUSR1;
break;
case MENU_ID_SIGUSR2:
sig = SIGUSR2;
break;
}
if (kill((pid_t) pid, sig))
{
switch(errno)
{
case EINVAL:
fprintf(CurrentClient, "4\t%d\n", pid);
break;
case ESRCH:
fprintf(CurrentClient, "3\t%d\n", pid);
break;
case EPERM:
fprintf(CurrentClient, "2\t%d\n", pid);
break;
default:
fprintf(CurrentClient, "1\t%d\n", pid); /* unknown error */
break;
}
}
else
fprintf(CurrentClient, "0\t%d\n", pid);
sscanf(cmd, "%*s %d %d", &pid, &sig);
switch(sig) {
case MENU_ID_SIGABRT:
sig = SIGABRT;
break;
case MENU_ID_SIGALRM:
sig = SIGALRM;
break;
case MENU_ID_SIGCHLD:
sig = SIGCHLD;
break;
case MENU_ID_SIGCONT:
sig = SIGCONT;
break;
case MENU_ID_SIGFPE:
sig = SIGFPE;
break;
case MENU_ID_SIGHUP:
sig = SIGHUP;
break;
case MENU_ID_SIGILL:
sig = SIGILL;
break;
case MENU_ID_SIGINT:
sig = SIGINT;
break;
case MENU_ID_SIGKILL:
sig = SIGKILL;
break;
case MENU_ID_SIGPIPE:
sig = SIGPIPE;
break;
case MENU_ID_SIGQUIT:
sig = SIGQUIT;
break;
case MENU_ID_SIGSEGV:
sig = SIGSEGV;
break;
case MENU_ID_SIGSTOP:
sig = SIGSTOP;
break;
case MENU_ID_SIGTERM:
sig = SIGTERM;
break;
case MENU_ID_SIGTSTP:
sig = SIGTSTP;
break;
case MENU_ID_SIGTTIN:
sig = SIGTTIN;
break;
case MENU_ID_SIGTTOU:
sig = SIGTTOU;
break;
case MENU_ID_SIGUSR1:
sig = SIGUSR1;
break;
case MENU_ID_SIGUSR2:
sig = SIGUSR2;
break;
}
if (kill((pid_t) pid, sig)) {
switch(errno) {
case EINVAL:
fprintf(CurrentClient, "4\t%d\n", pid);
break;
case ESRCH:
fprintf(CurrentClient, "3\t%d\n", pid);
break;
case EPERM:
fprintf(CurrentClient, "2\t%d\n", pid);
break;
default:
fprintf(CurrentClient, "1\t%d\n", pid); /* unknown error */
break;
}
} else {
fprintf(CurrentClient, "0\t%d\n", pid);
}
}
void
setPriority(const char* cmd)
{
int pid, prio;
int pid, prio;
sscanf(cmd, "%*s %d %d", &pid, &prio);
if (setpriority(PRIO_PROCESS, pid, prio))
{
switch(errno)
{
case EINVAL:
fprintf(CurrentClient, "4\n");
break;
case ESRCH:
fprintf(CurrentClient, "3\n");
break;
case EPERM:
case EACCES:
fprintf(CurrentClient, "2\n");
break;
default:
fprintf(CurrentClient, "1\n"); /* unknown error */
break;
}
}
else
fprintf(CurrentClient, "0\n");
sscanf(cmd, "%*s %d %d", &pid, &prio);
if (setpriority(PRIO_PROCESS, pid, prio)) {
switch(errno) {
case EINVAL:
fprintf(CurrentClient, "4\n");
break;
case ESRCH:
fprintf(CurrentClient, "3\n");
break;
case EPERM:
case EACCES:
fprintf(CurrentClient, "2\n");
break;
default:
fprintf(CurrentClient, "1\n"); /* unknown error */
break;
}
} else {
fprintf(CurrentClient, "0\n");
}
}

View file

@ -43,107 +43,107 @@ int cpu_states[CPUSTATES];
void
initCpuInfo(struct SensorModul* sm)
{
/* Total CPU load */
registerMonitor("cpu/system/user", "integer", printCPUUser, printCPUUserInfo, sm);
registerMonitor("cpu/system/nice", "integer", printCPUNice, printCPUNiceInfo, sm);
registerMonitor("cpu/system/sys", "integer", printCPUSys, printCPUSysInfo, sm);
registerMonitor("cpu/system/idle", "integer", printCPUIdle, printCPUIdleInfo, sm);
registerMonitor("cpu/interrupt", "integer", printCPUInterrupt, printCPUInterruptInfo, sm);
/* Total CPU load */
registerMonitor("cpu/system/user", "integer", printCPUUser, printCPUUserInfo, sm);
registerMonitor("cpu/system/nice", "integer", printCPUNice, printCPUNiceInfo, sm);
registerMonitor("cpu/system/sys", "integer", printCPUSys, printCPUSysInfo, sm);
registerMonitor("cpu/system/idle", "integer", printCPUIdle, printCPUIdleInfo, sm);
registerMonitor("cpu/interrupt", "integer", printCPUInterrupt, printCPUInterruptInfo, sm);
/* Monitor names changed from kde3 => kde4. Remain compatible with legacy requests when possible. */
registerLegacyMonitor("cpu/user", "integer", printCPUUser, printCPUUserInfo, sm);
registerLegacyMonitor("cpu/nice", "integer", printCPUNice, printCPUNiceInfo, sm);
registerLegacyMonitor("cpu/sys", "integer", printCPUSys, printCPUSysInfo, sm);
registerLegacyMonitor("cpu/idle", "integer", printCPUIdle, printCPUIdleInfo, sm);
/* Monitor names changed from kde3 => kde4. Remain compatible with legacy requests when possible. */
registerLegacyMonitor("cpu/user", "integer", printCPUUser, printCPUUserInfo, sm);
registerLegacyMonitor("cpu/nice", "integer", printCPUNice, printCPUNiceInfo, sm);
registerLegacyMonitor("cpu/sys", "integer", printCPUSys, printCPUSysInfo, sm);
registerLegacyMonitor("cpu/idle", "integer", printCPUIdle, printCPUIdleInfo, sm);
updateCpuInfo();
updateCpuInfo();
}
void
exitCpuInfo(void)
{
removeMonitor("cpu/system/user");
removeMonitor("cpu/system/nice");
removeMonitor("cpu/system/sys");
removeMonitor("cpu/system/idle");
removeMonitor("cpu/interrupt");
/* These were registered as legacy monitors */
removeMonitor("cpu/user");
removeMonitor("cpu/nice");
removeMonitor("cpu/sys");
removeMonitor("cpu/idle");
removeMonitor("cpu/system/user");
removeMonitor("cpu/system/nice");
removeMonitor("cpu/system/sys");
removeMonitor("cpu/system/idle");
removeMonitor("cpu/interrupt");
/* These were registered as legacy monitors */
removeMonitor("cpu/user");
removeMonitor("cpu/nice");
removeMonitor("cpu/sys");
removeMonitor("cpu/idle");
}
int
updateCpuInfo(void)
{
static int cp_time_mib[] = {CTL_KERN, KERN_CPTIME};
size_t size;
size=sizeof(cp_time);
sysctl(cp_time_mib, 2, &cp_time, &size, NULL, 0);
percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
return (0);
static int cp_time_mib[] = {CTL_KERN, KERN_CPTIME};
size_t size;
size=sizeof(cp_time);
sysctl(cp_time_mib, 2, &cp_time, &size, NULL, 0);
percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
return (0);
}
void
printCPUUser(const char* cmd)
{
fprintf(CurrentClient, "%d\n", cpu_states[CP_USER]/10);
fprintf(CurrentClient, "%d\n", cpu_states[CP_USER]/10);
}
void
printCPUUserInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU User Load\t0\t100\t%%\n");
fprintf(CurrentClient, "CPU User Load\t0\t100\t%%\n");
}
void
printCPUNice(const char* cmd)
{
fprintf(CurrentClient, "%d\n", cpu_states[CP_NICE]/10);
fprintf(CurrentClient, "%d\n", cpu_states[CP_NICE]/10);
}
void
printCPUNiceInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU Nice Load\t0\t100\t%%\n");
fprintf(CurrentClient, "CPU Nice Load\t0\t100\t%%\n");
}
void
printCPUSys(const char* cmd)
{
fprintf(CurrentClient, "%d\n", cpu_states[CP_SYS]/10);
fprintf(CurrentClient, "%d\n", cpu_states[CP_SYS]/10);
}
void
printCPUSysInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU System Load\t0\t100\t%%\n");
fprintf(CurrentClient, "CPU System Load\t0\t100\t%%\n");
}
void
printCPUIdle(const char* cmd)
{
fprintf(CurrentClient, "%d\n", cpu_states[CP_IDLE]/10);
fprintf(CurrentClient, "%d\n", cpu_states[CP_IDLE]/10);
}
void
printCPUIdleInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU Idle Load\t0\t100\t%%\n");
fprintf(CurrentClient, "CPU Idle Load\t0\t100\t%%\n");
}
void
printCPUInterrupt(const char* cmd)
{
fprintf(CurrentClient, "%d\n", cpu_states[CP_INTR]/10);
fprintf(CurrentClient, "%d\n", cpu_states[CP_INTR]/10);
}
void
printCPUInterruptInfo(const char* cmd)
{
fprintf(CurrentClient, "CPU Interrupt Load\t0\t100\t%%\n");
fprintf(CurrentClient, "CPU Interrupt Load\t0\t100\t%%\n");
}
/* The part ripped from top... */
@ -187,22 +187,18 @@ long *diffs;
dp = diffs;
/* calculate changes for each state and the overall change */
for (i = 0; i < cnt; i++)
{
if ((change = *new - *old) < 0)
{
/* this only happens when the counter wraps */
change = (int)
((unsigned long)*new-(unsigned long)*old);
}
total_change += (*dp++ = change);
*old++ = *new++;
for (i = 0; i < cnt; i++) {
if ((change = *new - *old) < 0) {
/* this only happens when the counter wraps */
change = (int)((unsigned long)*new-(unsigned long)*old);
}
total_change += (*dp++ = change);
*old++ = *new++;
}
/* avoid divide by zero potential */
if (total_change == 0)
{
total_change = 1;
if (total_change == 0) {
total_change = 1;
}
/* calculate percentages based on overall change, rounding up */
@ -210,9 +206,8 @@ long *diffs;
/* Do not divide by 0. Causes Floating point exception */
if(total_change) {
for (i = 0; i < cnt; i++)
{
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
for (i = 0; i < cnt; i++) {
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
}
}

View file

@ -54,29 +54,29 @@ void swapmode(int *used, int *total);
void
initMemory(struct SensorModul* sm)
{
int pagesize;
static int physmem_mib[] = { CTL_HW, HW_PHYSMEM };
size_t size;
/* get the page size with "getpagesize" and calculate pageshift from
* it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
size = sizeof(Total);
sysctl(physmem_mib, 2, &Total, &size, NULL, 0);
Total /= 1024;
swapmode(&SUsed, &STotal);
int pagesize;
static int physmem_mib[] = { CTL_HW, HW_PHYSMEM };
size_t size;
/* get the page size with "getpagesize" and calculate pageshift from
* it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
size = sizeof(Total);
sysctl(physmem_mib, 2, &Total, &size, NULL, 0);
Total /= 1024;
swapmode(&SUsed, &STotal);
registerMonitor("mem/physical/free", "integer", printMFree, printMFreeInfo, sm);
registerMonitor("mem/physical/active", "integer", printActive, printActiveInfo, sm);
registerMonitor("mem/physical/inactive", "integer", printInActive, printInActiveInfo, sm);
registerMonitor("mem/physical/used", "integer", printUsed, printUsedInfo, sm);
registerMonitor("mem/physical/application", "integer", printApplication, printApplicationInfo, sm);
registerMonitor("mem/swap/free", "integer", printSwapFree, printSwapFreeInfo, sm);
registerMonitor("mem/swap/used", "integer", printSwapUsed, printSwapUsedInfo, sm);
registerMonitor("mem/physical/free", "integer", printMFree, printMFreeInfo, sm);
registerMonitor("mem/physical/active", "integer", printActive, printActiveInfo, sm);
registerMonitor("mem/physical/inactive", "integer", printInActive, printInActiveInfo, sm);
registerMonitor("mem/physical/used", "integer", printUsed, printUsedInfo, sm);
registerMonitor("mem/physical/application", "integer", printApplication, printApplicationInfo, sm);
registerMonitor("mem/swap/free", "integer", printSwapFree, printSwapFreeInfo, sm);
registerMonitor("mem/swap/used", "integer", printSwapUsed, printSwapUsedInfo, sm);
}
void
@ -87,112 +87,112 @@ exitMemory(void)
int
updateMemory(void)
{
static int vmtotal_mib[] = {CTL_VM, VM_METER};
size_t size;
struct vmtotal vmtotal;
size = sizeof(vmtotal);
static int vmtotal_mib[] = {CTL_VM, VM_METER};
size_t size;
struct vmtotal vmtotal;
size = sizeof(vmtotal);
if (sysctl(vmtotal_mib, 2, &vmtotal, &size, NULL, 0) < 0)
return -1;
if (sysctl(vmtotal_mib, 2, &vmtotal, &size, NULL, 0) < 0)
return -1;
MFree = pagetok(vmtotal.t_free);
MFree /= 1024;
Active = pagetok(vmtotal.t_arm);
Active /= 1024;
InActive = pagetok(vmtotal.t_rm);
InActive /= 1024;
InActive -= Active;
MFree = pagetok(vmtotal.t_free);
MFree /= 1024;
Active = pagetok(vmtotal.t_arm);
Active /= 1024;
InActive = pagetok(vmtotal.t_rm);
InActive /= 1024;
InActive -= Active;
Used = Total - MFree;
Application = Used;
Used = Total - MFree;
Application = Used;
swapmode(&SUsed, &STotal);
SFree = STotal - SUsed;
return 0;
swapmode(&SUsed, &STotal);
SFree = STotal - SUsed;
return 0;
}
void
printMFree(const char* cmd)
{
fprintf(CurrentClient, "%d\n", MFree);
fprintf(CurrentClient, "%d\n", MFree);
}
void
printMFreeInfo(const char* cmd)
{
fprintf(CurrentClient, "Free Memory\t0\t%d\tKB\n", Total);
fprintf(CurrentClient, "Free Memory\t0\t%d\tKB\n", Total);
}
void
printUsed(const char* cmd)
{
fprintf(CurrentClient, "%d\n", Used);
fprintf(CurrentClient, "%d\n", Used);
}
void
printUsedInfo(const char* cmd)
{
fprintf(CurrentClient, "Used Memory\t0\t%d\tKB\n", Total);
fprintf(CurrentClient, "Used Memory\t0\t%d\tKB\n", Total);
}
void
printApplication(const char* cmd)
{
fprintf(CurrentClient, "%d\n", Application);
fprintf(CurrentClient, "%d\n", Application);
}
void
printApplicationInfo(const char* cmd)
{
fprintf(CurrentClient, "Application Memory\t0\t%ld\tKB\n", Total);
fprintf(CurrentClient, "Application Memory\t0\t%ld\tKB\n", Total);
}
void
printActive(const char* cmd)
{
fprintf(CurrentClient, "%d\n", Active);
fprintf(CurrentClient, "%d\n", Active);
}
void
printActiveInfo(const char* cmd)
{
fprintf(CurrentClient, "Active Memory\t0\t%d\tKB\n", Total);
fprintf(CurrentClient, "Active Memory\t0\t%d\tKB\n", Total);
}
void
printInActive(const char* cmd)
{
fprintf(CurrentClient, "%d\n", InActive);
fprintf(CurrentClient, "%d\n", InActive);
}
void
printInActiveInfo(const char* cmd)
{
fprintf(CurrentClient, "InActive Memory\t0\t%d\tKB\n", Total);
fprintf(CurrentClient, "InActive Memory\t0\t%d\tKB\n", Total);
}
void
printSwapUsed(const char* cmd)
{
fprintf(CurrentClient, "%d\n", SUsed);
fprintf(CurrentClient, "%d\n", SUsed);
}
void
printSwapUsedInfo(const char* cmd)
{
fprintf(CurrentClient, "Used Swap Memory\t0\t%d\tKB\n", STotal);
fprintf(CurrentClient, "Used Swap Memory\t0\t%d\tKB\n", STotal);
}
void
printSwapFree(const char* cmd)
{
fprintf(CurrentClient, "%d\n", SFree);
fprintf(CurrentClient, "%d\n", SFree);
}
void
printSwapFreeInfo(const char* cmd)
{
fprintf(CurrentClient, "Free Swap Memory\t0\t%d\tKB\n", STotal);
fprintf(CurrentClient, "Free Swap Memory\t0\t%d\tKB\n", STotal);
}
/*
@ -204,35 +204,35 @@ Taken from OpenBSD top command
void
swapmode (int *used, int *total)
{
int nswap, rnswap, i;
struct swapent *swdev;
int nswap, rnswap, i;
struct swapent *swdev;
*total = *used = 0;
*total = *used = 0;
/* Number of swap devices */
nswap = swapctl(SWAP_NSWAP, 0, 0);
if (nswap == 0)
return;
/* Number of swap devices */
nswap = swapctl(SWAP_NSWAP, 0, 0);
if (nswap == 0)
return;
swdev = (struct swapent *) malloc(nswap * sizeof(*swdev));
if (swdev == NULL)
return;
swdev = (struct swapent *) malloc(nswap * sizeof(*swdev));
if (swdev == NULL)
return;
rnswap = swapctl(SWAP_STATS, swdev, nswap);
if (rnswap == -1) {
free(swdev);
return;
}
/* if rnswap != nswap, then what? */
/* Total things up */
for (i = 0; i < nswap; i++) {
if (swdev[i].se_flags & SWF_ENABLE) {
*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
}
}
rnswap = swapctl(SWAP_STATS, swdev, nswap);
if (rnswap == -1) {
free(swdev);
return;
}
/* if rnswap != nswap, then what? */
/* Total things up */
for (i = 0; i < nswap; i++) {
if (swdev[i].se_flags & SWF_ENABLE) {
*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
}
}
free(swdev);
}

View file

@ -91,25 +91,25 @@ void ProcessesLocal::Private::readProcStat(struct kinfo_proc *p, Process *ps)
ps->setVmRSS(p->ki_rssize * getpagesize() / 1024);
status = p->ki_stat;
// "idle","run","sleep","stop","zombie"
// "idle","run","sleep","stop","zombie"
switch( status ) {
case SRUN:
ps->setStatus(Process::Running);
break;
case SSLEEP:
case SWAIT:
case SLOCK:
ps->setStatus(Process::Sleeping);
break;
case SSTOP:
ps->setStatus(Process::Stopped);
break;
case SZOMB:
ps->setStatus(Process::Zombie);
break;
default:
ps->setStatus(Process::OtherStatus);
break;
case SRUN:
ps->setStatus(Process::Running);
break;
case SSLEEP:
case SWAIT:
case SLOCK:
ps->setStatus(Process::Sleeping);
break;
case SSTOP:
ps->setStatus(Process::Stopped);
break;
case SZOMB:
ps->setStatus(Process::Zombie);
break;
default:
ps->setStatus(Process::OtherStatus);
break;
}
}
@ -149,8 +149,7 @@ ProcessesLocal::ProcessesLocal() : d(new Private())
long ProcessesLocal::getParentPid(long pid) {
long long ppid = 0;
struct kinfo_proc p;
if(d->readProc(pid, &p))
{
if(d->readProc(pid, &p)) {
ppid = p.ki_ppid;
}
return ppid;