/*************************************************************************** Copyright 2007 David Nolden ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ #include "setrepository.h" #include #include #include #include #include #include #include #include #include //#define DEBUG #include "somehash.cpp" #ifdef DEBUG #define ifDebug(X) X #else #define ifDebug(x) #undef Q_ASSERT #define Q_ASSERT(x) #endif #ifndef DEBUG #define CHECK_SPLIT_POSITION(Node) #else #define CHECK_SPLIT_POSITION(node) Q_ASSERT(!(node).leftNode || (getLeftNode(&node)->end() <= splitPositionForRange((node).start, (node).end) && getRightNode(&node)->start() >= splitPositionForRange((node).start, (node).end))) #endif namespace Utils { /** * To achieve a maximum re-usage of nodes, we make sure that sub-nodes of a node always split at specific boundaries. * For each range we can compute a position where that range should be split into its child-nodes. * When creating a new node with 2 sub-nodes, we re-create those child-nodes if their boundaries don't represent those split-positions. * * We pick the split-positions deterministically, they are in order of priority: * ((1<<31)*n, n = [0,...] * ((1<<30)*n, n = [0,...] * ((1<<29)*n, n = [0,...] * ((1<<...)*n, n = [0,...] * ... * */ typedef BasicSetRepository::Index Index; ///The returned split position shall be the end of the first sub-range, and the start of the second ///@param splitBit should be initialized with 31, unless you know better. The value can then be used on while computing child split positions. ///In the end, it will contain the bit used to split the range. It will also contain zero if no split-position exists(length 1) uint splitPositionForRange(uint start, uint end, uchar& splitBit) { if(end-start == 1) { splitBit = 0; return 0; } while(true) { uint position = ((end-1) >> splitBit) << splitBit; //Round to the split-position in this interval that is smaller than end if(position > start && position < end) return position; Q_ASSERT(splitBit != 0); --splitBit; } return 0; } uint SetNodeData::calculateHash() const { //A hash to reduce the amount of clashes return hashlittle(this, sizeof(uint)*4, 1748231); } uint splitPositionForRange(uint start, uint end) { uchar splitBit = 31; return splitPositionForRange(start, end, splitBit); } class SetNodeDataRequest; #define getLeftNode(node) repository.itemFromIndex(node->leftNode()) #define getRightNode(node) repository.itemFromIndex(node->rightNode()) #define nodeFromIndex(index) repository.itemFromIndex(index) struct SetRepositoryAlgorithms { SetRepositoryAlgorithms(SetDataRepository& _repository, BasicSetRepository* _setRepository) : repository(_repository), setRepository(_setRepository) { } ///Expensive Index count(const SetNodeData* node) const; void localCheck(const SetNodeData* node); void check(uint node); void check(const SetNodeData* node); QString shortLabel(const SetNodeData& node) const; uint set_union(uint firstNode, uint secondNode, const SetNodeData* first, const SetNodeData* second, uchar splitBit = 31); uint createSetFromNodes(uint leftNode, uint rightNode, const SetNodeData* left = 0, const SetNodeData* right = 0); uint computeSetFromNodes(uint leftNode, uint rightNode, const SetNodeData* left, const SetNodeData* right, uchar splitBit); uint set_intersect(uint firstNode, uint secondNode, const SetNodeData* first, const SetNodeData* second, uchar splitBit = 31); bool set_contains(const SetNodeData* node, Index index); uint set_subtract(uint firstNode, uint secondNode, const SetNodeData* first, const SetNodeData* second, uchar splitBit = 31); //Required both nodes to be split correctly bool set_equals(const SetNodeData* lhs, const SetNodeData* rhs); QString dumpDotGraph(uint node) const; ///Finds or inserts the given ranges into the repository, and returns the set-index that represents them uint setForIndices(std::vector::const_iterator begin, std::vector::const_iterator end, uchar splitBit = 31) { Q_ASSERT(begin != end); uint startIndex = *begin; uint endIndex = *(end-1)+1; if(endIndex == startIndex+1) { SetNodeData data(startIndex, endIndex); return repository.index( SetNodeDataRequest(&data, repository, setRepository) ); } uint split = splitPositionForRange(startIndex, endIndex, splitBit); Q_ASSERT(split); std::vector::const_iterator splitIterator = std::lower_bound(begin, end, split); Q_ASSERT(*splitIterator >= split); Q_ASSERT(splitIterator > begin); Q_ASSERT(*(splitIterator-1) < split); return createSetFromNodes(setForIndices(begin, splitIterator, splitBit), setForIndices(splitIterator, end, splitBit)); } private: QString dumpDotGraphInternal(uint node, bool master=false) const; SetDataRepository& repository; BasicSetRepository* setRepository; }; void SetNodeDataRequest::destroy(SetNodeData* data, KDevelop::AbstractItemRepository& _repository) { SetDataRepository& repository(static_cast(_repository)); if(repository.setRepository->delayedDeletion()) { if(data->leftNode()){ SetDataRepositoryBase::MyDynamicItem left = repository.dynamicItemFromIndex(data->leftNode()); SetDataRepositoryBase::MyDynamicItem right = repository.dynamicItemFromIndex(data->rightNode()); Q_ASSERT(left->m_refCount > 0); --left->m_refCount; Q_ASSERT(right->m_refCount > 0); --right->m_refCount; }else { //Deleting a leaf Q_ASSERT(data->end() - data->start() == 1); repository.setRepository->itemRemovedFromSets(data->start()); } } } SetNodeDataRequest::SetNodeDataRequest(const SetNodeData* _data, SetDataRepository& _repository, BasicSetRepository* _setRepository) : data(*_data), m_hash(_data->hash()), repository(_repository), setRepository(_setRepository), m_created(false) { ifDebug( SetRepositoryAlgorithms alg(repository); alg.check(_data) ); } SetNodeDataRequest::~SetNodeDataRequest() { //Eventually increase the reference-count of direct children if(m_created) { if(data.leftNode()) ++repository.dynamicItemFromIndex(data.leftNode())->m_refCount; if(data.rightNode()) ++repository.dynamicItemFromIndex(data.rightNode())->m_refCount; } } //Should create an item where the information of the requested item is permanently stored. The pointer //@param item equals an allocated range with the size of itemSize(). void SetNodeDataRequest::createItem(SetNodeData* item) const { Q_ASSERT((data.rightNode() && data.leftNode()) || (!data.rightNode() && !data.leftNode())); m_created = true; *item = data; Q_ASSERT((item->rightNode() && item->leftNode()) || (!item->rightNode() && !item->leftNode())); #ifdef DEBUG //Make sure we split at the correct split position if(item->hasSlaves()) { uint split = splitPositionForRange(data.start, data.end); const SetNodeData* left = repository.itemFromIndex(item->leftNode()); const SetNodeData* right = repository.itemFromIndex(item->rightNode()); Q_ASSERT(split >= left->end() && split <= right->start()); } #endif if(!data.leftNode() && setRepository) { for(uint a = item->start(); a < item->end(); ++a) setRepository->itemAddedToSets(a); } } bool SetNodeDataRequest::equals(const SetNodeData* item) const { Q_ASSERT((item->rightNode() && item->leftNode()) || (!item->rightNode() && !item->leftNode())); //Just compare child nodes, since data must be correctly split, this is perfectly ok //Since this happens in very tight loops, we don't call an additional function here, but just do the check. return item->leftNode() == data.leftNode() && item->rightNode() == data.rightNode() && item->start() == data.start() && item->end() == data.end(); } class BasicSetRepository::Private { public: Private(QString _name) : name(_name) { } ~Private() { } QString name; private: }; Set::Set() : m_tree(0), m_repository(0) { } Set::~Set() { } unsigned int Set::count() const { if(!m_repository || !m_tree) return 0; QMutexLocker lock(m_repository->m_mutex); SetRepositoryAlgorithms alg(m_repository->dataRepository, m_repository); return alg.count(m_repository->dataRepository.itemFromIndex(m_tree)); } Set::Set(uint treeNode, BasicSetRepository* repository) : m_tree(treeNode), m_repository(repository) { } Set::Set(const Set& rhs) { m_repository = rhs.m_repository; m_tree = rhs.m_tree; } Set& Set::operator=(const Set& rhs) { m_repository = rhs.m_repository; m_tree = rhs.m_tree; return *this; } QString Set::dumpDotGraph() const { if(!m_repository || !m_tree) return QString(); QMutexLocker lock(m_repository->m_mutex); SetRepositoryAlgorithms alg(m_repository->dataRepository, m_repository); return alg.dumpDotGraph(m_tree); } Index SetRepositoryAlgorithms::count(const SetNodeData* node) const { if(node->leftNode() && node->rightNode()) return count(getLeftNode(node)) + count(getRightNode(node)); else return node->end() - node->start(); } void SetRepositoryAlgorithms::localCheck(const SetNodeData* ifDebug(node) ) { // Q_ASSERT(node->start() > 0); Q_ASSERT(node->start() < node->end()); Q_ASSERT((node->leftNode() && node->rightNode()) || (!node->leftNode() && !node->rightNode())); Q_ASSERT(!node->leftNode() || (getLeftNode(node())->start() == node->start() && getRightNode(node)->end() == node->end())); Q_ASSERT(!node->leftNode() || (getLeftNode(node())->end() <= getRightNode(node)->start())); } void SetRepositoryAlgorithms::check(uint node) { if(!node) return; check(nodeFromIndex(node)); } void SetRepositoryAlgorithms::check(const SetNodeData* node) { localCheck(node); if(node->leftNode()) check(getLeftNode(node)); if(node->rightNode()) check(getRightNode(node)); // CHECK_SPLIT_POSITION(*node); Re-enable this } QString SetRepositoryAlgorithms::shortLabel(const SetNodeData& node) const { return QString("n%1_%2").arg(node.start()).arg(node.end()); } QString SetRepositoryAlgorithms::dumpDotGraphInternal(uint nodeIndex, bool master) const { if(!nodeIndex) return QString("empty node"); const SetNodeData& node(*repository.itemFromIndex(nodeIndex)); QString color = "blue"; if(master) color = "red"; QString label = QString("%1 -> %2").arg(node.start()).arg(node.end()); if(!node.contiguous()) label += ", with gaps"; QString ret = QString("%1[label=\"%2\", color=\"%3\"];\n").arg(shortLabel(node)).arg(label).arg(color); if(node.leftNode()) { const SetNodeData& left(*repository.itemFromIndex(node.leftNode())); const SetNodeData& right(*repository.itemFromIndex(node.rightNode())); Q_ASSERT(node.rightNode()); ret += QString("%1 -> %2;\n").arg(shortLabel(node)).arg(shortLabel(left)); ret += QString("%1 -> %2;\n").arg(shortLabel(node)).arg(shortLabel(right)); ret += dumpDotGraphInternal(node.leftNode()); ret += dumpDotGraphInternal(node.rightNode()); } return ret; } QString SetRepositoryAlgorithms::dumpDotGraph(uint nodeIndex) const { QString ret = "digraph Repository {\n"; ret += dumpDotGraphInternal(nodeIndex, true); ret += "}\n"; return ret; } const int nodeStackAlloc = 500; class Set::Iterator::IteratorPrivate { public: IteratorPrivate() : nodeStackSize(0), currentIndex(0), repository(0) { nodeStackData.resize(nodeStackAlloc); nodeStack = nodeStackData.data(); } IteratorPrivate(const IteratorPrivate& rhs) : nodeStackData(rhs.nodeStackData), nodeStackSize(rhs.nodeStackSize), currentIndex(rhs.currentIndex), repository(rhs.repository) { nodeStack = nodeStackData.data(); } void resizeNodeStack() { nodeStackData.resize(nodeStackSize + 1); nodeStack = nodeStackData.data(); } KDevVarLengthArray nodeStackData; const SetNodeData** nodeStack; int nodeStackSize; Index currentIndex; BasicSetRepository* repository; /** * Pushes the noed on top of the stack, changes currentIndex, and goes as deep as necessary for iteration. * */ void startAtNode(const SetNodeData* node) { Q_ASSERT(node->start() != node->end()); currentIndex = node->start(); do { nodeStack[nodeStackSize++] = node; if(nodeStackSize >= nodeStackAlloc) resizeNodeStack(); if(node->contiguous()) break; //We need no finer granularity, because the range is contiguous node = Set::Iterator::getDataRepository(repository).itemFromIndex(node->leftNode()); } while(node); Q_ASSERT(currentIndex >= nodeStack[0]->start()); } }; std::set Set::stdSet() const { Set::Iterator it = iterator(); std::set ret; while(it) { Q_ASSERT(ret.find(*it) == ret.end()); ret.insert(*it); ++it; } return ret; } Set::Iterator::Iterator(const Iterator& rhs) : d(new IteratorPrivate(*rhs.d)) { } Set::Iterator& Set::Iterator::operator=(const Iterator& rhs) { delete d; d = new IteratorPrivate(*rhs.d); return *this; } Set::Iterator::Iterator() : d(new IteratorPrivate) { } Set::Iterator::~Iterator() { delete d; } Set::Iterator::operator bool() const { return d->nodeStackSize; } Set::Iterator& Set::Iterator::operator++() { Q_ASSERT(d->nodeStackSize); if(d->repository->m_mutex) d->repository->m_mutex->lockInline(); ++d->currentIndex; //const SetNodeData** currentNode = &d->nodeStack[d->nodeStackSize - 1]; if(d->currentIndex >= d->nodeStack[d->nodeStackSize - 1]->end()) { //Advance to the next node while(d->nodeStackSize && d->currentIndex >= d->nodeStack[d->nodeStackSize - 1]->end()) { --d->nodeStackSize; } if(!d->nodeStackSize) { //ready }else{ //++d->nodeStackSize; //We were iterating the left slave of the node, now continue with the right. ifDebug( const SetNodeData& left = *d->repository->dataRepository.itemFromIndex(d->nodeStack[d->nodeStackSize - 1]->leftNode()); Q_ASSERT(left.end == d->currentIndex); ) const SetNodeData& right = *d->repository->dataRepository.itemFromIndex(d->nodeStack[d->nodeStackSize - 1]->rightNode()); d->startAtNode(&right); } } Q_ASSERT(d->nodeStackSize == 0 || d->currentIndex < d->nodeStack[0]->end()); if(d->repository->m_mutex) d->repository->m_mutex->unlockInline(); return *this; } BasicSetRepository::Index Set::Iterator::operator*() const { return d->currentIndex; } Set::Iterator Set::iterator() const { if(!m_tree || !m_repository) return Iterator(); QMutexLocker lock(m_repository->m_mutex); Iterator ret; ret.d->repository = m_repository; if(m_tree) ret.d->startAtNode(m_repository->dataRepository.itemFromIndex(m_tree)); return ret; } //Creates a set item with the given children., they must be valid, and they must be split around their split-position. uint SetRepositoryAlgorithms::createSetFromNodes(uint leftNode, uint rightNode, const SetNodeData* left, const SetNodeData* right) { if(!left) left = nodeFromIndex(leftNode); if(!right) right = nodeFromIndex(rightNode); Q_ASSERT(left->end() <= right->start()); SetNodeData set(left->start(), right->end(), leftNode, rightNode); Q_ASSERT(set.start() < set.end()); uint ret = repository.index(SetNodeDataRequest(&set, repository, setRepository)); Q_ASSERT(set.leftNode() >= 0x10000); Q_ASSERT(set.rightNode() >= 0x10000); Q_ASSERT(ret == repository.findIndex(SetNodeDataRequest(&set, repository, setRepository))); ifDebug( check(ret) ); return ret; } //Constructs a set node from the given two sub-nodes. Those must be valid, they must not intersect, and they must have a correct split-hierarchy. //The do not need to be split around their computed split-position. uint SetRepositoryAlgorithms::computeSetFromNodes(uint leftNode, uint rightNode, const SetNodeData* left, const SetNodeData* right, uchar splitBit) { Q_ASSERT(left->end() <= right->start()); uint splitPosition = splitPositionForRange(left->start(), right->end(), splitBit); Q_ASSERT(splitPosition); if(splitPosition < left->end()) { //The split-position intersects the left node uint leftLeftNode = left->leftNode(); uint leftRightNode = left->rightNode(); const SetNodeData* leftLeft = this->getLeftNode(left); const SetNodeData* leftRight = this->getRightNode(left); Q_ASSERT(splitPosition >= leftLeft->end() && splitPosition <= leftRight->start()); //Create a new set from leftLeft, and from leftRight + right. That set will have the correct split-position. uint newRightNode = computeSetFromNodes(leftRightNode, rightNode, leftRight, right, splitBit); return createSetFromNodes(leftLeftNode, newRightNode, leftLeft); }else if(splitPosition > right->start()) { //The split-position intersects the right node uint rightLeftNode = right->leftNode(); uint rightRightNode = right->rightNode(); const SetNodeData* rightLeft = this->getLeftNode(right); const SetNodeData* rightRight = this->getRightNode(right); Q_ASSERT(splitPosition >= rightLeft->end() && splitPosition <= rightRight->start()); //Create a new set from left + rightLeft, and from rightRight. That set will have the correct split-position. uint newLeftNode = computeSetFromNodes(leftNode, rightLeftNode, left, rightLeft, splitBit); return createSetFromNodes(newLeftNode, rightRightNode, 0, rightRight); }else{ return createSetFromNodes(leftNode, rightNode, left, right); } } uint SetRepositoryAlgorithms::set_union(uint firstNode, uint secondNode, const SetNodeData* first, const SetNodeData* second, uchar splitBit) { if(firstNode == secondNode) return firstNode; uint firstStart = first->start(), secondEnd = second->end(); if(firstStart >= secondEnd) return computeSetFromNodes(secondNode, firstNode, second, first, splitBit); uint firstEnd = first->end(), secondStart = second->start(); if(secondStart >= firstEnd) return computeSetFromNodes(firstNode, secondNode, first, second, splitBit); //The ranges of first and second do intersect uint newStart = firstStart < secondStart ? firstStart : secondStart; uint newEnd = firstEnd > secondEnd ? firstEnd : secondEnd; //Compute the split-position for the resulting merged node uint splitPosition = splitPositionForRange(newStart, newEnd, splitBit); //Since the ranges overlap, we can be sure that either first or second contain splitPosition. //The node that contains it, will also be split by it. if(splitPosition > firstStart && splitPosition < firstEnd && splitPosition > secondStart && splitPosition < secondEnd) { //The split-position intersect with both first and second. Continue the union on both sides of the split-position, and merge it. uint firstLeftNode = first->leftNode(); uint firstRightNode = first->rightNode(); uint secondLeftNode = second->leftNode(); uint secondRightNode = second->rightNode(); const SetNodeData* firstLeft = repository.itemFromIndex(firstLeftNode); const SetNodeData* firstRight = repository.itemFromIndex(firstRightNode); const SetNodeData* secondLeft = repository.itemFromIndex(secondLeftNode); const SetNodeData* secondRight = repository.itemFromIndex(secondRightNode); Q_ASSERT(splitPosition >= firstLeft->end() && splitPosition <= firstRight->start()); Q_ASSERT(splitPosition >= secondLeft->end() && splitPosition <= secondRight->start()); return createSetFromNodes( set_union(firstLeftNode, secondLeftNode, firstLeft, secondLeft, splitBit), set_union(firstRightNode, secondRightNode, firstRight, secondRight, splitBit) ); }else if(splitPosition > firstStart && splitPosition < firstEnd) { uint firstLeftNode = first->leftNode(); uint firstRightNode = first->rightNode(); const SetNodeData* firstLeft = repository.itemFromIndex(firstLeftNode); const SetNodeData* firstRight = repository.itemFromIndex(firstRightNode); Q_ASSERT(splitPosition >= firstLeft->end() && splitPosition <= firstRight->start()); //splitPosition does not intersect second. That means that second is completely on one side of it. //So we only need to union that side of first with second. if(secondEnd <= splitPosition) { return createSetFromNodes( set_union(firstLeftNode, secondNode, firstLeft, second, splitBit), firstRightNode, 0, firstRight ); }else{ Q_ASSERT(secondStart >= splitPosition); return createSetFromNodes( firstLeftNode, set_union(firstRightNode, secondNode, firstRight, second, splitBit), firstLeft ); } }else if(splitPosition > secondStart && splitPosition < secondEnd) { uint secondLeftNode = second->leftNode(); uint secondRightNode = second->rightNode(); const SetNodeData* secondLeft = repository.itemFromIndex(secondLeftNode); const SetNodeData* secondRight = repository.itemFromIndex(secondRightNode); Q_ASSERT(splitPosition >= secondLeft->end() && splitPosition <= secondRight->start()); if(firstEnd <= splitPosition) { return createSetFromNodes( set_union(secondLeftNode, firstNode, secondLeft, first, splitBit), secondRightNode, 0, secondRight ); }else{ Q_ASSERT(firstStart >= splitPosition); return createSetFromNodes( secondLeftNode, set_union(secondRightNode, firstNode, secondRight, first, splitBit), secondLeft ); } }else{ //We would have stopped earlier of first and second don't intersect ifDebug( uint test = repository.findIndex(SetNodeDataRequest(first, repository, setRepository)); kDebug() << "found index:" << test; ) Q_ASSERT(0); return 0; } } bool SetRepositoryAlgorithms::set_equals(const SetNodeData* lhs, const SetNodeData* rhs) { if(lhs->leftNode() != rhs->leftNode() || lhs->rightNode() != rhs->rightNode()) return false; else return true; } uint SetRepositoryAlgorithms::set_intersect(uint firstNode, uint secondNode, const SetNodeData* first, const SetNodeData* second, uchar splitBit) { if(firstNode == secondNode) return firstNode; if(first->start() >= second->end()) return 0; if(second->start() >= first->end()) return 0; //The ranges of first and second do intersect uint firstStart = first->start(), firstEnd = first->end(), secondStart = second->start(), secondEnd = second->end(); uint newStart = firstStart < secondStart ? firstStart : secondStart; uint newEnd = firstEnd > secondEnd ? firstEnd : secondEnd; //Compute the split-position for the resulting merged node uint splitPosition = splitPositionForRange(newStart, newEnd, splitBit); //Since the ranges overlap, we can be sure that either first or second contain splitPosition. //The node that contains it, will also be split by it. if(splitPosition > firstStart && splitPosition < firstEnd && splitPosition > secondStart && splitPosition < secondEnd) { //The split-position intersect with both first and second. Continue the intersection on both sides uint firstLeftNode = first->leftNode(); uint firstRightNode = first->rightNode(); uint secondLeftNode = second->leftNode(); uint secondRightNode = second->rightNode(); const SetNodeData* firstLeft = repository.itemFromIndex(firstLeftNode); const SetNodeData* firstRight = repository.itemFromIndex(firstRightNode); const SetNodeData* secondLeft = repository.itemFromIndex(secondLeftNode); const SetNodeData* secondRight = repository.itemFromIndex(secondRightNode); Q_ASSERT(splitPosition >= firstLeft->end() && splitPosition <= firstRight->start()); Q_ASSERT(splitPosition >= secondLeft->end() && splitPosition <= secondRight->start()); uint newLeftNode = set_intersect(firstLeftNode, secondLeftNode, firstLeft, secondLeft, splitBit); uint newRightNode = set_intersect(firstRightNode, secondRightNode, firstRight, secondRight, splitBit); if(newLeftNode && newRightNode) return createSetFromNodes( newLeftNode, newRightNode ); else if(newLeftNode) return newLeftNode; else return newRightNode; }else if(splitPosition > firstStart && splitPosition < firstEnd) { uint firstLeftNode = first->leftNode(); uint firstRightNode = first->rightNode(); const SetNodeData* firstLeft = repository.itemFromIndex(firstLeftNode); const SetNodeData* firstRight = repository.itemFromIndex(firstRightNode); Q_ASSERT(splitPosition >= firstLeft->end() && splitPosition <= firstRight->start()); //splitPosition does not intersect second. That means that second is completely on one side of it. //So we can completely ignore the other side of first. if(secondEnd <= splitPosition) { return set_intersect(firstLeftNode, secondNode, firstLeft, second, splitBit); }else{ Q_ASSERT(secondStart >= splitPosition); return set_intersect(firstRightNode, secondNode, firstRight, second, splitBit); } }else if(splitPosition > secondStart && splitPosition < secondEnd) { uint secondLeftNode = second->leftNode(); uint secondRightNode = second->rightNode(); const SetNodeData* secondLeft = repository.itemFromIndex(secondLeftNode); const SetNodeData* secondRight = repository.itemFromIndex(secondRightNode); Q_ASSERT(splitPosition >= secondLeft->end() && splitPosition <= secondRight->start()); if(firstEnd <= splitPosition) { return set_intersect(secondLeftNode, firstNode, secondLeft, first, splitBit); }else{ Q_ASSERT(firstStart >= splitPosition); return set_intersect(secondRightNode, firstNode, secondRight, first, splitBit); } }else{ //We would have stopped earlier of first and second don't intersect Q_ASSERT(0); return 0; } Q_ASSERT(0); } bool SetRepositoryAlgorithms::set_contains(const SetNodeData* node, Index index) { while(true) { if(node->start() > index || node->end() <= index) return false; if(node->contiguous()) return true; const SetNodeData* leftNode = nodeFromIndex(node->leftNode()); if(index < leftNode->end()) node = leftNode; else { const SetNodeData* rightNode = nodeFromIndex(node->rightNode()); node = rightNode; } } return false; } uint SetRepositoryAlgorithms::set_subtract(uint firstNode, uint secondNode, const SetNodeData* first, const SetNodeData* second, uchar splitBit) { if(firstNode == secondNode) return 0; if(first->start() >= second->end() || second->start() >= first->end()) return firstNode; //The ranges of first and second do intersect uint firstStart = first->start(), firstEnd = first->end(), secondStart = second->start(), secondEnd = second->end(); uint newStart = firstStart < secondStart ? firstStart : secondStart; uint newEnd = firstEnd > secondEnd ? firstEnd : secondEnd; //Compute the split-position for the resulting merged node uint splitPosition = splitPositionForRange(newStart, newEnd, splitBit); //Since the ranges overlap, we can be sure that either first or second contain splitPosition. //The node that contains it, will also be split by it. if(splitPosition > firstStart && splitPosition < firstEnd && splitPosition > secondStart && splitPosition < secondEnd) { //The split-position intersect with both first and second. Continue the subtract on both sides of the split-position, and merge it. uint firstLeftNode = first->leftNode(); uint firstRightNode = first->rightNode(); uint secondLeftNode = second->leftNode(); uint secondRightNode = second->rightNode(); const SetNodeData* firstLeft = repository.itemFromIndex(firstLeftNode); const SetNodeData* firstRight = repository.itemFromIndex(firstRightNode); const SetNodeData* secondLeft = repository.itemFromIndex(secondLeftNode); const SetNodeData* secondRight = repository.itemFromIndex(secondRightNode); Q_ASSERT(splitPosition >= firstLeft->end() && splitPosition <= firstRight->start()); Q_ASSERT(splitPosition >= secondLeft->end() && splitPosition <= secondRight->start()); uint newLeftNode = set_subtract(firstLeftNode, secondLeftNode, firstLeft, secondLeft, splitBit); uint newRightNode = set_subtract(firstRightNode, secondRightNode, firstRight, secondRight, splitBit); if(newLeftNode && newRightNode) return createSetFromNodes(newLeftNode, newRightNode); else if(newLeftNode) return newLeftNode; else return newRightNode; }else if(splitPosition > firstStart && splitPosition < firstEnd) { // Q_ASSERT(splitPosition >= firstLeft->end() && splitPosition <= firstRight->start()); uint firstLeftNode = first->leftNode(); uint firstRightNode = first->rightNode(); const SetNodeData* firstLeft = repository.itemFromIndex(firstLeftNode); const SetNodeData* firstRight = repository.itemFromIndex(firstRightNode); //splitPosition does not intersect second. That means that second is completely on one side of it. //So we only need to subtract that side of first with second. uint newLeftNode = firstLeftNode, newRightNode = firstRightNode; if(secondEnd <= splitPosition) { newLeftNode = set_subtract(firstLeftNode, secondNode, firstLeft, second, splitBit); }else{ Q_ASSERT(secondStart >= splitPosition); newRightNode = set_subtract(firstRightNode, secondNode, firstRight, second, splitBit); } if(newLeftNode && newRightNode) return createSetFromNodes(newLeftNode, newRightNode); else if(newLeftNode) return newLeftNode; else return newRightNode; }else if(splitPosition > secondStart && splitPosition < secondEnd) { uint secondLeftNode = second->leftNode(); uint secondRightNode = second->rightNode(); const SetNodeData* secondLeft = repository.itemFromIndex(secondLeftNode); const SetNodeData* secondRight = repository.itemFromIndex(secondRightNode); Q_ASSERT(splitPosition >= secondLeft->end() && splitPosition <= secondRight->start()); if(firstEnd <= splitPosition) { return set_subtract(firstNode, secondLeftNode, first, secondLeft, splitBit); }else{ Q_ASSERT(firstStart >= splitPosition); return set_subtract(firstNode, secondRightNode, first, secondRight, splitBit); } }else{ //We would have stopped earlier of first and second don't intersect Q_ASSERT(0); return 0; } Q_ASSERT(0); } Set BasicSetRepository::createSetFromIndices(const std::vector& indices) { QMutexLocker lock(m_mutex); if(indices.empty()) return Set(); SetRepositoryAlgorithms alg(dataRepository, this); return Set(alg.setForIndices(indices.begin(), indices.end()), this); } Set BasicSetRepository::createSet(Index i) { QMutexLocker lock(m_mutex); SetNodeData data(i, i+1); return Set(dataRepository.index( SetNodeDataRequest(&data, dataRepository, this) ), this); } Set BasicSetRepository::createSet(const std::set& indices) { if(indices.empty()) return Set(); QMutexLocker lock(m_mutex); std::vector indicesVector; indicesVector.reserve(indices.size()); for( std::set::const_iterator it = indices.begin(); it != indices.end(); ++it ) indicesVector.push_back(*it); return createSetFromIndices(indicesVector); } BasicSetRepository::BasicSetRepository(QString name, KDevelop::ItemRepositoryRegistry* registry, bool delayedDeletion) : d(new Private(name)), dataRepository(this, name, registry), m_mutex(0), m_delayedDeletion(delayedDeletion) { m_mutex = dataRepository.mutex(); } struct StatisticsVisitor { StatisticsVisitor(const SetDataRepository& _rep) : nodeCount(0), badSplitNodeCount(0), zeroRefCountNodes(0), rep(_rep) { } bool operator() (const SetNodeData* item) { if(item->m_refCount == 0) ++zeroRefCountNodes; ++nodeCount; uint split = splitPositionForRange(item->start(), item->end()); if(item->hasSlaves()) if(split < rep.itemFromIndex(item->leftNode())->end() || split > rep.itemFromIndex(item->rightNode())->start()) ++badSplitNodeCount; return true; } uint nodeCount; uint badSplitNodeCount; uint zeroRefCountNodes; const SetDataRepository& rep; }; void BasicSetRepository::printStatistics() const { StatisticsVisitor stats(dataRepository); dataRepository.visitAllItems(stats); kDebug() << "count of nodes:" << stats.nodeCount << "count of nodes with bad split:" << stats.badSplitNodeCount << "count of nodes with zero reference-count:" << stats.zeroRefCountNodes; } BasicSetRepository::~BasicSetRepository() { delete d; } void BasicSetRepository::itemRemovedFromSets(uint /*index*/) { } void BasicSetRepository::itemAddedToSets(uint /*index*/) { } ////////////Set convenience functions////////////////// bool Set::contains(Index index) const { if(!m_tree || !m_repository) return false; QMutexLocker lock(m_repository->m_mutex); SetRepositoryAlgorithms alg(m_repository->dataRepository, m_repository); return alg.set_contains(m_repository->dataRepository.itemFromIndex(m_tree), index); } Set Set::operator +(const Set& first) const { if(!first.m_tree) return *this; else if(!m_tree || !m_repository) return first; Q_ASSERT(m_repository == first.m_repository); QMutexLocker lock(m_repository->m_mutex); SetRepositoryAlgorithms alg(m_repository->dataRepository, m_repository); uint retNode = alg.set_union(m_tree, first.m_tree, m_repository->dataRepository.itemFromIndex(m_tree), m_repository->dataRepository.itemFromIndex(first.m_tree)); ifDebug(alg.check(retNode)); return Set(retNode, m_repository); } Set& Set::operator +=(const Set& first) { if(!first.m_tree) return *this; else if(!m_tree || !m_repository) { m_tree = first.m_tree; m_repository = first.m_repository; return *this; } QMutexLocker lock(m_repository->m_mutex); SetRepositoryAlgorithms alg(m_repository->dataRepository, m_repository); m_tree = alg.set_union(m_tree, first.m_tree, m_repository->dataRepository.itemFromIndex(m_tree), m_repository->dataRepository.itemFromIndex(first.m_tree)); ifDebug(alg.check(m_tree)); return *this; } Set Set::operator &(const Set& first) const { if(!first.m_tree || !m_tree) return Set(); Q_ASSERT(m_repository); QMutexLocker lock(m_repository->m_mutex); SetRepositoryAlgorithms alg(m_repository->dataRepository, m_repository); Set ret( alg.set_intersect(m_tree, first.m_tree, m_repository->dataRepository.itemFromIndex(m_tree), m_repository->dataRepository.itemFromIndex(first.m_tree)), m_repository ); ifDebug(alg.check(ret.m_tree)); return ret; } Set& Set::operator &=(const Set& first) { if(!first.m_tree || !m_tree) { m_tree = 0; return *this; } Q_ASSERT(m_repository); QMutexLocker lock(m_repository->m_mutex); SetRepositoryAlgorithms alg(m_repository->dataRepository, m_repository); m_tree = alg.set_intersect(m_tree, first.m_tree, m_repository->dataRepository.itemFromIndex(m_tree), m_repository->dataRepository.itemFromIndex(first.m_tree)); ifDebug(alg.check(m_tree)); return *this; } Set Set::operator -(const Set& rhs) const { if(!m_tree || !rhs.m_tree) return *this; Q_ASSERT(m_repository); QMutexLocker lock(m_repository->m_mutex); SetRepositoryAlgorithms alg(m_repository->dataRepository, m_repository); Set ret( alg.set_subtract(m_tree, rhs.m_tree, m_repository->dataRepository.itemFromIndex(m_tree), m_repository->dataRepository.itemFromIndex(rhs.m_tree)), m_repository ); ifDebug( alg.check(ret.m_tree) ); return ret; } Set& Set::operator -=(const Set& rhs) { if(!m_tree || !rhs.m_tree) return *this; Q_ASSERT(m_repository); QMutexLocker lock(m_repository->m_mutex); SetRepositoryAlgorithms alg(m_repository->dataRepository, m_repository); m_tree = alg.set_subtract(m_tree, rhs.m_tree, m_repository->dataRepository.itemFromIndex(m_tree), m_repository->dataRepository.itemFromIndex(rhs.m_tree)); ifDebug(alg.check(m_tree)); return *this; } BasicSetRepository* Set::repository() const { return m_repository; } void Set::staticRef() { if(!m_tree) return; QMutexLocker lock(m_repository->m_mutex); SetNodeData* data = m_repository->dataRepository.dynamicItemFromIndexSimple(m_tree); ++data->m_refCount; } ///Mutex must be locked void Set::unrefNode(uint current) { SetNodeData* data = m_repository->dataRepository.dynamicItemFromIndexSimple(current); Q_ASSERT(data->m_refCount); --data->m_refCount; if(!m_repository->delayedDeletion()) { if(data->m_refCount == 0) { if(data->leftNode()){ Q_ASSERT(data->rightNode()); unrefNode(data->rightNode()); unrefNode(data->leftNode()); }else { //Deleting a leaf Q_ASSERT(data->end() - data->start() == 1); m_repository->itemRemovedFromSets(data->start()); } m_repository->dataRepository.deleteItem(current); } } } ///Decrease the static reference-count of this set by one. This set must have a reference-count > 1. ///If this set reaches the reference-count zero, it will be deleted, and all sub-nodes that also reach the reference-count zero ///will be deleted as well. @warning Either protect ALL your sets by using reference-counting, or don't use it at all. void Set::staticUnref() { if(!m_tree) return; QMutexLocker lock(m_repository->m_mutex); unrefNode(m_tree); } StringSetRepository::StringSetRepository(QString name) : Utils::BasicSetRepository(name) { } void StringSetRepository::itemRemovedFromSets(uint index) { ///Call the IndexedString destructor with enabled reference-counting KDevelop::IndexedString string = KDevelop::IndexedString::fromIndex(index); KDevelop::enableDUChainReferenceCounting(&string, sizeof(KDevelop::IndexedString)); string.~IndexedString(); //Call destructor with enabled reference-counting KDevelop::disableDUChainReferenceCounting(&string); } void StringSetRepository::itemAddedToSets(uint index) { ///Call the IndexedString constructor with enabled reference-counting KDevelop::IndexedString string = KDevelop::IndexedString::fromIndex(index); char data[sizeof(KDevelop::IndexedString)]; KDevelop::enableDUChainReferenceCounting(data, sizeof(KDevelop::IndexedString)); new (data) KDevelop::IndexedString(string); //Call constructor with enabled reference-counting KDevelop::disableDUChainReferenceCounting(data); } }