katie/src/gui/painting/qdrawhelper.cpp
Ivailo Monev 6bebf3ae90 Q_CC_MSVC conditionals removal
Signed-off-by: Ivailo Monev <xakepa10@laimg.moc>
2016-09-11 19:22:13 +00:00

6526 lines
212 KiB
C++

/****************************************************************************
**
** Copyright (C) 2015 The Qt Company Ltd.
** Contact: http://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see http://www.qt.io/terms-conditions. For further
** information use the contact form at http://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 or version 3 as published by the Free
** Software Foundation and appearing in the file LICENSE.LGPLv21 and
** LICENSE.LGPLv3 included in the packaging of this file. Please review the
** following information to ensure the GNU Lesser General Public License
** requirements will be met: https://www.gnu.org/licenses/lgpl.html and
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** As a special exception, The Qt Company gives you certain additional
** rights. These rights are described in The Qt Company LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3.0 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU General Public License version 3.0 requirements will be
** met: http://www.gnu.org/copyleft/gpl.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <qdrawhelper_p.h>
#include <qpaintengine_raster_p.h>
#include <qpainter_p.h>
#include <qmath_p.h>
#include <qmath.h>
QT_BEGIN_NAMESPACE
#define MASK(src, a) src = BYTE_MUL(src, a)
/*
constants and structures
*/
enum {
fixed_scale = 1 << 16,
half_point = 1 << 15
};
// must be multiple of 4 for easier SIMD implementations
static const int buffer_size = 2048;
/*
Destination fetch. This is simple as we don't have to do bounds checks or
transformations
*/
static uint * QT_FASTCALL destFetchMono(uint *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length)
{
uchar *data = (uchar *)rasterBuffer->scanLine(y);
uint *start = buffer;
const uint *end = buffer + length;
while (buffer < end) {
*buffer = data[x>>3] & (0x80 >> (x & 7)) ? rasterBuffer->destColor1 : rasterBuffer->destColor0;
++buffer;
++x;
}
return start;
}
static uint * QT_FASTCALL destFetchMonoLsb(uint *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length)
{
uchar *data = (uchar *)rasterBuffer->scanLine(y);
uint *start = buffer;
const uint *end = buffer + length;
while (buffer < end) {
*buffer = data[x>>3] & (0x1 << (x & 7)) ? rasterBuffer->destColor1 : rasterBuffer->destColor0;
++buffer;
++x;
}
return start;
}
static uint * QT_FASTCALL destFetchARGB32(uint *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length)
{
const uint *data = (const uint *)rasterBuffer->scanLine(y) + x;
for (int i = 0; i < length; ++i)
buffer[i] = PREMUL(data[i]);
return buffer;
}
static uint * QT_FASTCALL destFetchARGB32P(uint *, QRasterBuffer *rasterBuffer, int x, int y, int)
{
return (uint *)rasterBuffer->scanLine(y) + x;
}
static uint * QT_FASTCALL destFetchRGB16(uint *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length)
{
const ushort *data = (const ushort *)rasterBuffer->scanLine(y) + x;
for (int i = 0; i < length; ++i)
buffer[i] = qConvertRgb16To32(data[i]);
return buffer;
}
template <class DST>
Q_STATIC_TEMPLATE_FUNCTION uint * QT_FASTCALL destFetch(uint *buffer, QRasterBuffer *rasterBuffer,
int x, int y, int length)
{
const DST *src = reinterpret_cast<DST*>(rasterBuffer->scanLine(y)) + x;
quint32 *dest = reinterpret_cast<quint32*>(buffer);
while (length--)
*dest++ = *src++;
return buffer;
}
# define SPANFUNC_POINTER_DESTFETCH(Arg) destFetch<Arg>
static DestFetchProc destFetchProc[QImage::NImageFormats] =
{
0, // Format_Invalid
destFetchMono, // Format_Mono,
destFetchMonoLsb, // Format_MonoLSB
0, // Format_Indexed8
destFetchARGB32P, // Format_RGB32
destFetchARGB32, // Format_ARGB32,
destFetchARGB32P, // Format_ARGB32_Premultiplied
destFetchRGB16, // Format_RGB16
SPANFUNC_POINTER_DESTFETCH(qargb8565), // Format_ARGB8565_Premultiplied
SPANFUNC_POINTER_DESTFETCH(qrgb666), // Format_RGB666
SPANFUNC_POINTER_DESTFETCH(qargb6666), // Format_ARGB6666_Premultiplied
SPANFUNC_POINTER_DESTFETCH(qrgb555), // Format_RGB555
SPANFUNC_POINTER_DESTFETCH(qargb8555), // Format_ARGB8555_Premultiplied
SPANFUNC_POINTER_DESTFETCH(qrgb888), // Format_RGB888
SPANFUNC_POINTER_DESTFETCH(qrgb444), // Format_RGB444
SPANFUNC_POINTER_DESTFETCH(qargb4444) // Format_ARGB4444_Premultiplied
};
/*
Returns the color in the mono destination color table
that is the "nearest" to /color/.
*/
static inline QRgb findNearestColor(QRgb color, QRasterBuffer *rbuf)
{
QRgb color_0 = PREMUL(rbuf->destColor0);
QRgb color_1 = PREMUL(rbuf->destColor1);
color = PREMUL(color);
int r = qRed(color);
int g = qGreen(color);
int b = qBlue(color);
int rx, gx, bx;
int dist_0, dist_1;
rx = r - qRed(color_0);
gx = g - qGreen(color_0);
bx = b - qBlue(color_0);
dist_0 = rx*rx + gx*gx + bx*bx;
rx = r - qRed(color_1);
gx = g - qGreen(color_1);
bx = b - qBlue(color_1);
dist_1 = rx*rx + gx*gx + bx*bx;
if (dist_0 < dist_1)
return color_0;
return color_1;
}
/*
Destination store.
*/
static void QT_FASTCALL destStoreMono(QRasterBuffer *rasterBuffer, int x, int y, const uint *buffer, int length)
{
uchar *data = (uchar *)rasterBuffer->scanLine(y);
if (rasterBuffer->monoDestinationWithClut) {
for (int i = 0; i < length; ++i) {
if (buffer[i] == rasterBuffer->destColor0) {
data[x >> 3] &= ~(0x80 >> (x & 7));
} else if (buffer[i] == rasterBuffer->destColor1) {
data[x >> 3] |= 0x80 >> (x & 7);
} else if (findNearestColor(buffer[i], rasterBuffer) == rasterBuffer->destColor0) {
data[x >> 3] &= ~(0x80 >> (x & 7));
} else {
data[x >> 3] |= 0x80 >> (x & 7);
}
++x;
}
} else {
for (int i = 0; i < length; ++i) {
if (qGray(buffer[i]) < int(qt_bayer_matrix[y & 15][x & 15]))
data[x >> 3] |= 0x80 >> (x & 7);
else
data[x >> 3] &= ~(0x80 >> (x & 7));
++x;
}
}
}
static void QT_FASTCALL destStoreMonoLsb(QRasterBuffer *rasterBuffer, int x, int y, const uint *buffer, int length)
{
uchar *data = (uchar *)rasterBuffer->scanLine(y);
if (rasterBuffer->monoDestinationWithClut) {
for (int i = 0; i < length; ++i) {
if (buffer[i] == rasterBuffer->destColor0) {
data[x >> 3] &= ~(1 << (x & 7));
} else if (buffer[i] == rasterBuffer->destColor1) {
data[x >> 3] |= 1 << (x & 7);
} else if (findNearestColor(buffer[i], rasterBuffer) == rasterBuffer->destColor0) {
data[x >> 3] &= ~(1 << (x & 7));
} else {
data[x >> 3] |= 1 << (x & 7);
}
++x;
}
} else {
for (int i = 0; i < length; ++i) {
if (qGray(buffer[i]) < int(qt_bayer_matrix[y & 15][x & 15]))
data[x >> 3] |= 1 << (x & 7);
else
data[x >> 3] &= ~(1 << (x & 7));
++x;
}
}
}
static void QT_FASTCALL destStoreARGB32(QRasterBuffer *rasterBuffer, int x, int y, const uint *buffer, int length)
{
uint *data = (uint *)rasterBuffer->scanLine(y) + x;
for (int i = 0; i < length; ++i) {
int p = buffer[i];
int alpha = qAlpha(p);
if (alpha == 255)
data[i] = p;
else if (alpha == 0)
data[i] = 0;
else {
int inv_alpha = 0xff0000/qAlpha(buffer[i]);
data[i] = (p & 0xff000000)
| ((qRed(p)*inv_alpha) & 0xff0000)
| (((qGreen(p)*inv_alpha) >> 8) & 0xff00)
| ((qBlue(p)*inv_alpha) >> 16);
}
}
}
static void QT_FASTCALL destStoreRGB16(QRasterBuffer *rasterBuffer, int x, int y, const uint *buffer, int length)
{
quint16 *data = (quint16*)rasterBuffer->scanLine(y) + x;
qt_memconvert<quint16, quint32>(data, buffer, length);
}
template <class DST>
Q_STATIC_TEMPLATE_FUNCTION void QT_FASTCALL destStore(QRasterBuffer *rasterBuffer,
int x, int y,
const uint *buffer, int length)
{
DST *dest = reinterpret_cast<DST*>(rasterBuffer->scanLine(y)) + x;
const quint32p *src = reinterpret_cast<const quint32p*>(buffer);
while (length--)
*dest++ = DST(*src++);
}
# define SPANFUNC_POINTER_DESTSTORE(DEST) destStore<DEST>
static DestStoreProc destStoreProc[QImage::NImageFormats] =
{
0, // Format_Invalid
destStoreMono, // Format_Mono,
destStoreMonoLsb, // Format_MonoLSB
0, // Format_Indexed8
0, // Format_RGB32
destStoreARGB32, // Format_ARGB32,
0, // Format_ARGB32_Premultiplied
destStoreRGB16, // Format_RGB16
SPANFUNC_POINTER_DESTSTORE(qargb8565), // Format_ARGB8565_Premultiplied
SPANFUNC_POINTER_DESTSTORE(qrgb666), // Format_RGB666
SPANFUNC_POINTER_DESTSTORE(qargb6666), // Format_ARGB6666_Premultiplied
SPANFUNC_POINTER_DESTSTORE(qrgb555), // Format_RGB555
SPANFUNC_POINTER_DESTSTORE(qargb8555), // Format_ARGB8555_Premultiplied
SPANFUNC_POINTER_DESTSTORE(qrgb888), // Format_RGB888
SPANFUNC_POINTER_DESTSTORE(qrgb444), // Format_RGB444
SPANFUNC_POINTER_DESTSTORE(qargb4444) // Format_ARGB4444_Premultiplied
};
/*
Source fetches
This is a bit more complicated, as we need several fetch routines for every surface type
We need 5 fetch methods per surface type:
untransformed
transformed (tiled and not tiled)
transformed bilinear (tiled and not tiled)
We don't need bounds checks for untransformed, but we need them for the other ones.
The generic implementation does pixel by pixel fetches
*/
template <QImage::Format format>
Q_STATIC_TEMPLATE_FUNCTION uint QT_FASTCALL qt_fetchPixel(const uchar *scanLine, int x, const QVector<QRgb> *rgb);
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_Mono>(const uchar *scanLine,
int x, const QVector<QRgb> *rgb)
{
bool pixel = scanLine[x>>3] & (0x80 >> (x & 7));
if (rgb) return PREMUL(rgb->at(pixel ? 1 : 0));
return pixel ? 0xff000000 : 0xffffffff;
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_MonoLSB>(const uchar *scanLine,
int x, const QVector<QRgb> *rgb)
{
bool pixel = scanLine[x>>3] & (0x1 << (x & 7));
if (rgb) return PREMUL(rgb->at(pixel ? 1 : 0));
return pixel ? 0xff000000 : 0xffffffff;
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_Indexed8>(const uchar *scanLine,
int x, const QVector<QRgb> *rgb)
{
return PREMUL(rgb->at(scanLine[x]));
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_ARGB32>(const uchar *scanLine,
int x, const QVector<QRgb> *)
{
return PREMUL(((const uint *)scanLine)[x]);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_ARGB32_Premultiplied>(const uchar *scanLine,
int x, const QVector<QRgb> *)
{
return ((const uint *)scanLine)[x];
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_RGB16>(const uchar *scanLine,
int x, const QVector<QRgb> *)
{
return qConvertRgb16To32(((const ushort *)scanLine)[x]);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_ARGB8565_Premultiplied>(const uchar *scanLine,
int x,
const QVector<QRgb> *)
{
const qargb8565 color = reinterpret_cast<const qargb8565*>(scanLine)[x];
return qt_colorConvert<quint32, qargb8565>(color, 0);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_RGB666>(const uchar *scanLine,
int x,
const QVector<QRgb> *)
{
const qrgb666 color = reinterpret_cast<const qrgb666*>(scanLine)[x];
return qt_colorConvert<quint32, qrgb666>(color, 0);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_ARGB6666_Premultiplied>(const uchar *scanLine,
int x,
const QVector<QRgb> *)
{
const qargb6666 color = reinterpret_cast<const qargb6666*>(scanLine)[x];
return qt_colorConvert<quint32, qargb6666>(color, 0);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_RGB555>(const uchar *scanLine,
int x,
const QVector<QRgb> *)
{
const qrgb555 color = reinterpret_cast<const qrgb555*>(scanLine)[x];
return qt_colorConvert<quint32, qrgb555>(color, 0);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_ARGB8555_Premultiplied>(const uchar *scanLine,
int x,
const QVector<QRgb> *)
{
const qargb8555 color = reinterpret_cast<const qargb8555*>(scanLine)[x];
return qt_colorConvert<quint32, qargb8555>(color, 0);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_RGB888>(const uchar *scanLine,
int x,
const QVector<QRgb> *)
{
const qrgb888 color = reinterpret_cast<const qrgb888*>(scanLine)[x];
return qt_colorConvert<quint32, qrgb888>(color, 0);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_RGB444>(const uchar *scanLine,
int x,
const QVector<QRgb> *)
{
const qrgb444 color = reinterpret_cast<const qrgb444*>(scanLine)[x];
return qt_colorConvert<quint32, qrgb444>(color, 0);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_ARGB4444_Premultiplied>(const uchar *scanLine,
int x,
const QVector<QRgb> *)
{
const qargb4444 color = reinterpret_cast<const qargb4444*>(scanLine)[x];
return qt_colorConvert<quint32, qargb4444>(color, 0);
}
template<>
uint QT_FASTCALL qt_fetchPixel<QImage::Format_Invalid>(const uchar *,
int ,
const QVector<QRgb> *)
{
return 0;
}
typedef uint (QT_FASTCALL *FetchPixelProc)(const uchar *scanLine, int x, const QVector<QRgb> *);
#define SPANFUNC_POINTER_FETCHPIXEL(Arg) qt_fetchPixel<QImage::Arg>
static const FetchPixelProc fetchPixelProc[QImage::NImageFormats] =
{
0,
SPANFUNC_POINTER_FETCHPIXEL(Format_Mono),
SPANFUNC_POINTER_FETCHPIXEL(Format_MonoLSB),
SPANFUNC_POINTER_FETCHPIXEL(Format_Indexed8),
SPANFUNC_POINTER_FETCHPIXEL(Format_ARGB32_Premultiplied),
SPANFUNC_POINTER_FETCHPIXEL(Format_ARGB32),
SPANFUNC_POINTER_FETCHPIXEL(Format_ARGB32_Premultiplied),
SPANFUNC_POINTER_FETCHPIXEL(Format_RGB16),
SPANFUNC_POINTER_FETCHPIXEL(Format_ARGB8565_Premultiplied),
SPANFUNC_POINTER_FETCHPIXEL(Format_RGB666),
SPANFUNC_POINTER_FETCHPIXEL(Format_ARGB6666_Premultiplied),
SPANFUNC_POINTER_FETCHPIXEL(Format_RGB555),
SPANFUNC_POINTER_FETCHPIXEL(Format_ARGB8555_Premultiplied),
SPANFUNC_POINTER_FETCHPIXEL(Format_RGB888),
SPANFUNC_POINTER_FETCHPIXEL(Format_RGB444),
SPANFUNC_POINTER_FETCHPIXEL(Format_ARGB4444_Premultiplied)
};
enum TextureBlendType {
BlendUntransformed,
BlendTiled,
BlendTransformed,
BlendTransformedTiled,
BlendTransformedBilinear,
BlendTransformedBilinearTiled,
NBlendTypes
};
template <QImage::Format format>
Q_STATIC_TEMPLATE_FUNCTION const uint * QT_FASTCALL qt_fetchUntransformed(uint *buffer, const Operator *, const QSpanData *data,
int y, int x, int length)
{
const uchar *scanLine = data->texture.scanLine(y);
for (int i = 0; i < length; ++i)
buffer[i] = qt_fetchPixel<format>(scanLine, x + i, data->texture.colorTable);
return buffer;
}
template <>
const uint * QT_FASTCALL
qt_fetchUntransformed<QImage::Format_ARGB32_Premultiplied>(uint *, const Operator *,
const QSpanData *data,
int y, int x, int)
{
const uchar *scanLine = data->texture.scanLine(y);
return ((const uint *)scanLine) + x;
}
template<TextureBlendType blendType> /* either BlendTransformed or BlendTransformedTiled */
Q_STATIC_TEMPLATE_FUNCTION
const uint * QT_FASTCALL fetchTransformed(uint *buffer, const Operator *, const QSpanData *data,
int y, int x, int length)
{
FetchPixelProc fetch = fetchPixelProc[data->texture.format];
int image_width = data->texture.width;
int image_height = data->texture.height;
const qreal cx = x + qreal(0.5);
const qreal cy = y + qreal(0.5);
const uint *end = buffer + length;
uint *b = buffer;
if (data->fast_matrix) {
// The increment pr x in the scanline
int fdx = (int)(data->m11 * fixed_scale);
int fdy = (int)(data->m12 * fixed_scale);
int fx = int((data->m21 * cy
+ data->m11 * cx + data->dx) * fixed_scale);
int fy = int((data->m22 * cy
+ data->m12 * cx + data->dy) * fixed_scale);
while (b < end) {
int px = fx >> 16;
int py = fy >> 16;
if (blendType == BlendTransformedTiled) {
px %= image_width;
py %= image_height;
if (px < 0) px += image_width;
if (py < 0) py += image_height;
const uchar *scanLine = data->texture.scanLine(py);
*b = fetch(scanLine, px, data->texture.colorTable);
} else {
if ((px < 0) || (px >= image_width)
|| (py < 0) || (py >= image_height)) {
*b = uint(0);
} else {
const uchar *scanLine = data->texture.scanLine(py);
*b = fetch(scanLine, px, data->texture.colorTable);
}
}
fx += fdx;
fy += fdy;
++b;
}
} else {
const qreal fdx = data->m11;
const qreal fdy = data->m12;
const qreal fdw = data->m13;
qreal fx = data->m21 * cy + data->m11 * cx + data->dx;
qreal fy = data->m22 * cy + data->m12 * cx + data->dy;
qreal fw = data->m23 * cy + data->m13 * cx + data->m33;
while (b < end) {
const qreal iw = fw == 0 ? 1 : 1 / fw;
const qreal tx = fx * iw;
const qreal ty = fy * iw;
int px = int(tx) - (tx < 0);
int py = int(ty) - (ty < 0);
if (blendType == BlendTransformedTiled) {
px %= image_width;
py %= image_height;
if (px < 0) px += image_width;
if (py < 0) py += image_height;
const uchar *scanLine = data->texture.scanLine(py);
*b = fetch(scanLine, px, data->texture.colorTable);
} else {
if ((px < 0) || (px >= image_width)
|| (py < 0) || (py >= image_height)) {
*b = uint(0);
} else {
const uchar *scanLine = data->texture.scanLine(py);
*b = fetch(scanLine, px, data->texture.colorTable);
}
}
fx += fdx;
fy += fdy;
fw += fdw;
//force increment to avoid /0
if (!fw) {
fw += fdw;
}
++b;
}
}
return buffer;
}
/** \internal
interpolate 4 argb pixels with the distx and disty factor.
distx and disty bust be between 0 and 16
*/
static inline uint interpolate_4_pixels_16(uint tl, uint tr, uint bl, uint br, int distx, int disty)
{
uint distxy = distx * disty;
//idistx * disty = (16-distx) * disty = 16*disty - distxy
//idistx * idisty = (16-distx) * (16-disty) = 16*16 - 16*distx -16*dity + distxy
uint tlrb = (tl & 0x00ff00ff) * (16*16 - 16*distx - 16*disty + distxy);
uint tlag = ((tl & 0xff00ff00) >> 8) * (16*16 - 16*distx - 16*disty + distxy);
uint trrb = ((tr & 0x00ff00ff) * (distx*16 - distxy));
uint trag = (((tr & 0xff00ff00) >> 8) * (distx*16 - distxy));
uint blrb = ((bl & 0x00ff00ff) * (disty*16 - distxy));
uint blag = (((bl & 0xff00ff00) >> 8) * (disty*16 - distxy));
uint brrb = ((br & 0x00ff00ff) * (distxy));
uint brag = (((br & 0xff00ff00) >> 8) * (distxy));
return (((tlrb + trrb + blrb + brrb) >> 8) & 0x00ff00ff) | ((tlag + trag + blag + brag) & 0xff00ff00);
}
template<TextureBlendType blendType>
Q_STATIC_TEMPLATE_FUNCTION inline void fetchTransformedBilinear_pixelBounds(int max, int l1, int l2, int &v1, int &v2)
{
if (blendType == BlendTransformedBilinearTiled) {
v1 %= max;
if (v1 < 0) v1 += max;
v2 = v1 + 1;
v2 %= max;
} else {
if (v1 < l1) {
v2 = v1 = l1;
} else if (v1 >= l2) {
v2 = v1 = l2;
} else {
v2 = v1 + 1;
}
}
Q_ASSERT(v1 >= 0 && v1 < max);
Q_ASSERT(v2 >= 0 && v2 < max);
}
template<TextureBlendType blendType, QImage::Format format> /* blendType = BlendTransformedBilinear or BlendTransformedBilinearTiled */
Q_STATIC_TEMPLATE_FUNCTION
const uint * QT_FASTCALL fetchTransformedBilinear(uint *buffer, const Operator *, const QSpanData *data,
int y, int x, int length)
{
#ifdef Q_CC_RVCT // needed to avoid compiler crash in RVCT 2.2
FetchPixelProc fetch;
if (format != QImage::Format_Invalid)
fetch = qt_fetchPixel<format>;
else
fetch = fetchPixelProc[data->texture.format];
#else
FetchPixelProc fetch = (format != QImage::Format_Invalid) ? FetchPixelProc(qt_fetchPixel<format>) : fetchPixelProc[data->texture.format];
#endif
int image_width = data->texture.width;
int image_height = data->texture.height;
int image_x1 = data->texture.x1;
int image_y1 = data->texture.y1;
int image_x2 = data->texture.x2 - 1;
int image_y2 = data->texture.y2 - 1;
const qreal cx = x + qreal(0.5);
const qreal cy = y + qreal(0.5);
uint *end = buffer + length;
uint *b = buffer;
if (data->fast_matrix) {
// The increment pr x in the scanline
int fdx = (int)(data->m11 * fixed_scale);
int fdy = (int)(data->m12 * fixed_scale);
int fx = int((data->m21 * cy
+ data->m11 * cx + data->dx) * fixed_scale);
int fy = int((data->m22 * cy
+ data->m12 * cx + data->dy) * fixed_scale);
fx -= half_point;
fy -= half_point;
if (fdy == 0) { //simple scale, no rotation
int y1 = (fy >> 16);
int y2;
fetchTransformedBilinear_pixelBounds<blendType>(image_height, image_y1, image_y2, y1, y2);
const uchar *s1 = data->texture.scanLine(y1);
const uchar *s2 = data->texture.scanLine(y2);
if (fdx <= fixed_scale && fdx > 0) { // scale up on X
int disty = (fy & 0x0000ffff) >> 8;
int idisty = 256 - disty;
int x = fx >> 16;
// The idea is first to do the interpolation between the row s1 and the row s2
// into an intermediate buffer, then we interpolate between two pixel of this buffer.
// intermediate_buffer[0] is a buffer of red-blue component of the pixel, in the form 0x00RR00BB
// intermediate_buffer[1] is the alpha-green component of the pixel, in the form 0x00AA00GG
quint32 intermediate_buffer[2][buffer_size + 2];
// count is the size used in the intermediate_buffer.
int count = qCeil(length * data->m11) + 2; //+1 for the last pixel to interpolate with, and +1 for rounding errors.
Q_ASSERT(count <= buffer_size + 2); //length is supposed to be <= buffer_size and data->m11 < 1 in this case
int f = 0;
int lim = count;
if (blendType == BlendTransformedBilinearTiled) {
x %= image_width;
if (x < 0) x += image_width;
} else {
lim = qMin(count, image_x2-x+1);
if (x < image_x1) {
Q_ASSERT(x <= image_x2);
uint t = fetch(s1, image_x1, data->texture.colorTable);
uint b = fetch(s2, image_x1, data->texture.colorTable);
quint32 rb = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff;
quint32 ag = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff;
do {
intermediate_buffer[0][f] = rb;
intermediate_buffer[1][f] = ag;
f++;
x++;
} while (x < image_x1 && f < lim);
}
}
for (; f < count; f++) { // Same as above but without sse2
if (blendType == BlendTransformedBilinearTiled) {
if (x >= image_width) x -= image_width;
} else {
x = qMin(x, image_x2);
}
uint t = fetch(s1, x, data->texture.colorTable);
uint b = fetch(s2, x, data->texture.colorTable);
intermediate_buffer[0][f] = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff;
intermediate_buffer[1][f] = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff;
x++;
}
// Now interpolate the values from the intermediate_buffer to get the final result.
fx &= fixed_scale - 1;
Q_ASSERT((fx >> 16) == 0);
while (b < end) {
int x1 = (fx >> 16);
int x2 = x1 + 1;
Q_ASSERT(x1 >= 0);
Q_ASSERT(x2 < count);
int distx = (fx & 0x0000ffff) >> 8;
int idistx = 256 - distx;
int rb = ((intermediate_buffer[0][x1] * idistx + intermediate_buffer[0][x2] * distx) >> 8) & 0xff00ff;
int ag = (intermediate_buffer[1][x1] * idistx + intermediate_buffer[1][x2] * distx) & 0xff00ff00;
*b = rb | ag;
b++;
fx += fdx;
}
} else if ((fdx < 0 && fdx > -(fixed_scale / 8)) || fabs(data->m22) < (1./8.)) { // scale up more than 8x
int y1 = (fy >> 16);
int y2;
fetchTransformedBilinear_pixelBounds<blendType>(image_height, image_y1, image_y2, y1, y2);
const uchar *s1 = data->texture.scanLine(y1);
const uchar *s2 = data->texture.scanLine(y2);
int disty = (fy & 0x0000ffff) >> 8;
int idisty = 256 - disty;
while (b < end) {
int x1 = (fx >> 16);
int x2;
fetchTransformedBilinear_pixelBounds<blendType>(image_width, image_x1, image_x2, x1, x2);
uint tl = fetch(s1, x1, data->texture.colorTable);
uint tr = fetch(s1, x2, data->texture.colorTable);
uint bl = fetch(s2, x1, data->texture.colorTable);
uint br = fetch(s2, x2, data->texture.colorTable);
int distx = (fx & 0x0000ffff) >> 8;
int idistx = 256 - distx;
uint xtop = INTERPOLATE_PIXEL_256(tl, idistx, tr, distx);
uint xbot = INTERPOLATE_PIXEL_256(bl, idistx, br, distx);
*b = INTERPOLATE_PIXEL_256(xtop, idisty, xbot, disty);
fx += fdx;
++b;
}
} else { //scale down
int y1 = (fy >> 16);
int y2;
fetchTransformedBilinear_pixelBounds<blendType>(image_height, image_y1, image_y2, y1, y2);
const uchar *s1 = data->texture.scanLine(y1);
const uchar *s2 = data->texture.scanLine(y2);
int disty = (fy & 0x0000ffff) >> 12;
while (b < end) {
int x1 = (fx >> 16);
int x2;
fetchTransformedBilinear_pixelBounds<blendType>(image_width, image_x1, image_x2, x1, x2);
uint tl = fetch(s1, x1, data->texture.colorTable);
uint tr = fetch(s1, x2, data->texture.colorTable);
uint bl = fetch(s2, x1, data->texture.colorTable);
uint br = fetch(s2, x2, data->texture.colorTable);
int distx = (fx & 0x0000ffff) >> 12;
*b = interpolate_4_pixels_16(tl, tr, bl, br, distx, disty);
fx += fdx;
++b;
}
}
} else { //rotation
if (fabs(data->m11) > 8 || fabs(data->m22) > 8) {
//if we are zooming more than 8 times, we use 8bit precision for the position.
while (b < end) {
int x1 = (fx >> 16);
int x2;
int y1 = (fy >> 16);
int y2;
fetchTransformedBilinear_pixelBounds<blendType>(image_width, image_x1, image_x2, x1, x2);
fetchTransformedBilinear_pixelBounds<blendType>(image_height, image_y1, image_y2, y1, y2);
const uchar *s1 = data->texture.scanLine(y1);
const uchar *s2 = data->texture.scanLine(y2);
uint tl = fetch(s1, x1, data->texture.colorTable);
uint tr = fetch(s1, x2, data->texture.colorTable);
uint bl = fetch(s2, x1, data->texture.colorTable);
uint br = fetch(s2, x2, data->texture.colorTable);
int distx = (fx & 0x0000ffff) >> 8;
int disty = (fy & 0x0000ffff) >> 8;
int idistx = 256 - distx;
int idisty = 256 - disty;
uint xtop = INTERPOLATE_PIXEL_256(tl, idistx, tr, distx);
uint xbot = INTERPOLATE_PIXEL_256(bl, idistx, br, distx);
*b = INTERPOLATE_PIXEL_256(xtop, idisty, xbot, disty);
fx += fdx;
fy += fdy;
++b;
}
} else {
//we are zooming less than 8x, use 4bit precision
while (b < end) {
int x1 = (fx >> 16);
int x2;
int y1 = (fy >> 16);
int y2;
fetchTransformedBilinear_pixelBounds<blendType>(image_width, image_x1, image_x2, x1, x2);
fetchTransformedBilinear_pixelBounds<blendType>(image_height, image_y1, image_y2, y1, y2);
const uchar *s1 = data->texture.scanLine(y1);
const uchar *s2 = data->texture.scanLine(y2);
uint tl = fetch(s1, x1, data->texture.colorTable);
uint tr = fetch(s1, x2, data->texture.colorTable);
uint bl = fetch(s2, x1, data->texture.colorTable);
uint br = fetch(s2, x2, data->texture.colorTable);
int distx = (fx & 0x0000ffff) >> 12;
int disty = (fy & 0x0000ffff) >> 12;
*b = interpolate_4_pixels_16(tl, tr, bl, br, distx, disty);
fx += fdx;
fy += fdy;
++b;
}
}
}
} else {
const qreal fdx = data->m11;
const qreal fdy = data->m12;
const qreal fdw = data->m13;
qreal fx = data->m21 * cy + data->m11 * cx + data->dx;
qreal fy = data->m22 * cy + data->m12 * cx + data->dy;
qreal fw = data->m23 * cy + data->m13 * cx + data->m33;
while (b < end) {
const qreal iw = fw == 0 ? 1 : 1 / fw;
const qreal px = fx * iw - qreal(0.5);
const qreal py = fy * iw - qreal(0.5);
int x1 = int(px) - (px < 0);
int x2;
int y1 = int(py) - (py < 0);
int y2;
int distx = int((px - x1) * 256);
int disty = int((py - y1) * 256);
int idistx = 256 - distx;
int idisty = 256 - disty;
fetchTransformedBilinear_pixelBounds<blendType>(image_width, image_x1, image_x2, x1, x2);
fetchTransformedBilinear_pixelBounds<blendType>(image_height, image_y1, image_y2, y1, y2);
const uchar *s1 = data->texture.scanLine(y1);
const uchar *s2 = data->texture.scanLine(y2);
uint tl = fetch(s1, x1, data->texture.colorTable);
uint tr = fetch(s1, x2, data->texture.colorTable);
uint bl = fetch(s2, x1, data->texture.colorTable);
uint br = fetch(s2, x2, data->texture.colorTable);
uint xtop = INTERPOLATE_PIXEL_256(tl, idistx, tr, distx);
uint xbot = INTERPOLATE_PIXEL_256(bl, idistx, br, distx);
*b = INTERPOLATE_PIXEL_256(xtop, idisty, xbot, disty);
fx += fdx;
fy += fdy;
fw += fdw;
//force increment to avoid /0
if (!fw) {
fw += fdw;
}
++b;
}
}
return buffer;
}
#define SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Arg) qt_fetchUntransformed<QImage::Arg>
static const SourceFetchProc sourceFetch[NBlendTypes][QImage::NImageFormats] = {
// Untransformed
{
0, // Invalid
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_Mono), // Mono
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_MonoLSB), // MonoLsb
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_Indexed8), // Indexed8
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB32_Premultiplied), // RGB32
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB32), // ARGB32
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB32_Premultiplied), // ARGB32_Premultiplied
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB16), // RGB16
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB8565_Premultiplied),// ARGB8565_Premultiplied
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB666), // RGB666
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB6666_Premultiplied),// ARGB6666_Premultiplied
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB555), // RGB555
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB8555_Premultiplied),// ARGB8555_Premultiplied
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB888), // RGB888
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB444), // RGB444
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB4444_Premultiplied) // ARGB4444_Premultiplied
},
// Tiled
{
0, // Invalid
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_Mono), // Mono
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_MonoLSB), // MonoLsb
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_Indexed8), // Indexed8
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB32_Premultiplied), // RGB32
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB32), // ARGB32
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB32_Premultiplied), // ARGB32_Premultiplied
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB16), // RGB16
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB8565_Premultiplied),// ARGB8565_Premultiplied
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB666), // RGB666
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB6666_Premultiplied),// ARGB6666_Premultiplied
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB555), // RGB555
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB8555_Premultiplied),// ARGB8555_Premultiplied
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB888), // RGB888
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_RGB444), // RGB444
SPANFUNC_POINTER_FETCHHUNTRANSFORMED(Format_ARGB4444_Premultiplied) // ARGB4444_Premultiplied
},
// Transformed
{
0, // Invalid
fetchTransformed<BlendTransformed>, // Mono
fetchTransformed<BlendTransformed>, // MonoLsb
fetchTransformed<BlendTransformed>, // Indexed8
fetchTransformed<BlendTransformed>, // RGB32
fetchTransformed<BlendTransformed>, // ARGB32
fetchTransformed<BlendTransformed>, // ARGB32_Premultiplied
fetchTransformed<BlendTransformed>, // RGB16
fetchTransformed<BlendTransformed>, // ARGB8565_Premultiplied
fetchTransformed<BlendTransformed>, // RGB666
fetchTransformed<BlendTransformed>, // ARGB6666_Premultiplied
fetchTransformed<BlendTransformed>, // RGB555
fetchTransformed<BlendTransformed>, // ARGB8555_Premultiplied
fetchTransformed<BlendTransformed>, // RGB888
fetchTransformed<BlendTransformed>, // RGB444
fetchTransformed<BlendTransformed>, // ARGB4444_Premultiplied
},
{
0, // TransformedTiled
fetchTransformed<BlendTransformedTiled>, // Mono
fetchTransformed<BlendTransformedTiled>, // MonoLsb
fetchTransformed<BlendTransformedTiled>, // Indexed8
fetchTransformed<BlendTransformedTiled>, // RGB32
fetchTransformed<BlendTransformedTiled>, // ARGB32
fetchTransformed<BlendTransformedTiled>, // ARGB32_Premultiplied
fetchTransformed<BlendTransformedTiled>, // RGB16
fetchTransformed<BlendTransformedTiled>, // ARGB8565_Premultiplied
fetchTransformed<BlendTransformedTiled>, // RGB666
fetchTransformed<BlendTransformedTiled>, // ARGB6666_Premultiplied
fetchTransformed<BlendTransformedTiled>, // RGB555
fetchTransformed<BlendTransformedTiled>, // ARGB8555_Premultiplied
fetchTransformed<BlendTransformedTiled>, // RGB888
fetchTransformed<BlendTransformedTiled>, // RGB444
fetchTransformed<BlendTransformedTiled>, // ARGB4444_Premultiplied
},
{
0, // Bilinear
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // Mono
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // MonoLsb
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // Indexed8
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_ARGB32_Premultiplied>, // RGB32
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_ARGB32>, // ARGB32
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_ARGB32_Premultiplied>, // ARGB32_Premultiplied
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // RGB16
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // ARGB8565_Premultiplied
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // RGB666
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // ARGB6666_Premultiplied
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // RGB555
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // ARGB8555_Premultiplied
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // RGB888
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid>, // RGB444
fetchTransformedBilinear<BlendTransformedBilinear, QImage::Format_Invalid> // ARGB4444_Premultiplied
},
{
0, // BilinearTiled
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // Mono
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // MonoLsb
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // Indexed8
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_ARGB32_Premultiplied>, // RGB32
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_ARGB32>, // ARGB32
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_ARGB32_Premultiplied>, // ARGB32_Premultiplied
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // RGB16
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // ARGB8565_Premultiplied
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // RGB666
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // ARGB6666_Premultiplied
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // RGB555
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // ARGB8555_Premultiplied
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // RGB888
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid>, // RGB444
fetchTransformedBilinear<BlendTransformedBilinearTiled, QImage::Format_Invalid> // ARGB4444_Premultiplied
},
};
#define FIXPT_BITS 8
#define FIXPT_SIZE (1<<FIXPT_BITS)
static uint qt_gradient_pixel_fixed(const QGradientData *data, int fixed_pos)
{
int ipos = (fixed_pos + (FIXPT_SIZE / 2)) >> FIXPT_BITS;
return data->colorTable[qt_gradient_clamp(data, ipos)];
}
static void QT_FASTCALL getLinearGradientValues(LinearGradientValues *v, const QSpanData *data)
{
v->dx = data->gradient.linear.end.x - data->gradient.linear.origin.x;
v->dy = data->gradient.linear.end.y - data->gradient.linear.origin.y;
v->l = v->dx * v->dx + v->dy * v->dy;
v->off = 0;
if (v->l != 0) {
v->dx /= v->l;
v->dy /= v->l;
v->off = -v->dx * data->gradient.linear.origin.x - v->dy * data->gradient.linear.origin.y;
}
}
static const uint * QT_FASTCALL qt_fetch_linear_gradient(uint *buffer, const Operator *op, const QSpanData *data,
int y, int x, int length)
{
const uint *b = buffer;
qreal t, inc;
bool affine = true;
qreal rx=0, ry=0;
if (op->linear.l == 0) {
t = inc = 0;
} else {
rx = data->m21 * (y + qreal(0.5)) + data->m11 * (x + qreal(0.5)) + data->dx;
ry = data->m22 * (y + qreal(0.5)) + data->m12 * (x + qreal(0.5)) + data->dy;
t = op->linear.dx*rx + op->linear.dy*ry + op->linear.off;
inc = op->linear.dx * data->m11 + op->linear.dy * data->m12;
affine = !data->m13 && !data->m23;
if (affine) {
t *= (GRADIENT_STOPTABLE_SIZE - 1);
inc *= (GRADIENT_STOPTABLE_SIZE - 1);
}
}
const uint *end = buffer + length;
if (affine) {
if (inc > qreal(-1e-5) && inc < qreal(1e-5)) {
QT_MEMFILL_UINT(buffer, length, qt_gradient_pixel_fixed(&data->gradient, int(t * FIXPT_SIZE)));
} else {
if (t+inc*length < qreal(INT_MAX >> (FIXPT_BITS + 1)) &&
t+inc*length > qreal(INT_MIN >> (FIXPT_BITS + 1))) {
// we can use fixed point math
int t_fixed = int(t * FIXPT_SIZE);
int inc_fixed = int(inc * FIXPT_SIZE);
while (buffer < end) {
*buffer = qt_gradient_pixel_fixed(&data->gradient, t_fixed);
t_fixed += inc_fixed;
++buffer;
}
} else {
// we have to fall back to float math
while (buffer < end) {
*buffer = qt_gradient_pixel(&data->gradient, t/GRADIENT_STOPTABLE_SIZE);
t += inc;
++buffer;
}
}
}
} else { // fall back to float math here as well
qreal rw = data->m23 * (y + qreal(0.5)) + data->m13 * (x + qreal(0.5)) + data->m33;
while (buffer < end) {
qreal x = rx/rw;
qreal y = ry/rw;
t = (op->linear.dx*x + op->linear.dy *y) + op->linear.off;
*buffer = qt_gradient_pixel(&data->gradient, t);
rx += data->m11;
ry += data->m12;
rw += data->m13;
if (!rw) {
rw += data->m13;
}
++buffer;
}
}
return b;
}
static void QT_FASTCALL getRadialGradientValues(RadialGradientValues *v, const QSpanData *data)
{
v->dx = data->gradient.radial.center.x - data->gradient.radial.focal.x;
v->dy = data->gradient.radial.center.y - data->gradient.radial.focal.y;
v->dr = data->gradient.radial.center.radius - data->gradient.radial.focal.radius;
v->sqrfr = data->gradient.radial.focal.radius * data->gradient.radial.focal.radius;
v->a = v->dr * v->dr - v->dx*v->dx - v->dy*v->dy;
v->inv2a = 1 / (2 * v->a);
v->extended = !qFuzzyIsNull(data->gradient.radial.focal.radius) || v->a <= 0;
}
class RadialFetchPlain
{
public:
static inline void fetch(uint *buffer, uint *end, const Operator *op, const QSpanData *data, qreal det,
qreal delta_det, qreal delta_delta_det, qreal b, qreal delta_b)
{
if (op->radial.extended) {
while (buffer < end) {
quint32 result = 0;
if (det >= 0) {
qreal w = qSqrt(det) - b;
if (data->gradient.radial.focal.radius + op->radial.dr * w >= 0)
result = qt_gradient_pixel(&data->gradient, w);
}
*buffer = result;
det += delta_det;
delta_det += delta_delta_det;
b += delta_b;
++buffer;
}
} else {
while (buffer < end) {
*buffer++ = qt_gradient_pixel(&data->gradient, qSqrt(det) - b);
det += delta_det;
delta_det += delta_delta_det;
b += delta_b;
}
}
}
};
const uint * QT_FASTCALL qt_fetch_radial_gradient_plain(uint *buffer, const Operator *op, const QSpanData *data,
int y, int x, int length)
{
return qt_fetch_radial_gradient_template<RadialFetchPlain>(buffer, op, data, y, x, length);
}
static SourceFetchProc qt_fetch_radial_gradient = qt_fetch_radial_gradient_plain;
static const uint * QT_FASTCALL qt_fetch_conical_gradient(uint *buffer, const Operator *, const QSpanData *data,
int y, int x, int length)
{
const uint *b = buffer;
qreal rx = data->m21 * (y + qreal(0.5))
+ data->dx + data->m11 * (x + qreal(0.5));
qreal ry = data->m22 * (y + qreal(0.5))
+ data->dy + data->m12 * (x + qreal(0.5));
bool affine = !data->m13 && !data->m23;
const uint *end = buffer + length;
if (affine) {
rx -= data->gradient.conical.center.x;
ry -= data->gradient.conical.center.y;
while (buffer < end) {
qreal angle = qAtan2(ry, rx) + data->gradient.conical.angle;
*buffer = qt_gradient_pixel(&data->gradient, 1 - angle / (2*Q_PI));
rx += data->m11;
ry += data->m12;
++buffer;
}
} else {
qreal rw = data->m23 * (y + qreal(0.5))
+ data->m33 + data->m13 * (x + qreal(0.5));
if (!rw)
rw = 1;
while (buffer < end) {
qreal angle = qAtan2(ry/rw - data->gradient.conical.center.x,
rx/rw - data->gradient.conical.center.y)
+ data->gradient.conical.angle;
*buffer = qt_gradient_pixel(&data->gradient, 1. - angle / (2*Q_PI));
rx += data->m11;
ry += data->m12;
rw += data->m13;
if (!rw) {
rw += data->m13;
}
++buffer;
}
}
return b;
}
// TODO: get rid of those
#define PRELOAD_INIT(x)
#define PRELOAD_INIT2(x,y)
#define PRELOAD_COND(x)
#define PRELOAD_COND2(x,y)
/* The constant alpha factor describes an alpha factor that gets applied
to the result of the composition operation combining it with the destination.
The intent is that if const_alpha == 0. we get back dest, and if const_alpha == 1.
we get the unmodified operation
result = src op dest
dest = result * const_alpha + dest * (1. - const_alpha)
This means that in the comments below, the first line is the const_alpha==255 case, the
second line the general one.
In the lines below:
s == src, sa == alpha(src), sia = 1 - alpha(src)
d == dest, da == alpha(dest), dia = 1 - alpha(dest)
ca = const_alpha, cia = 1 - const_alpha
The methods exist in two variants. One where we have a constant source, the other
where the source is an array of pixels.
*/
/*
result = 0
d = d * cia
*/
#define comp_func_Clear_impl(dest, length, const_alpha)\
{\
if (const_alpha == 255) {\
QT_MEMFILL_UINT(dest, length, 0);\
} else {\
int ialpha = 255 - const_alpha;\
PRELOAD_INIT(dest)\
for (int i = 0; i < length; ++i) {\
PRELOAD_COND(dest)\
dest[i] = BYTE_MUL(dest[i], ialpha);\
}\
}\
}
void QT_FASTCALL comp_func_solid_Clear(uint *dest, int length, uint, uint const_alpha)
{
comp_func_Clear_impl(dest, length, const_alpha);
}
void QT_FASTCALL comp_func_Clear(uint *dest, const uint *, int length, uint const_alpha)
{
comp_func_Clear_impl(dest, length, const_alpha);
}
/*
result = s
dest = s * ca + d * cia
*/
void QT_FASTCALL comp_func_solid_Source(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255) {
QT_MEMFILL_UINT(dest, length, color);
} else {
int ialpha = 255 - const_alpha;
color = BYTE_MUL(color, const_alpha);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
dest[i] = color + BYTE_MUL(dest[i], ialpha);
}
}
}
void QT_FASTCALL comp_func_Source(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255) {
::memcpy(dest, src, length * sizeof(uint));
} else {
int ialpha = 255 - const_alpha;
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
dest[i] = INTERPOLATE_PIXEL_255(src[i], const_alpha, dest[i], ialpha);
}
}
}
void QT_FASTCALL comp_func_solid_Destination(uint *, int, uint, uint)
{
}
void QT_FASTCALL comp_func_Destination(uint *, const uint *, int, uint)
{
}
/*
result = s + d * sia
dest = (s + d * sia) * ca + d * cia
= s * ca + d * (sia * ca + cia)
= s * ca + d * (1 - sa*ca)
*/
void QT_FASTCALL comp_func_solid_SourceOver(uint *dest, int length, uint color, uint const_alpha)
{
if ((const_alpha & qAlpha(color)) == 255) {
QT_MEMFILL_UINT(dest, length, color);
} else {
if (const_alpha != 255)
color = BYTE_MUL(color, const_alpha);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
dest[i] = color + BYTE_MUL(dest[i], qAlpha(~color));
}
}
}
void QT_FASTCALL comp_func_SourceOver(uint *dest, const uint *src, int length, uint const_alpha)
{
PRELOAD_INIT2(dest, src)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint s = src[i];
if (s >= 0xff000000)
dest[i] = s;
else if (s != 0)
dest[i] = s + BYTE_MUL(dest[i], qAlpha(~s));
}
} else {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint s = BYTE_MUL(src[i], const_alpha);
dest[i] = s + BYTE_MUL(dest[i], qAlpha(~s));
}
}
}
/*
result = d + s * dia
dest = (d + s * dia) * ca + d * cia
= d + s * dia * ca
*/
void QT_FASTCALL comp_func_solid_DestinationOver(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha != 255)
color = BYTE_MUL(color, const_alpha);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
dest[i] = d + BYTE_MUL(color, qAlpha(~d));
}
}
void QT_FASTCALL comp_func_DestinationOver(uint *dest, const uint *src, int length, uint const_alpha)
{
PRELOAD_INIT2(dest, src)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
dest[i] = d + BYTE_MUL(src[i], qAlpha(~d));
}
} else {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = BYTE_MUL(src[i], const_alpha);
dest[i] = d + BYTE_MUL(s, qAlpha(~d));
}
}
}
/*
result = s * da
dest = s * da * ca + d * cia
*/
void QT_FASTCALL comp_func_solid_SourceIn(uint *dest, int length, uint color, uint const_alpha)
{
PRELOAD_INIT(dest)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
dest[i] = BYTE_MUL(color, qAlpha(dest[i]));
}
} else {
color = BYTE_MUL(color, const_alpha);
uint cia = 255 - const_alpha;
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
dest[i] = INTERPOLATE_PIXEL_255(color, qAlpha(d), d, cia);
}
}
}
void QT_FASTCALL comp_func_SourceIn(uint *dest, const uint *src, int length, uint const_alpha)
{
PRELOAD_INIT2(dest, src)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
dest[i] = BYTE_MUL(src[i], qAlpha(dest[i]));
}
} else {
uint cia = 255 - const_alpha;
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = BYTE_MUL(src[i], const_alpha);
dest[i] = INTERPOLATE_PIXEL_255(s, qAlpha(d), d, cia);
}
}
}
/*
result = d * sa
dest = d * sa * ca + d * cia
= d * (sa * ca + cia)
*/
void QT_FASTCALL comp_func_solid_DestinationIn(uint *dest, int length, uint color, uint const_alpha)
{
uint a = qAlpha(color);
if (const_alpha != 255) {
a = BYTE_MUL(a, const_alpha) + 255 - const_alpha;
}
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
dest[i] = BYTE_MUL(dest[i], a);
}
}
void QT_FASTCALL comp_func_DestinationIn(uint *dest, const uint *src, int length, uint const_alpha)
{
PRELOAD_INIT2(dest, src)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
dest[i] = BYTE_MUL(dest[i], qAlpha(src[i]));
}
} else {
int cia = 255 - const_alpha;
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint a = BYTE_MUL(qAlpha(src[i]), const_alpha) + cia;
dest[i] = BYTE_MUL(dest[i], a);
}
}
}
/*
result = s * dia
dest = s * dia * ca + d * cia
*/
void QT_FASTCALL comp_func_solid_SourceOut(uint *dest, int length, uint color, uint const_alpha)
{
PRELOAD_INIT(dest)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
dest[i] = BYTE_MUL(color, qAlpha(~dest[i]));
}
} else {
color = BYTE_MUL(color, const_alpha);
int cia = 255 - const_alpha;
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
dest[i] = INTERPOLATE_PIXEL_255(color, qAlpha(~d), d, cia);
}
}
}
void QT_FASTCALL comp_func_SourceOut(uint *dest, const uint *src, int length, uint const_alpha)
{
PRELOAD_INIT2(dest, src)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
dest[i] = BYTE_MUL(src[i], qAlpha(~dest[i]));
}
} else {
int cia = 255 - const_alpha;
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint s = BYTE_MUL(src[i], const_alpha);
uint d = dest[i];
dest[i] = INTERPOLATE_PIXEL_255(s, qAlpha(~d), d, cia);
}
}
}
/*
result = d * sia
dest = d * sia * ca + d * cia
= d * (sia * ca + cia)
*/
void QT_FASTCALL comp_func_solid_DestinationOut(uint *dest, int length, uint color, uint const_alpha)
{
uint a = qAlpha(~color);
if (const_alpha != 255)
a = BYTE_MUL(a, const_alpha) + 255 - const_alpha;
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
dest[i] = BYTE_MUL(dest[i], a);
}
}
void QT_FASTCALL comp_func_DestinationOut(uint *dest, const uint *src, int length, uint const_alpha)
{
PRELOAD_INIT2(dest, src)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
dest[i] = BYTE_MUL(dest[i], qAlpha(~src[i]));
}
} else {
int cia = 255 - const_alpha;
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint sia = BYTE_MUL(qAlpha(~src[i]), const_alpha) + cia;
dest[i] = BYTE_MUL(dest[i], sia);
}
}
}
/*
result = s*da + d*sia
dest = s*da*ca + d*sia*ca + d *cia
= s*ca * da + d * (sia*ca + cia)
= s*ca * da + d * (1 - sa*ca)
*/
void QT_FASTCALL comp_func_solid_SourceAtop(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha != 255) {
color = BYTE_MUL(color, const_alpha);
}
uint sia = qAlpha(~color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
dest[i] = INTERPOLATE_PIXEL_255(color, qAlpha(dest[i]), dest[i], sia);
}
}
void QT_FASTCALL comp_func_SourceAtop(uint *dest, const uint *src, int length, uint const_alpha)
{
PRELOAD_INIT2(dest, src)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint s = src[i];
uint d = dest[i];
dest[i] = INTERPOLATE_PIXEL_255(s, qAlpha(d), d, qAlpha(~s));
}
} else {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint s = BYTE_MUL(src[i], const_alpha);
uint d = dest[i];
dest[i] = INTERPOLATE_PIXEL_255(s, qAlpha(d), d, qAlpha(~s));
}
}
}
/*
result = d*sa + s*dia
dest = d*sa*ca + s*dia*ca + d *cia
= s*ca * dia + d * (sa*ca + cia)
*/
void QT_FASTCALL comp_func_solid_DestinationAtop(uint *dest, int length, uint color, uint const_alpha)
{
uint a = qAlpha(color);
if (const_alpha != 255) {
color = BYTE_MUL(color, const_alpha);
a = qAlpha(color) + 255 - const_alpha;
}
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
dest[i] = INTERPOLATE_PIXEL_255(d, a, color, qAlpha(~d));
}
}
void QT_FASTCALL comp_func_DestinationAtop(uint *dest, const uint *src, int length, uint const_alpha)
{
PRELOAD_INIT2(dest, src)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint s = src[i];
uint d = dest[i];
dest[i] = INTERPOLATE_PIXEL_255(d, qAlpha(s), s, qAlpha(~d));
}
} else {
int cia = 255 - const_alpha;
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint s = BYTE_MUL(src[i], const_alpha);
uint d = dest[i];
uint a = qAlpha(s) + cia;
dest[i] = INTERPOLATE_PIXEL_255(d, a, s, qAlpha(~d));
}
}
}
/*
result = d*sia + s*dia
dest = d*sia*ca + s*dia*ca + d *cia
= s*ca * dia + d * (sia*ca + cia)
= s*ca * dia + d * (1 - sa*ca)
*/
void QT_FASTCALL comp_func_solid_XOR(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha != 255)
color = BYTE_MUL(color, const_alpha);
uint sia = qAlpha(~color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
dest[i] = INTERPOLATE_PIXEL_255(color, qAlpha(~d), d, sia);
}
}
void QT_FASTCALL comp_func_XOR(uint *dest, const uint *src, int length, uint const_alpha)
{
PRELOAD_INIT2(dest, src)
if (const_alpha == 255) {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
dest[i] = INTERPOLATE_PIXEL_255(s, qAlpha(~d), d, qAlpha(~s));
}
} else {
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = BYTE_MUL(src[i], const_alpha);
dest[i] = INTERPOLATE_PIXEL_255(s, qAlpha(~d), d, qAlpha(~s));
}
}
}
struct QFullCoverage {
inline void store(uint *dest, const uint src) const
{
*dest = src;
}
};
struct QPartialCoverage {
inline QPartialCoverage(uint const_alpha)
: ca(const_alpha)
, ica(255 - const_alpha)
{
}
inline void store(uint *dest, const uint src) const
{
*dest = INTERPOLATE_PIXEL_255(src, ca, *dest, ica);
}
private:
const uint ca;
const uint ica;
};
static inline int mix_alpha(int da, int sa)
{
return 255 - ((255 - sa) * (255 - da) >> 8);
}
/*
Dca' = Sca.Da + Dca.Sa + Sca.(1 - Da) + Dca.(1 - Sa)
= Sca + Dca
*/
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_Plus_impl(uint *dest, int length, uint color, const T &coverage)
{
uint s = color;
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
d = comp_func_Plus_one_pixel(d, s);
coverage.store(&dest[i], d);
}
}
void QT_FASTCALL comp_func_solid_Plus(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_Plus_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_Plus_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_Plus_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
d = comp_func_Plus_one_pixel(d, s);
coverage.store(&dest[i], d);
}
}
void QT_FASTCALL comp_func_Plus(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_Plus_impl(dest, src, length, QFullCoverage());
else
comp_func_Plus_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
Dca' = Sca.Dca + Sca.(1 - Da) + Dca.(1 - Sa)
*/
static inline int multiply_op(int dst, int src, int da, int sa)
{
return qt_div_255(src * dst + src * (255 - da) + dst * (255 - sa));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_Multiply_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) multiply_op(a, b, da, sa)
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_Multiply(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_Multiply_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_Multiply_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_Multiply_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) multiply_op(a, b, da, sa)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_Multiply(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_Multiply_impl(dest, src, length, QFullCoverage());
else
comp_func_Multiply_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
Dca' = (Sca.Da + Dca.Sa - Sca.Dca) + Sca.(1 - Da) + Dca.(1 - Sa)
= Sca + Dca - Sca.Dca
*/
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_Screen_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) 255 - qt_div_255((255-a) * (255-b))
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_Screen(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_Screen_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_Screen_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_Screen_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) 255 - (((255-a) * (255-b)) >> 8)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_Screen(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_Screen_impl(dest, src, length, QFullCoverage());
else
comp_func_Screen_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
if 2.Dca < Da
Dca' = 2.Sca.Dca + Sca.(1 - Da) + Dca.(1 - Sa)
otherwise
Dca' = Sa.Da - 2.(Da - Dca).(Sa - Sca) + Sca.(1 - Da) + Dca.(1 - Sa)
*/
static inline int overlay_op(int dst, int src, int da, int sa)
{
const int temp = src * (255 - da) + dst * (255 - sa);
if (2 * dst < da)
return qt_div_255(2 * src * dst + temp);
else
return qt_div_255(sa * da - 2 * (da - dst) * (sa - src) + temp);
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_Overlay_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) overlay_op(a, b, da, sa)
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_Overlay(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_Overlay_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_Overlay_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_Overlay_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) overlay_op(a, b, da, sa)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_Overlay(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_Overlay_impl(dest, src, length, QFullCoverage());
else
comp_func_Overlay_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
Dca' = min(Sca.Da, Dca.Sa) + Sca.(1 - Da) + Dca.(1 - Sa)
Da' = Sa + Da - Sa.Da
*/
static inline int darken_op(int dst, int src, int da, int sa)
{
return qt_div_255(qMin(src * da, dst * sa) + src * (255 - da) + dst * (255 - sa));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_Darken_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) darken_op(a, b, da, sa)
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_Darken(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_Darken_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_Darken_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_Darken_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) darken_op(a, b, da, sa)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_Darken(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_Darken_impl(dest, src, length, QFullCoverage());
else
comp_func_Darken_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
Dca' = max(Sca.Da, Dca.Sa) + Sca.(1 - Da) + Dca.(1 - Sa)
Da' = Sa + Da - Sa.Da
*/
static inline int lighten_op(int dst, int src, int da, int sa)
{
return qt_div_255(qMax(src * da, dst * sa) + src * (255 - da) + dst * (255 - sa));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_Lighten_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) lighten_op(a, b, da, sa)
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_Lighten(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_Lighten_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_Lighten_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_Lighten_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) lighten_op(a, b, da, sa)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_Lighten(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_Lighten_impl(dest, src, length, QFullCoverage());
else
comp_func_Lighten_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
if Sca.Da + Dca.Sa >= Sa.Da
Dca' = Sa.Da + Sca.(1 - Da) + Dca.(1 - Sa)
otherwise
Dca' = Dca.Sa/(1-Sca/Sa) + Sca.(1 - Da) + Dca.(1 - Sa)
*/
static inline int color_dodge_op(int dst, int src, int da, int sa)
{
const int sa_da = sa * da;
const int dst_sa = dst * sa;
const int src_da = src * da;
const int temp = src * (255 - da) + dst * (255 - sa);
if (src_da + dst_sa >= sa_da)
return qt_div_255(sa_da + temp);
else
return qt_div_255(255 * dst_sa / (255 - 255 * src / sa) + temp);
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_ColorDodge_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a,b) color_dodge_op(a, b, da, sa)
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_ColorDodge(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_ColorDodge_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_ColorDodge_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_ColorDodge_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) color_dodge_op(a, b, da, sa)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_ColorDodge(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_ColorDodge_impl(dest, src, length, QFullCoverage());
else
comp_func_ColorDodge_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
if Sca.Da + Dca.Sa <= Sa.Da
Dca' = Sca.(1 - Da) + Dca.(1 - Sa)
otherwise
Dca' = Sa.(Sca.Da + Dca.Sa - Sa.Da)/Sca + Sca.(1 - Da) + Dca.(1 - Sa)
*/
static inline int color_burn_op(int dst, int src, int da, int sa)
{
const int src_da = src * da;
const int dst_sa = dst * sa;
const int sa_da = sa * da;
const int temp = src * (255 - da) + dst * (255 - sa);
if (src == 0 || src_da + dst_sa <= sa_da)
return qt_div_255(temp);
return qt_div_255(sa * (src_da + dst_sa - sa_da) / src + temp);
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_ColorBurn_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) color_burn_op(a, b, da, sa)
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_ColorBurn(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_ColorBurn_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_ColorBurn_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_ColorBurn_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) color_burn_op(a, b, da, sa)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_ColorBurn(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_ColorBurn_impl(dest, src, length, QFullCoverage());
else
comp_func_ColorBurn_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
if 2.Sca < Sa
Dca' = 2.Sca.Dca + Sca.(1 - Da) + Dca.(1 - Sa)
otherwise
Dca' = Sa.Da - 2.(Da - Dca).(Sa - Sca) + Sca.(1 - Da) + Dca.(1 - Sa)
*/
static inline uint hardlight_op(int dst, int src, int da, int sa)
{
const uint temp = src * (255 - da) + dst * (255 - sa);
if (2 * src < sa)
return qt_div_255(2 * src * dst + temp);
else
return qt_div_255(sa * da - 2 * (da - dst) * (sa - src) + temp);
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_HardLight_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) hardlight_op(a, b, da, sa)
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_HardLight(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_HardLight_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_HardLight_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_HardLight_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) hardlight_op(a, b, da, sa)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_HardLight(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_HardLight_impl(dest, src, length, QFullCoverage());
else
comp_func_HardLight_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
if 2.Sca <= Sa
Dca' = Dca.(Sa + (2.Sca - Sa).(1 - Dca/Da)) + Sca.(1 - Da) + Dca.(1 - Sa)
otherwise if 2.Sca > Sa and 4.Dca <= Da
Dca' = Dca.Sa + Da.(2.Sca - Sa).(4.Dca/Da.(4.Dca/Da + 1).(Dca/Da - 1) + 7.Dca/Da) + Sca.(1 - Da) + Dca.(1 - Sa)
otherwise if 2.Sca > Sa and 4.Dca > Da
Dca' = Dca.Sa + Da.(2.Sca - Sa).((Dca/Da)^0.5 - Dca/Da) + Sca.(1 - Da) + Dca.(1 - Sa)
*/
static inline int soft_light_op(int dst, int src, int da, int sa)
{
const int src2 = src << 1;
const int dst_np = da != 0 ? (255 * dst) / da : 0;
const int temp = (src * (255 - da) + dst * (255 - sa)) * 255;
if (src2 < sa)
return (dst * (sa * 255 + (src2 - sa) * (255 - dst_np)) + temp) / 65025;
else if (4 * dst <= da)
return (dst * sa * 255 + da * (src2 - sa) * ((((16 * dst_np - 12 * 255) * dst_np + 3 * 65025) * dst_np) / 65025) + temp) / 65025;
else {
# ifdef Q_CC_RVCT // needed to avoid compiler crash in RVCT 2.2
return (dst * sa * 255 + da * (src2 - sa) * (qIntSqrtInt(dst_np * 255) - dst_np) + temp) / 65025;
# else
return (dst * sa * 255 + da * (src2 - sa) * (int(qSqrt(qreal(dst_np * 255))) - dst_np) + temp) / 65025;
# endif
}
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_SoftLight_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) soft_light_op(a, b, da, sa)
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_SoftLight(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_SoftLight_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_SoftLight_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_SoftLight_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) soft_light_op(a, b, da, sa)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_SoftLight(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_SoftLight_impl(dest, src, length, QFullCoverage());
else
comp_func_SoftLight_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
Dca' = abs(Dca.Sa - Sca.Da) + Sca.(1 - Da) + Dca.(1 - Sa)
= Sca + Dca - 2.min(Sca.Da, Dca.Sa)
*/
static inline int difference_op(int dst, int src, int da, int sa)
{
return src + dst - qt_div_255(2 * qMin(src * da, dst * sa));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_solid_Difference_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) difference_op(a, b, da, sa)
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_Difference(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_Difference_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_Difference_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_Difference_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) difference_op(a, b, da, sa)
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_Difference(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_Difference_impl(dest, src, length, QFullCoverage());
else
comp_func_Difference_impl(dest, src, length, QPartialCoverage(const_alpha));
}
/*
Dca' = (Sca.Da + Dca.Sa - 2.Sca.Dca) + Sca.(1 - Da) + Dca.(1 - Sa)
*/
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void QT_FASTCALL comp_func_solid_Exclusion_impl(uint *dest, int length, uint color, const T &coverage)
{
int sa = qAlpha(color);
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
PRELOAD_INIT(dest)
for (int i = 0; i < length; ++i) {
PRELOAD_COND(dest)
uint d = dest[i];
int da = qAlpha(d);
#define OP(a, b) (a + b - qt_div_255(2*(a*b)))
int r = OP( qRed(d), sr);
int b = OP( qBlue(d), sb);
int g = OP(qGreen(d), sg);
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_solid_Exclusion(uint *dest, int length, uint color, uint const_alpha)
{
if (const_alpha == 255)
comp_func_solid_Exclusion_impl(dest, length, color, QFullCoverage());
else
comp_func_solid_Exclusion_impl(dest, length, color, QPartialCoverage(const_alpha));
}
template <typename T>
Q_STATIC_TEMPLATE_FUNCTION inline void comp_func_Exclusion_impl(uint *dest, const uint *src, int length, const T &coverage)
{
PRELOAD_INIT2(dest, src)
for (int i = 0; i < length; ++i) {
PRELOAD_COND2(dest, src)
uint d = dest[i];
uint s = src[i];
int da = qAlpha(d);
int sa = qAlpha(s);
#define OP(a, b) (a + b - ((a*b) >> 7))
int r = OP( qRed(d), qRed(s));
int b = OP( qBlue(d), qBlue(s));
int g = OP(qGreen(d), qGreen(s));
int a = mix_alpha(da, sa);
#undef OP
coverage.store(&dest[i], qRgba(r, g, b, a));
}
}
void QT_FASTCALL comp_func_Exclusion(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255)
comp_func_Exclusion_impl(dest, src, length, QFullCoverage());
else
comp_func_Exclusion_impl(dest, src, length, QPartialCoverage(const_alpha));
}
#if defined(Q_CC_RVCT)
// Restore pragma state from previous #pragma arm
# pragma pop
#endif
void QT_FASTCALL rasterop_solid_SourceOrDestination(uint *dest,
int length,
uint color,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--)
*dest++ |= color;
}
void QT_FASTCALL rasterop_SourceOrDestination(uint *dest,
const uint *src,
int length,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--)
*dest++ |= *src++;
}
void QT_FASTCALL rasterop_solid_SourceAndDestination(uint *dest,
int length,
uint color,
uint const_alpha)
{
Q_UNUSED(const_alpha);
color |= 0xff000000;
while (length--)
*dest++ &= color;
}
void QT_FASTCALL rasterop_SourceAndDestination(uint *dest,
const uint *src,
int length,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--) {
*dest = (*src & *dest) | 0xff000000;
++dest; ++src;
}
}
void QT_FASTCALL rasterop_solid_SourceXorDestination(uint *dest,
int length,
uint color,
uint const_alpha)
{
Q_UNUSED(const_alpha);
color &= 0x00ffffff;
while (length--)
*dest++ ^= color;
}
void QT_FASTCALL rasterop_SourceXorDestination(uint *dest,
const uint *src,
int length,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--) {
*dest = (*src ^ *dest) | 0xff000000;
++dest; ++src;
}
}
void QT_FASTCALL rasterop_solid_NotSourceAndNotDestination(uint *dest,
int length,
uint color,
uint const_alpha)
{
Q_UNUSED(const_alpha);
color = ~color;
while (length--) {
*dest = (color & ~(*dest)) | 0xff000000;
++dest;
}
}
void QT_FASTCALL rasterop_NotSourceAndNotDestination(uint *dest,
const uint *src,
int length,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--) {
*dest = (~(*src) & ~(*dest)) | 0xff000000;
++dest; ++src;
}
}
void QT_FASTCALL rasterop_solid_NotSourceOrNotDestination(uint *dest,
int length,
uint color,
uint const_alpha)
{
Q_UNUSED(const_alpha);
color = ~color | 0xff000000;
while (length--) {
*dest = color | ~(*dest);
++dest;
}
}
void QT_FASTCALL rasterop_NotSourceOrNotDestination(uint *dest,
const uint *src,
int length,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--) {
*dest = ~(*src) | ~(*dest) | 0xff000000;
++dest; ++src;
}
}
void QT_FASTCALL rasterop_solid_NotSourceXorDestination(uint *dest,
int length,
uint color,
uint const_alpha)
{
Q_UNUSED(const_alpha);
color = ~color & 0x00ffffff;
while (length--) {
*dest = color ^ (*dest);
++dest;
}
}
void QT_FASTCALL rasterop_NotSourceXorDestination(uint *dest,
const uint *src,
int length,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--) {
*dest = ((~(*src)) ^ (*dest)) | 0xff000000;
++dest; ++src;
}
}
void QT_FASTCALL rasterop_solid_NotSource(uint *dest, int length,
uint color, uint const_alpha)
{
Q_UNUSED(const_alpha);
qt_memfill(dest, ~color | 0xff000000, length);
}
void QT_FASTCALL rasterop_NotSource(uint *dest, const uint *src,
int length, uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--)
*dest++ = ~(*src++) | 0xff000000;
}
void QT_FASTCALL rasterop_solid_NotSourceAndDestination(uint *dest,
int length,
uint color,
uint const_alpha)
{
Q_UNUSED(const_alpha);
color = ~color | 0xff000000;
while (length--) {
*dest = color & *dest;
++dest;
}
}
void QT_FASTCALL rasterop_NotSourceAndDestination(uint *dest,
const uint *src,
int length,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--) {
*dest = (~(*src) & *dest) | 0xff000000;
++dest; ++src;
}
}
void QT_FASTCALL rasterop_solid_SourceAndNotDestination(uint *dest,
int length,
uint color,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--) {
*dest = (color & ~(*dest)) | 0xff000000;
++dest;
}
}
void QT_FASTCALL rasterop_SourceAndNotDestination(uint *dest,
const uint *src,
int length,
uint const_alpha)
{
Q_UNUSED(const_alpha);
while (length--) {
*dest = (*src & ~(*dest)) | 0xff000000;
++dest; ++src;
}
}
static const CompositionFunctionSolid functionForModeSolid[] = {
comp_func_solid_SourceOver,
comp_func_solid_DestinationOver,
comp_func_solid_Clear,
comp_func_solid_Source,
comp_func_solid_Destination,
comp_func_solid_SourceIn,
comp_func_solid_DestinationIn,
comp_func_solid_SourceOut,
comp_func_solid_DestinationOut,
comp_func_solid_SourceAtop,
comp_func_solid_DestinationAtop,
comp_func_solid_XOR,
comp_func_solid_Plus,
comp_func_solid_Multiply,
comp_func_solid_Screen,
comp_func_solid_Overlay,
comp_func_solid_Darken,
comp_func_solid_Lighten,
comp_func_solid_ColorDodge,
comp_func_solid_ColorBurn,
comp_func_solid_HardLight,
comp_func_solid_SoftLight,
comp_func_solid_Difference,
comp_func_solid_Exclusion,
rasterop_solid_SourceOrDestination,
rasterop_solid_SourceAndDestination,
rasterop_solid_SourceXorDestination,
rasterop_solid_NotSourceAndNotDestination,
rasterop_solid_NotSourceOrNotDestination,
rasterop_solid_NotSourceXorDestination,
rasterop_solid_NotSource,
rasterop_solid_NotSourceAndDestination,
rasterop_solid_SourceAndNotDestination
};
static const CompositionFunction functionForMode[] = {
comp_func_SourceOver,
comp_func_DestinationOver,
comp_func_Clear,
comp_func_Source,
comp_func_Destination,
comp_func_SourceIn,
comp_func_DestinationIn,
comp_func_SourceOut,
comp_func_DestinationOut,
comp_func_SourceAtop,
comp_func_DestinationAtop,
comp_func_XOR,
comp_func_Plus,
comp_func_Multiply,
comp_func_Screen,
comp_func_Overlay,
comp_func_Darken,
comp_func_Lighten,
comp_func_ColorDodge,
comp_func_ColorBurn,
comp_func_HardLight,
comp_func_SoftLight,
comp_func_Difference,
comp_func_Exclusion,
rasterop_SourceOrDestination,
rasterop_SourceAndDestination,
rasterop_SourceXorDestination,
rasterop_NotSourceAndNotDestination,
rasterop_NotSourceOrNotDestination,
rasterop_NotSourceXorDestination,
rasterop_NotSource,
rasterop_NotSourceAndDestination,
rasterop_SourceAndNotDestination
};
static TextureBlendType getBlendType(const QSpanData *data)
{
TextureBlendType ft;
if (data->txop <= QTransform::TxTranslate)
if (data->texture.type == QTextureData::Tiled)
ft = BlendTiled;
else
ft = BlendUntransformed;
else if (data->bilinear)
if (data->texture.type == QTextureData::Tiled)
ft = BlendTransformedBilinearTiled;
else
ft = BlendTransformedBilinear;
else
if (data->texture.type == QTextureData::Tiled)
ft = BlendTransformedTiled;
else
ft = BlendTransformed;
return ft;
}
static inline Operator getOperator(const QSpanData *data, const QSpan *spans, int spanCount)
{
Operator op;
bool solidSource = false;
switch(data->type) {
case QSpanData::Solid:
solidSource = (qAlpha(data->solid.color) == 255);
break;
case QSpanData::LinearGradient:
solidSource = !data->gradient.alphaColor;
getLinearGradientValues(&op.linear, data);
op.src_fetch = qt_fetch_linear_gradient;
break;
case QSpanData::RadialGradient:
solidSource = !data->gradient.alphaColor;
getRadialGradientValues(&op.radial, data);
op.src_fetch = qt_fetch_radial_gradient;
break;
case QSpanData::ConicalGradient:
solidSource = !data->gradient.alphaColor;
op.src_fetch = qt_fetch_conical_gradient;
break;
case QSpanData::Texture:
op.src_fetch = sourceFetch[getBlendType(data)][data->texture.format];
solidSource = !data->texture.hasAlpha;
default:
break;
}
op.mode = data->rasterBuffer->compositionMode;
if (op.mode == QPainter::CompositionMode_SourceOver && solidSource)
op.mode = QPainter::CompositionMode_Source;
op.dest_fetch = destFetchProc[data->rasterBuffer->format];
if (op.mode == QPainter::CompositionMode_Source) {
switch (data->rasterBuffer->format) {
case QImage::Format_RGB32:
case QImage::Format_ARGB32_Premultiplied:
// don't clear dest_fetch as it sets up the pointer correctly to save one copy
break;
default: {
const QSpan *lastSpan = spans + spanCount;
bool alphaSpans = false;
while (spans < lastSpan) {
if (spans->coverage != 255) {
alphaSpans = true;
break;
}
++spans;
}
if (!alphaSpans)
op.dest_fetch = 0;
}
}
}
op.dest_store = destStoreProc[data->rasterBuffer->format];
op.funcSolid = functionForModeSolid[op.mode];
op.func = functionForMode[op.mode];
return op;
}
// -------------------- blend methods ---------------------
#if !defined(Q_CC_SUN)
static
#endif
void blend_color_generic(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
uint buffer[buffer_size];
Operator op = getOperator(data, spans, count);
while (count--) {
int x = spans->x;
int length = spans->len;
while (length) {
int l = qMin(buffer_size, length);
uint *dest = op.dest_fetch ? op.dest_fetch(buffer, data->rasterBuffer, x, spans->y, l) : buffer;
op.funcSolid(dest, l, data->solid.color, spans->coverage);
if (op.dest_store)
op.dest_store(data->rasterBuffer, x, spans->y, dest, l);
length -= l;
x += l;
}
++spans;
}
}
static void blend_color_argb(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
Operator op = getOperator(data, spans, count);
if (op.mode == QPainter::CompositionMode_Source) {
// inline for performance
while (count--) {
uint *target = ((uint *)data->rasterBuffer->scanLine(spans->y)) + spans->x;
if (spans->coverage == 255) {
QT_MEMFILL_UINT(target, spans->len, data->solid.color);
} else {
uint c = BYTE_MUL(data->solid.color, spans->coverage);
int ialpha = 255 - spans->coverage;
for (int i = 0; i < spans->len; ++i)
target[i] = c + BYTE_MUL(target[i], ialpha);
}
++spans;
}
return;
}
while (count--) {
uint *target = ((uint *)data->rasterBuffer->scanLine(spans->y)) + spans->x;
op.funcSolid(target, spans->len, data->solid.color, spans->coverage);
++spans;
}
}
template <class T>
Q_STATIC_TEMPLATE_FUNCTION void blendColor(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
Operator op = getOperator(data, spans, count);
if (op.mode == QPainter::CompositionMode_Source) {
const T c = qt_colorConvert<T, quint32p>(quint32p::fromRawData(data->solid.color), 0);
while (count--) {
T *target = ((T*)data->rasterBuffer->scanLine(spans->y))
+ spans->x;
if (spans->coverage == 255) {
qt_memfill(target, c, spans->len);
} else {
const quint8 alpha = T::alpha(spans->coverage);
const T color = c.byte_mul(alpha);
const int ialpha = T::ialpha(spans->coverage);
const T *end = target + spans->len;
while (target < end) {
*target = color + target->byte_mul(ialpha);
++target;
}
}
++spans;
}
return;
}
if (op.mode == QPainter::CompositionMode_SourceOver) {
while (count--) {
const quint32 color = BYTE_MUL(data->solid.color, spans->coverage);
const T c = qt_colorConvert<T, quint32p>(quint32p::fromRawData(color), 0);
const quint8 ialpha = T::alpha(qAlpha(~color));
T *target = ((T*)data->rasterBuffer->scanLine(spans->y)) + spans->x;
const T *end = target + spans->len;
while (target != end) {
*target = c + target->byte_mul(ialpha);
++target;
}
++spans;
}
return;
}
blend_color_generic(count, spans, userData);
}
#define SPANFUNC_POINTER_BLENDCOLOR(DST) blendColor<DST>
static void blend_color_rgb16(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
/*
We duplicate a little logic from getOperator() and calculate the
composition mode directly. This allows blend_color_rgb16 to be used
from qt_gradient_quint16 with minimal overhead.
*/
QPainter::CompositionMode mode = data->rasterBuffer->compositionMode;
if (mode == QPainter::CompositionMode_SourceOver &&
qAlpha(data->solid.color) == 255)
mode = QPainter::CompositionMode_Source;
if (mode == QPainter::CompositionMode_Source) {
// inline for performance
ushort c = qConvertRgb32To16(data->solid.color);
while (count--) {
ushort *target = ((ushort *)data->rasterBuffer->scanLine(spans->y)) + spans->x;
if (spans->coverage == 255) {
QT_MEMFILL_USHORT(target, spans->len, c);
} else {
ushort color = BYTE_MUL_RGB16(c, spans->coverage);
int ialpha = 255 - spans->coverage;
const ushort *end = target + spans->len;
while (target < end) {
*target = color + BYTE_MUL_RGB16(*target, ialpha);
++target;
}
}
++spans;
}
return;
}
if (mode == QPainter::CompositionMode_SourceOver) {
while (count--) {
uint color = BYTE_MUL(data->solid.color, spans->coverage);
int ialpha = qAlpha(~color);
ushort c = qConvertRgb32To16(color);
ushort *target = ((ushort *)data->rasterBuffer->scanLine(spans->y)) + spans->x;
int len = spans->len;
bool pre = (((quintptr)target) & 0x3) != 0;
bool post = false;
if (pre) {
// skip to word boundary
*target = c + BYTE_MUL_RGB16(*target, ialpha);
++target;
--len;
}
if (len & 0x1) {
post = true;
--len;
}
uint *target32 = (uint*)target;
uint c32 = c | (c<<16);
len >>= 1;
uint salpha = (ialpha+1) >> 3; // calculate here rather than in loop
while (len--) {
// blend full words
*target32 = c32 + BYTE_MUL_RGB16_32(*target32, salpha);
++target32;
target += 2;
}
if (post) {
// one last pixel beyond a full word
*target = c + BYTE_MUL_RGB16(*target, ialpha);
}
++spans;
}
return;
}
blend_color_generic(count, spans, userData);
}
template <typename T>
void handleSpans(int count, const QSpan *spans, const QSpanData *data, T &handler)
{
uint const_alpha = 256;
if (data->type == QSpanData::Texture)
const_alpha = data->texture.const_alpha;
int coverage = 0;
while (count) {
int x = spans->x;
const int y = spans->y;
int right = x + spans->len;
// compute length of adjacent spans
for (int i = 1; i < count && spans[i].y == y && spans[i].x == right; ++i)
right += spans[i].len;
int length = right - x;
while (length) {
int l = qMin(buffer_size, length);
length -= l;
int process_length = l;
int process_x = x;
const uint *src = handler.fetch(process_x, y, process_length);
int offset = 0;
while (l > 0) {
if (x == spans->x) // new span?
coverage = (spans->coverage * const_alpha) >> 8;
int right = spans->x + spans->len;
int len = qMin(l, right - x);
handler.process(x, y, len, coverage, src, offset);
l -= len;
x += len;
offset += len;
if (x == right) { // done with current span?
++spans;
--count;
}
}
handler.store(process_x, y, process_length);
}
}
}
struct QBlendBase
{
QBlendBase(QSpanData *d, Operator o)
: data(d)
, op(o)
, dest(0)
{
}
QSpanData *data;
Operator op;
uint *dest;
uint buffer[buffer_size];
uint src_buffer[buffer_size];
};
class BlendSrcGeneric : public QBlendBase
{
public:
BlendSrcGeneric(QSpanData *d, Operator o)
: QBlendBase(d, o)
{
}
const uint *fetch(int x, int y, int len)
{
dest = op.dest_fetch ? op.dest_fetch(buffer, data->rasterBuffer, x, y, len) : buffer;
return op.src_fetch(src_buffer, &op, data, y, x, len);
}
void process(int x, int y, int len, int coverage, const uint *src, int offset)
{
op.func(dest + offset, src + offset, len, coverage);
}
void store(int x, int y, int len)
{
if (op.dest_store) {
op.dest_store(data->rasterBuffer, x, y, dest, len);
}
}
};
static void blend_src_generic(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
BlendSrcGeneric blend(data, getOperator(data, spans, count));
handleSpans(count, spans, data, blend);
}
static void blend_untransformed_generic(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
uint buffer[buffer_size];
uint src_buffer[buffer_size];
Operator op = getOperator(data, spans, count);
const int image_width = data->texture.width;
const int image_height = data->texture.height;
int xoff = -qRound(-data->dx);
int yoff = -qRound(-data->dy);
while (count--) {
int x = spans->x;
int length = spans->len;
int sx = xoff + x;
int sy = yoff + spans->y;
if (sy >= 0 && sy < image_height && sx < image_width) {
if (sx < 0) {
x -= sx;
length += sx;
sx = 0;
}
if (sx + length > image_width)
length = image_width - sx;
if (length > 0) {
const int coverage = (spans->coverage * data->texture.const_alpha) >> 8;
while (length) {
int l = qMin(buffer_size, length);
const uint *src = op.src_fetch(src_buffer, &op, data, sy, sx, l);
uint *dest = op.dest_fetch ? op.dest_fetch(buffer, data->rasterBuffer, x, spans->y, l) : buffer;
op.func(dest, src, l, coverage);
if (op.dest_store)
op.dest_store(data->rasterBuffer, x, spans->y, dest, l);
x += l;
sx += l;
length -= l;
}
}
}
++spans;
}
}
static void blend_untransformed_argb(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
if (data->texture.format != QImage::Format_ARGB32_Premultiplied
&& data->texture.format != QImage::Format_RGB32) {
blend_untransformed_generic(count, spans, userData);
return;
}
Operator op = getOperator(data, spans, count);
const int image_width = data->texture.width;
const int image_height = data->texture.height;
int xoff = -qRound(-data->dx);
int yoff = -qRound(-data->dy);
while (count--) {
int x = spans->x;
int length = spans->len;
int sx = xoff + x;
int sy = yoff + spans->y;
if (sy >= 0 && sy < image_height && sx < image_width) {
if (sx < 0) {
x -= sx;
length += sx;
sx = 0;
}
if (sx + length > image_width)
length = image_width - sx;
if (length > 0) {
const int coverage = (spans->coverage * data->texture.const_alpha) >> 8;
const uint *src = (uint *)data->texture.scanLine(sy) + sx;
uint *dest = ((uint *)data->rasterBuffer->scanLine(spans->y)) + x;
op.func(dest, src, length, coverage);
}
}
++spans;
}
}
template <class DST, class SRC>
inline void madd_2(DST *dest, const quint16 alpha, const SRC *src)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
dest[0] = dest[0].byte_mul(alpha >> 8) + DST(src[0]);
dest[1] = dest[1].byte_mul(alpha & 0xff) + DST(src[1]);
}
template <class DST, class SRC>
inline void madd_4(DST *dest, const quint32 alpha, const SRC *src)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
dest[0] = dest[0].byte_mul(alpha >> 24) + DST(src[0]);
dest[1] = dest[1].byte_mul((alpha >> 16) & 0xff) + DST(src[1]);
dest[2] = dest[2].byte_mul((alpha >> 8) & 0xff) + DST(src[2]);
dest[3] = dest[3].byte_mul(alpha & 0xff) + DST(src[3]);
}
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
template <>
inline void madd_4(qargb8565 *dest, const quint32 a, const qargb8565 *src)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 *src32 = reinterpret_cast<const quint32*>(src);
quint32 *dest32 = reinterpret_cast<quint32*>(dest);
quint32 x, y, t;
quint8 a8;
{
x = dest32[0];
y = src32[0];
a8 = a >> 24;
// a0,g0
t = ((((x & 0x0007e0ff) * a8) >> 5) & 0x0007e0ff) + (y & 0x0007c0f8);
// r0,b0
t |= ((((x & 0x00f81f00) * a8) >> 5) & 0x00f81f00) + (y & 0x00f81f00);
a8 = (a >> 16) & 0xff;
// a1
t |= ((((x & 0xff000000) >> 5) * a8) & 0xff000000) + (y & 0xf8000000);
dest32[0] = t;
}
{
x = dest32[1];
y = src32[1];
// r1,b1
t = ((((x & 0x0000f81f) * a8) >> 5) & 0x0000f81f) + (y & 0x0000f81f);
// g1
t |= ((((x & 0x000007e0) * a8) >> 5) & 0x000007e0) + (y & 0x000007c0);
a8 = (a >> 8) & 0xff;
// a2
t |= ((((x & 0x00ff0000) * a8) >> 5) & 0x00ff0000) + (y & 0x00f80000);
{
// rgb2
quint16 x16 = (x >> 24) | ((dest32[2] & 0x000000ff) << 8);
quint16 y16 = (y >> 24) | ((src32[2] & 0x000000ff) << 8);
quint16 t16;
t16 = ((((x16 & 0xf81f) * a8) >> 5) & 0xf81f) + (y16 & 0xf81f);
t16 |= ((((x16 & 0x07e0) * a8) >> 5) & 0x07e0) + (y16 & 0x07c0);
// rg2
t |= ((t16 & 0x00ff) << 24);
dest32[1] = t;
x = dest32[2];
y = src32[2];
// gb2
t = (t16 >> 8);
}
}
{
a8 = a & 0xff;
// g3,a3
t |= ((((x & 0x07e0ff00) * a8) >> 5) & 0x07e0ff00) + (y & 0x07c0f800);
// r3,b3
t |= ((((x & 0xf81f0000) >> 5) * a8) & 0xf81f0000)+ (y & 0xf81f0000);
dest32[2] = t;
}
}
#endif
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
template <>
inline void madd_4(qargb8555 *dest, const quint32 a, const qargb8555 *src)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 *src32 = reinterpret_cast<const quint32*>(src);
quint32 *dest32 = reinterpret_cast<quint32*>(dest);
quint32 x, y, t;
quint8 a8;
{
x = dest32[0];
y = src32[0];
a8 = a >> 24;
// a0,g0
t = ((((x & 0x0003e0ff) * a8) >> 5) & 0x0003e0ff) + (y & 0x0003e0f8);
// r0,b0
t |= ((((x & 0x007c1f00) * a8) >> 5) & 0x007c1f00) + (y & 0x007c1f00);
a8 = (a >> 16) & 0xff;
// a1
t |= ((((x & 0xff000000) >> 5) * a8) & 0xff000000) + (y & 0xf8000000);
dest32[0] = t;
}
{
x = dest32[1];
y = src32[1];
// r1,b1
t = ((((x & 0x00007c1f) * a8) >> 5) & 0x00007c1f) + (y & 0x00007c1f);
// g1
t |= ((((x & 0x000003e0) * a8) >> 5) & 0x000003e0) + (y & 0x000003e0);
a8 = (a >> 8) & 0xff;
// a2
t |= ((((x & 0x00ff0000) * a8) >> 5) & 0x00ff0000) + (y & 0x00f80000);
{
// rgb2
quint16 x16 = (x >> 24) | ((dest32[2] & 0x000000ff) << 8);
quint16 y16 = (y >> 24) | ((src32[2] & 0x000000ff) << 8);
quint16 t16;
t16 = ((((x16 & 0x7c1f) * a8) >> 5) & 0x7c1f) + (y16 & 0x7c1f);
t16 |= ((((x16 & 0x03e0) * a8) >> 5) & 0x03e0) + (y16 & 0x03e0);
// rg2
t |= ((t16 & 0x00ff) << 24);
dest32[1] = t;
x = dest32[2];
y = src32[2];
// gb2
t = (t16 >> 8);
}
}
{
a8 = a & 0xff;
// g3,a3
t |= ((((x & 0x03e0ff00) * a8) >> 5) & 0x03e0ff00) + (y & 0x03e0f800);
// r3,b3
t |= ((((x & 0x7c1f0000) >> 5) * a8) & 0x7c1f0000)+ (y & 0x7c1f0000);
dest32[2] = t;
}
}
#endif
template <class T>
inline quint16 alpha_2(const T *src)
{
Q_ASSERT((quintptr(src) & 0x3) == 0);
if (T::hasAlpha())
return (src[0].alpha() << 8) | src[1].alpha();
else
return 0xffff;
}
template <class T>
inline quint32 alpha_4(const T *src)
{
Q_ASSERT((quintptr(src) & 0x3) == 0);
if (T::hasAlpha()) {
return (src[0].alpha() << 24) | (src[1].alpha() << 16)
| (src[2].alpha() << 8) | src[3].alpha();
} else {
return 0xffffffff;
}
}
template <>
inline quint32 alpha_4(const qargb8565 *src)
{
const quint8 *src8 = reinterpret_cast<const quint8*>(src);
return src8[0] << 24 | src8[3] << 16 | src8[6] << 8 | src8[9];
}
template <>
inline quint32 alpha_4(const qargb6666 *src)
{
const quint8 *src8 = reinterpret_cast<const quint8*>(src);
return ((src8[2] & 0xfc) | (src8[2] >> 6)) << 24
| ((src8[5] & 0xfc) | (src8[5] >> 6)) << 16
| ((src8[8] & 0xfc) | (src8[8] >> 6)) << 8
| ((src8[11] & 0xfc) | (src8[11] >> 6));
}
template <>
inline quint32 alpha_4(const qargb8555 *src)
{
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint8 *src8 = reinterpret_cast<const quint8*>(src);
return src8[0] << 24 | src8[3] << 16 | src8[6] << 8 | src8[9];
}
template <>
inline quint16 alpha_2(const qargb4444 *src)
{
const quint32 *src32 = reinterpret_cast<const quint32*>(src);
const quint32 t = (*src32 & 0xf000f000) |
((*src32 & 0xf000f000) >> 4);
return (t >> 24) | (t & 0xff00);
}
template <class T>
inline quint16 eff_alpha_2(quint16 alpha, const T*)
{
return (T::alpha((alpha >> 8) & 0xff) << 8)
| T::alpha(alpha & 0xff);
}
template <>
inline quint16 eff_alpha_2(quint16 a, const qrgb565*)
{
return ((((a & 0xff00) + 0x0100) >> 3) & 0xff00)
| ((((a & 0x00ff) + 0x0001) >> 3) & 0x00ff);
}
template <>
inline quint16 eff_alpha_2(quint16 a, const qrgb444*)
{
return (((a & 0x00ff) + 0x0001) >> 4)
| ((((a & 0xff00) + 0x0100) >> 4) & 0xff00);
}
template <>
inline quint16 eff_alpha_2(quint16 a, const qargb4444*)
{
return (((a & 0x00ff) + 0x0001) >> 4)
| ((((a & 0xff00) + 0x0100) >> 4) & 0xff00);
}
template <class T>
inline quint16 eff_ialpha_2(quint16 alpha, const T*)
{
return (T::ialpha((alpha >> 8) & 0xff) << 8)
| T::ialpha(alpha & 0xff);
}
template <>
inline quint16 eff_ialpha_2(quint16 a, const qrgb565 *dummy)
{
return 0x2020 - eff_alpha_2(a, dummy);
}
template <>
inline quint16 eff_ialpha_2(quint16 a, const qargb4444 *dummy)
{
return 0x1010 - eff_alpha_2(a, dummy);
}
template <>
inline quint16 eff_ialpha_2(quint16 a, const qrgb444 *dummy)
{
return 0x1010 - eff_alpha_2(a, dummy);
}
template <class T>
inline quint32 eff_alpha_4(quint32 alpha, const T*)
{
return (T::alpha(alpha >> 24) << 24)
| (T::alpha((alpha >> 16) & 0xff) << 16)
| (T::alpha((alpha >> 8) & 0xff) << 8)
| T::alpha(alpha & 0xff);
}
template <>
inline quint32 eff_alpha_4(quint32 a, const qrgb888*)
{
return a;
}
template <>
inline quint32 eff_alpha_4(quint32 a, const qargb8565*)
{
return ((((a & 0xff00ff00) + 0x01000100) >> 3) & 0xff00ff00)
| ((((a & 0x00ff00ff) + 0x00010001) >> 3) & 0x00ff00ff);
}
template <>
inline quint32 eff_alpha_4(quint32 a, const qargb6666*)
{
return ((((a & 0xff00ff00) >> 2) + 0x00400040) & 0xff00ff00)
| ((((a & 0x00ff00ff) + 0x00010001) >> 2) & 0x00ff00ff);
}
template <>
inline quint32 eff_alpha_4(quint32 a, const qrgb666*)
{
return ((((a & 0xff00ff00) >> 2) + 0x00400040) & 0xff00ff00)
| ((((a & 0x00ff00ff) + 0x00010001) >> 2) & 0x00ff00ff);
}
template <>
inline quint32 eff_alpha_4(quint32 a, const qargb8555*)
{
return ((((a & 0xff00ff00) + 0x01000100) >> 3) & 0xff00ff00)
| ((((a & 0x00ff00ff) + 0x00010001) >> 3) & 0x00ff00ff);
}
template <class T>
inline quint32 eff_ialpha_4(quint32 alpha, const T*)
{
return (T::ialpha(alpha >> 24) << 24)
| (T::ialpha((alpha >> 16) & 0xff) << 16)
| (T::ialpha((alpha >> 8) & 0xff) << 8)
| T::ialpha(alpha & 0xff);
}
template <>
inline quint32 eff_ialpha_4(quint32 a, const qrgb888*)
{
return ~a;
}
template <>
inline quint32 eff_ialpha_4(quint32 a, const qargb8565 *dummy)
{
return 0x20202020 - eff_alpha_4(a, dummy);
}
template <>
inline quint32 eff_ialpha_4(quint32 a, const qargb6666 *dummy)
{
return 0x40404040 - eff_alpha_4(a, dummy);
}
template <>
inline quint32 eff_ialpha_4(quint32 a, const qrgb666 *dummy)
{
return 0x40404040 - eff_alpha_4(a, dummy);
}
template <>
inline quint32 eff_ialpha_4(quint32 a, const qargb8555 *dummy)
{
return 0x20202020 - eff_alpha_4(a, dummy);
}
template <class DST, class SRC>
inline void interpolate_pixel_unaligned_2(DST *dest, const SRC *src,
quint16 alpha)
{
const quint16 a = eff_alpha_2(alpha, dest);
const quint16 ia = eff_ialpha_2(alpha, dest);
dest[0] = DST(src[0]).byte_mul(a >> 8) + dest[0].byte_mul(ia >> 8);
dest[1] = DST(src[1]).byte_mul(a & 0xff) + dest[1].byte_mul(ia & 0xff);
}
template <class DST, class SRC>
inline void interpolate_pixel_2(DST *dest, const SRC *src, quint16 alpha)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint16 a = eff_alpha_2(alpha, dest);
const quint16 ia = eff_ialpha_2(alpha, dest);
dest[0] = DST(src[0]).byte_mul(a >> 8) + dest[0].byte_mul(ia >> 8);
dest[1] = DST(src[1]).byte_mul(a & 0xff) + dest[1].byte_mul(ia & 0xff);
}
template <class DST, class SRC>
inline void interpolate_pixel(DST &dest, quint8 a, const SRC &src, quint8 b)
{
if (SRC::hasAlpha() && !DST::hasAlpha())
interpolate_pixel(dest, a, DST(src), b);
else
dest = dest.byte_mul(a) + DST(src).byte_mul(b);
}
template <>
inline void interpolate_pixel(qargb8565 &dest, quint8 a,
const qargb8565 &src, quint8 b)
{
quint8 *d = reinterpret_cast<quint8*>(&dest);
const quint8 *s = reinterpret_cast<const quint8*>(&src);
d[0] = (d[0] * a + s[0] * b) >> 5;
const quint16 x = (d[2] << 8) | d[1];
const quint16 y = (s[2] << 8) | s[1];
quint16 t = (((x & 0x07e0) * a + (y & 0x07e0) * b) >> 5) & 0x07e0;
t |= (((x & 0xf81f) * a + (y & 0xf81f) * b) >> 5) & 0xf81f;
d[1] = t & 0xff;
d[2] = t >> 8;
}
template <>
inline void interpolate_pixel(qrgb565 &dest, quint8 a,
const qrgb565 &src, quint8 b)
{
const quint16 x = dest.rawValue();
const quint16 y = src.rawValue();
quint16 t = (((x & 0x07e0) * a + (y & 0x07e0) * b) >> 5) & 0x07e0;
t |= (((x & 0xf81f) * a + (y & 0xf81f) * b) >> 5) & 0xf81f;
dest = t;
}
template <>
inline void interpolate_pixel(qrgb555 &dest, quint8 a,
const qrgb555 &src, quint8 b)
{
const quint16 x = dest.rawValue();
const quint16 y = src.rawValue();
quint16 t = (((x & 0x03e0) * a + (y & 0x03e0) * b) >> 5) & 0x03e0;
t |= ((((x & 0x7c1f) * a) + ((y & 0x7c1f) * b)) >> 5) & 0x7c1f;
dest = t;
}
template <>
inline void interpolate_pixel(qrgb444 &dest, quint8 a,
const qrgb444 &src, quint8 b)
{
const quint16 x = dest.rawValue();
const quint16 y = src.rawValue();
quint16 t = ((x & 0x00f0) * a + (y & 0x00f0) * b) & 0x0f00;
t |= ((x & 0x0f0f) * a + (y & 0x0f0f) * b) & 0xf0f0;
quint16 *d = reinterpret_cast<quint16*>(&dest);
*d = (t >> 4);
}
template <class DST, class SRC>
inline void interpolate_pixel_2(DST *dest, quint8 a,
const SRC *src, quint8 b)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
Q_ASSERT(!SRC::hasAlpha());
dest[0] = dest[0].byte_mul(a) + DST(src[0]).byte_mul(b);
dest[1] = dest[1].byte_mul(a) + DST(src[1]).byte_mul(b);
}
template <>
inline void interpolate_pixel_2(qrgb565 *dest, quint8 a,
const qrgb565 *src, quint8 b)
{
quint32 *x = reinterpret_cast<quint32*>(dest);
const quint32 *y = reinterpret_cast<const quint32*>(src);
quint32 t = (((*x & 0xf81f07e0) >> 5) * a +
((*y & 0xf81f07e0) >> 5) * b) & 0xf81f07e0;
t |= (((*x & 0x07e0f81f) * a
+ (*y & 0x07e0f81f) * b) >> 5) & 0x07e0f81f;
*x = t;
}
template <>
inline void interpolate_pixel_2(qrgb555 *dest, quint8 a,
const qrgb555 *src, quint8 b)
{
quint32 *x = reinterpret_cast<quint32*>(dest);
const quint32 *y = reinterpret_cast<const quint32*>(src);
quint32 t = (((*x & 0x7c1f03e0) >> 5) * a +
((*y & 0x7c1f03e0) >> 5) * b) & 0x7c1f03e0;
t |= (((*x & 0x03e07c1f) * a
+ (*y & 0x03e07c1f) * b) >> 5) & 0x03e07c1f;
*x = t;
}
template <>
inline void interpolate_pixel_2(qrgb444 *dest, quint8 a,
const qrgb444 *src, quint8 b)
{
quint32 *x = reinterpret_cast<quint32*>(dest);
const quint32 *y = reinterpret_cast<const quint32*>(src);
quint32 t = ((*x & 0x0f0f0f0f) * a + (*y & 0x0f0f0f0f) * b) & 0xf0f0f0f0;
t |= ((*x & 0x00f000f0) * a + (*y & 0x00f000f0) * b) & 0x0f000f00;
*x = t >> 4;
}
template <class DST, class SRC>
inline void interpolate_pixel_4(DST *dest, const SRC *src, quint32 alpha)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 a = eff_alpha_4(alpha, dest);
const quint32 ia = eff_ialpha_4(alpha, dest);
dest[0] = DST(src[0]).byte_mul(a >> 24)
+ dest[0].byte_mul(ia >> 24);
dest[1] = DST(src[1]).byte_mul((a >> 16) & 0xff)
+ dest[1].byte_mul((ia >> 16) & 0xff);
dest[2] = DST(src[2]).byte_mul((a >> 8) & 0xff)
+ dest[2].byte_mul((ia >> 8) & 0xff);
dest[3] = DST(src[3]).byte_mul(a & 0xff)
+ dest[3].byte_mul(ia & 0xff);
}
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
template <>
inline void interpolate_pixel_4(qargb8565 *dest, const qargb8565 *src,
quint32 alpha)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 a = eff_alpha_4(alpha, dest);
const quint32 ia = eff_ialpha_4(alpha, dest);
const quint32 *src32 = reinterpret_cast<const quint32*>(src);
quint32 *dest32 = reinterpret_cast<quint32*>(dest);
quint32 x, y, t;
quint8 a8, ia8;
{
x = src32[0];
y = dest32[0];
a8 = a >> 24;
ia8 = ia >> 24;
// a0,g0
t = (((x & 0x0007e0ff) * a8 + (y & 0x0007e0ff) * ia8) >> 5)
& 0x0007e0ff;
// r0,b0
t |= (((x & 0x00f81f00) * a8 + (y & 0x00f81f00) * ia8) >> 5)
& 0x00f81f00;
a8 = (a >> 16) & 0xff;
ia8 = (ia >> 16) & 0xff;
// a1
t |= (((x & 0xff000000) >> 5) * a8 + ((y & 0xff000000) >> 5) * ia8)
& 0xff000000;
dest32[0] = t;
}
{
x = src32[1];
y = dest32[1];
// r1,b1
t = (((x & 0x0000f81f) * a8 + (y & 0x0000f81f) * ia8) >> 5)
& 0x0000f81f;
// g1
t |= (((x & 0x000007e0) * a8 + (y & 0x000007e0) * ia8) >> 5)
& 0x000007e0;
a8 = (a >> 8) & 0xff;
ia8 = (ia >> 8) & 0xff;
// a2
t |= (((x & 0x00ff0000) * a8 + (y & 0x00ff0000) * ia8) >> 5)
& 0x00ff0000;
{
// rgb2
quint16 x16 = (x >> 24) | ((src32[2] & 0x000000ff) << 8);
quint16 y16 = (y >> 24) | ((dest32[2] & 0x000000ff) << 8);
quint16 t16;
t16 = (((x16 & 0xf81f) * a8 + (y16 & 0xf81f) * ia8) >> 5) & 0xf81f;
t16 |= (((x16 & 0x07e0) * a8 + (y16 & 0x07e0) * ia8) >> 5) & 0x07e0;
// rg2
t |= ((t16 & 0x00ff) << 24);
dest32[1] = t;
x = src32[2];
y = dest32[2];
// gb2
t = (t16 >> 8);
}
}
{
a8 = a & 0xff;
ia8 = ia & 0xff;
// g3,a3
t |= (((x & 0x07e0ff00) * a8 + (y & 0x07e0ff00) * ia8) >> 5)
& 0x07e0ff00;
// r3,b3
t |= (((x & 0xf81f0000) >> 5) * a8 + ((y & 0xf81f0000) >> 5) * ia8)
& 0xf81f0000;
dest32[2] = t;
}
}
#endif
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
template <>
inline void interpolate_pixel_4(qargb8555 *dest, const qargb8555 *src,
quint32 alpha)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 a = eff_alpha_4(alpha, dest);
const quint32 ia = eff_ialpha_4(alpha, dest);
const quint32 *src32 = reinterpret_cast<const quint32*>(src);
quint32 *dest32 = reinterpret_cast<quint32*>(dest);
quint32 x, y, t;
quint8 a8, ia8;
{
x = src32[0];
y = dest32[0];
a8 = a >> 24;
ia8 = ia >> 24;
// a0,g0
t = (((x & 0x0003e0ff) * a8 + (y & 0x0003e0ff) * ia8) >> 5)
& 0x0003e0ff;
// r0,b0
t |= (((x & 0x007c1f00) * a8 + (y & 0x007c1f00) * ia8) >> 5)
& 0x007c1f00;
a8 = (a >> 16) & 0xff;
ia8 = (ia >> 16) & 0xff;
// a1
t |= (((x & 0xff000000) >> 5) * a8 + ((y & 0xff000000) >> 5) * ia8)
& 0xff000000;
dest32[0] = t;
}
{
x = src32[1];
y = dest32[1];
// r1,b1
t = (((x & 0x00007c1f) * a8 + (y & 0x00007c1f) * ia8) >> 5)
& 0x00007c1f;
// g1
t |= (((x & 0x000003e0) * a8 + (y & 0x000003e0) * ia8) >> 5)
& 0x000003e0;
a8 = (a >> 8) & 0xff;
ia8 = (ia >> 8) & 0xff;
// a2
t |= (((x & 0x00ff0000) * a8 + (y & 0x00ff0000) * ia8) >> 5)
& 0x00ff0000;
{
// rgb2
quint16 x16 = (x >> 24) | ((src32[2] & 0x000000ff) << 8);
quint16 y16 = (y >> 24) | ((dest32[2] & 0x000000ff) << 8);
quint16 t16;
t16 = (((x16 & 0x7c1f) * a8 + (y16 & 0x7c1f) * ia8) >> 5) & 0x7c1f;
t16 |= (((x16 & 0x03e0) * a8 + (y16 & 0x03e0) * ia8) >> 5) & 0x03e0;
// rg2
t |= ((t16 & 0x00ff) << 24);
dest32[1] = t;
x = src32[2];
y = dest32[2];
// gb2
t = (t16 >> 8);
}
}
{
a8 = a & 0xff;
ia8 = ia & 0xff;
// g3,a3
t |= (((x & 0x03e0ff00) * a8 + (y & 0x03e0ff00) * ia8) >> 5)
& 0x03e0ff00;
// r3,b3
t |= (((x & 0x7c1f0000) >> 5) * a8 + ((y & 0x7c1f0000) >> 5) * ia8)
& 0x7c1f0000;
dest32[2] = t;
}
}
#endif
template <>
inline void interpolate_pixel_4(qrgb888 *dest, const qrgb888 *src,
quint32 alpha)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 a = eff_alpha_4(alpha, dest);
const quint32 ia = eff_ialpha_4(alpha, dest);
const quint32 *src32 = reinterpret_cast<const quint32*>(src);
quint32 *dest32 = reinterpret_cast<quint32*>(dest);
{
quint32 x = src32[0];
quint32 y = dest32[0];
quint32 t;
t = ((x >> 8) & 0xff00ff) * (a >> 24)
+ ((y >> 8) & 0xff00ff) * (ia >> 24);
t = (t + ((t >> 8) & 0xff00ff) + 0x800080);
t &= 0xff00ff00;
x = (x & 0xff0000) * (a >> 24)
+ (x & 0x0000ff) * ((a >> 16) & 0xff)
+ (y & 0xff0000) * (ia >> 24)
+ (y & 0x0000ff) * ((ia >> 16) & 0xff);
x = (x + ((x >> 8) & 0xff00ff) + 0x800080) >> 8;
x &= 0x00ff00ff;
dest32[0] = x | t;
}
{
quint32 x = src32[1];
quint32 y = dest32[1];
quint32 t;
t = ((x >> 8) & 0xff0000) * ((a >> 16) & 0xff)
+ ((x >> 8) & 0x0000ff) * ((a >> 8) & 0xff)
+ ((y >> 8) & 0xff0000) * ((ia >> 16) & 0xff)
+ ((y >> 8) & 0x0000ff) * ((ia >> 8) & 0xff);
t = (t + ((t >> 8) & 0xff00ff) + 0x800080);
t &= 0xff00ff00;
x = (x & 0xff0000) * ((a >> 16) & 0xff)
+ (x & 0x0000ff) * ((a >> 8) & 0xff)
+ (y & 0xff0000) * ((ia >> 16) & 0xff)
+ (y & 0x0000ff) * ((ia >> 8) & 0xff);
x = (x + ((x >> 8) & 0xff00ff) + 0x800080) >> 8;
x &= 0x00ff00ff;
dest32[1] = x | t;
}
{
quint32 x = src32[2];
quint32 y = dest32[2];
quint32 t;
t = ((x >> 8) & 0xff0000) * ((a >> 8) & 0xff)
+ ((x >> 8) & 0x0000ff) * (a & 0xff)
+ ((y >> 8) & 0xff0000) * ((ia >> 8) & 0xff)
+ ((y >> 8) & 0x0000ff) * (ia & 0xff);
t = (t + ((t >> 8) & 0xff00ff) + 0x800080);
t &= 0xff00ff00;
x = (x & 0xff00ff) * (a & 0xff)
+ (y & 0xff00ff) * (ia & 0xff);
x = (x + ((x >> 8) & 0xff00ff) + 0x800080) >> 8;
x &= 0x00ff00ff;
dest32[2] = x | t;
}
}
template <class DST, class SRC>
inline void interpolate_pixel_4(DST *dest, quint8 a,
const SRC *src, quint8 b)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
dest[0] = dest[0].byte_mul(a) + DST(src[0]).byte_mul(b);
dest[1] = dest[1].byte_mul(a) + DST(src[1]).byte_mul(b);
dest[2] = dest[2].byte_mul(a) + DST(src[2]).byte_mul(b);
dest[3] = dest[3].byte_mul(a) + DST(src[3]).byte_mul(b);
}
template <class DST, class SRC>
inline void blend_sourceOver_4(DST *dest, const SRC *src)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 a = alpha_4(src);
if (a == 0xffffffff) {
qt_memconvert(dest, src, 4);
} else if (a > 0) {
quint32 buf[3]; // array of quint32 to get correct alignment
qt_memconvert((DST*)(void*)buf, src, 4);
madd_4(dest, eff_ialpha_4(a, dest), (DST*)(void*)buf);
}
}
template <>
inline void blend_sourceOver_4(qargb8565 *dest, const qargb8565 *src)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 a = alpha_4(src);
if (a == 0xffffffff) {
qt_memconvert(dest, src, 4);
} else if (a > 0) {
madd_4(dest, eff_ialpha_4(a, dest), src);
}
}
template <>
inline void blend_sourceOver_4(qargb8555 *dest, const qargb8555 *src)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 a = alpha_4(src);
if (a == 0xffffffff) {
qt_memconvert(dest, src, 4);
} else if (a > 0) {
madd_4(dest, eff_ialpha_4(a, dest), src);
}
}
template <>
inline void blend_sourceOver_4(qargb6666 *dest, const qargb6666 *src)
{
Q_ASSERT((quintptr(dest) & 0x3) == 0);
Q_ASSERT((quintptr(src) & 0x3) == 0);
const quint32 a = alpha_4(src);
if (a == 0xffffffff) {
qt_memconvert(dest, src, 4);
} else if (a > 0) {
madd_4(dest, eff_ialpha_4(a, dest), src);
}
}
template <class DST, class SRC>
void QT_FASTCALL blendUntransformed_unaligned(DST *dest, const SRC *src,
quint8 coverage, int length)
{
Q_ASSERT(coverage > 0);
if (coverage < 255) {
if (SRC::hasAlpha()) {
for (int i = 0; i < length; ++i) {
if (src[i].alpha()) {
const quint8 alpha = qt_div_255(int(src[i].alpha()) * int(coverage));
interpolate_pixel(dest[i], DST::ialpha(alpha),
src[i], DST::alpha(alpha));
}
}
} else {
const quint8 alpha = DST::alpha(coverage);
const quint8 ialpha = DST::ialpha(coverage);
if (alpha) {
for (int i = 0; i < length; ++i)
interpolate_pixel(dest[i], ialpha, src[i], alpha);
}
}
return;
}
Q_ASSERT(coverage == 0xff);
Q_ASSERT(SRC::hasAlpha());
if (SRC::hasAlpha()) {
for (int i = 0; i < length; ++i) {
const quint8 a = src->alpha();
if (a == 0xff)
*dest = DST(*src);
else if (a > 0) {
if (DST::hasAlpha())
*dest = DST(*src).truncedAlpha() + dest->byte_mul(DST::ialpha(a));
else
*dest = DST(SRC(*src).truncedAlpha()) + dest->byte_mul(DST::ialpha(a));
}
++src;
++dest;
}
}
}
template <class DST, class SRC>
void QT_FASTCALL blendUntransformed_dest16(DST *dest, const SRC *src,
quint8 coverage, int length)
{
Q_ASSERT(sizeof(DST) == 2);
Q_ASSERT(sizeof(SRC) == 2);
Q_ASSERT((quintptr(dest) & 0x3) == (quintptr(src) & 0x3));
Q_ASSERT(coverage > 0);
const int align = quintptr(dest) & 0x3;
if (coverage < 255) {
// align
if (align) {
const quint8 alpha = SRC::hasAlpha()
? qt_div_255(int(src->alpha()) * int(coverage))
: coverage;
if (alpha) {
interpolate_pixel(*dest, DST::ialpha(alpha),
*src, DST::alpha(alpha));
}
++dest;
++src;
--length;
}
if (SRC::hasAlpha()) {
while (length >= 2) {
const quint16 alpha16 = BYTE_MUL(uint(alpha_2(src)), uint(coverage));
interpolate_pixel_2(dest, src, alpha16);
length -= 2;
src += 2;
dest += 2;
}
} else {
const quint8 alpha = DST::alpha(coverage);
const quint8 ialpha = DST::ialpha(coverage);
while (length >= 2) {
interpolate_pixel_2(dest, ialpha, src, alpha);
length -= 2;
src += 2;
dest += 2;
}
}
// tail
if (length) {
const quint8 alpha = SRC::hasAlpha()
? qt_div_255(int(src->alpha()) * int(coverage))
: coverage;
if (alpha) {
interpolate_pixel(*dest, DST::ialpha(alpha),
*src, DST::alpha(alpha));
}
}
return;
}
Q_ASSERT(SRC::hasAlpha());
if (SRC::hasAlpha()) {
if (align) {
const quint8 alpha = src->alpha();
if (alpha == 0xff)
*dest = DST(*src);
else if (alpha > 0)
*dest = DST(*src).truncedAlpha() + dest->byte_mul(DST::ialpha(alpha));
++dest;
++src;
--length;
}
while (length >= 2) {
Q_ASSERT((quintptr(dest) & 3) == 0);
Q_ASSERT((quintptr(src) & 3) == 0);
const quint16 a = alpha_2(src);
if (a == 0xffff) {
qt_memconvert(dest, src, 2);
} else if (a > 0) {
quint32 buf;
if (sizeof(DST) == 2)
qt_memconvert((DST*)(void*)&buf, src, 2);
madd_2(dest, eff_ialpha_2(a, dest), (DST*)(void*)&buf);
}
length -= 2;
src += 2;
dest += 2;
}
if (length) {
const quint8 alpha = src->alpha();
if (alpha == 0xff)
*dest = DST(*src);
else if (alpha > 0)
*dest = DST(*src).truncedAlpha() + dest->byte_mul(DST::ialpha(alpha));
}
}
}
template <class DST, class SRC>
void QT_FASTCALL blendUntransformed_dest24(DST *dest, const SRC *src,
quint8 coverage, int length)
{
Q_ASSERT((quintptr(dest) & 0x3) == (quintptr(src) & 0x3));
Q_ASSERT(sizeof(DST) == 3);
Q_ASSERT(coverage > 0);
const int align = quintptr(dest) & 0x3;
if (coverage < 255) {
// align
for (int i = 0; i < align; ++i) {
if (SRC::hasAlpha()) {
const quint8 alpha = qt_div_255(int(src->alpha()) * int(coverage));
if (alpha)
interpolate_pixel(*dest, DST::ialpha(alpha),
*src, DST::alpha(alpha));
} else {
interpolate_pixel(*dest, DST::ialpha(coverage),
*src, DST::alpha(coverage));
}
++dest;
++src;
--length;
}
if (SRC::hasAlpha()) {
while (length >= 4) {
const quint32 alpha = QT_PREPEND_NAMESPACE(BYTE_MUL)(uint(alpha_4(src)), uint(coverage));
if (alpha)
interpolate_pixel_4(dest, src, alpha);
length -= 4;
src += 4;
dest += 4;
}
} else {
const quint8 alpha = DST::alpha(coverage);
const quint8 ialpha = DST::ialpha(coverage);
while (length >= 4) {
interpolate_pixel_4(dest, ialpha, src, alpha);
length -= 4;
src += 4;
dest += 4;
}
}
// tail
while (length--) {
if (SRC::hasAlpha()) {
const quint8 alpha = qt_div_255(int(src->alpha()) * int(coverage));
if (alpha)
interpolate_pixel(*dest, DST::ialpha(alpha),
*src, DST::alpha(alpha));
} else {
interpolate_pixel(*dest, DST::ialpha(coverage),
*src, DST::alpha(coverage));
}
++dest;
++src;
}
return;
}
Q_ASSERT(coverage == 255);
Q_ASSERT(SRC::hasAlpha());
if (SRC::hasAlpha()) {
// align
for (int i = 0; i < align; ++i) {
const quint8 a = src->alpha();
if (a == 0xff) {
*dest = DST(*src);
} else if (a > 0) {
*dest = DST(*src).truncedAlpha() + dest->byte_mul(DST::ialpha(a));
}
++dest;
++src;
--length;
}
while (length >= 4) {
blend_sourceOver_4(dest, src);
length -= 4;
src += 4;
dest += 4;
}
// tail
while (length--) {
const quint8 a = src->alpha();
if (a == 0xff) {
*dest = DST(*src);
} else if (a > 0) {
*dest = DST(*src).truncedAlpha() + dest->byte_mul(DST::ialpha(a));
}
++dest;
++src;
}
}
}
template <class DST, class SRC>
void QT_FASTCALL blendUntransformed(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData*>(userData);
QPainter::CompositionMode mode = data->rasterBuffer->compositionMode;
if (mode != QPainter::CompositionMode_SourceOver &&
mode != QPainter::CompositionMode_Source)
{
blend_src_generic(count, spans, userData);
return;
}
const bool modeSource = !SRC::hasAlpha() ||
mode == QPainter::CompositionMode_Source;
const int image_width = data->texture.width;
const int image_height = data->texture.height;
int xoff = -qRound(-data->dx);
int yoff = -qRound(-data->dy);
while (count--) {
const quint8 coverage = (data->texture.const_alpha * spans->coverage) >> 8;
if (coverage == 0) {
++spans;
continue;
}
int x = spans->x;
int length = spans->len;
int sx = xoff + x;
int sy = yoff + spans->y;
if (sy >= 0 && sy < image_height && sx < image_width) {
if (sx < 0) {
x -= sx;
length += sx;
sx = 0;
}
if (sx + length > image_width)
length = image_width - sx;
if (length > 0) {
DST *dest = ((DST*)data->rasterBuffer->scanLine(spans->y)) + x;
const SRC *src = (SRC*)data->texture.scanLine(sy) + sx;
if (modeSource && coverage == 255) {
qt_memconvert<DST, SRC>(dest, src, length);
} else if (sizeof(DST) == 3 && sizeof(SRC) == 3 && length >= 3 &&
(quintptr(dest) & 3) == (quintptr(src) & 3))
{
blendUntransformed_dest24(dest, src, coverage, length);
} else if (sizeof(DST) == 2 && sizeof(SRC) == 2 && length >= 3 &&
(quintptr(dest) & 3) == (quintptr(src) & 3))
{
blendUntransformed_dest16(dest, src, coverage, length);
} else {
blendUntransformed_unaligned(dest, src, coverage, length);
}
}
}
++spans;
}
}
static void blend_untransformed_rgb888(int count, const QSpan *spans,
void *userData)
{
blend_untransformed_generic(count, spans, userData);
}
static void blend_untransformed_argb6666(int count, const QSpan *spans,
void *userData)
{
blend_untransformed_generic(count, spans, userData);
}
static void blend_untransformed_rgb666(int count, const QSpan *spans,
void *userData)
{
blend_untransformed_generic(count, spans, userData);
}
static void blend_untransformed_argb8565(int count, const QSpan *spans,
void *userData)
{
blend_untransformed_generic(count, spans, userData);
}
static void blend_untransformed_rgb565(int count, const QSpan *spans,
void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
if (data->texture.format == QImage::Format_ARGB8565_Premultiplied)
blendUntransformed<qrgb565, qargb8565>(count, spans, userData);
else if (data->texture.format == QImage::Format_RGB16)
blendUntransformed<qrgb565, qrgb565>(count, spans, userData);
else
blend_untransformed_generic(count, spans, userData);
}
static void blend_untransformed_argb8555(int count, const QSpan *spans,
void *userData)
{
blend_untransformed_generic(count, spans, userData);
}
static void blend_untransformed_rgb555(int count, const QSpan *spans,
void *userData)
{
blend_untransformed_generic(count, spans, userData);
}
static void blend_untransformed_argb4444(int count, const QSpan *spans,
void *userData)
{
blend_untransformed_generic(count, spans, userData);
}
static void blend_untransformed_rgb444(int count, const QSpan *spans,
void *userData)
{
blend_untransformed_generic(count, spans, userData);
}
static void blend_tiled_generic(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
uint buffer[buffer_size];
uint src_buffer[buffer_size];
Operator op = getOperator(data, spans, count);
const int image_width = data->texture.width;
const int image_height = data->texture.height;
int xoff = -qRound(-data->dx) % image_width;
int yoff = -qRound(-data->dy) % image_height;
if (xoff < 0)
xoff += image_width;
if (yoff < 0)
yoff += image_height;
while (count--) {
int x = spans->x;
int length = spans->len;
int sx = (xoff + spans->x) % image_width;
int sy = (spans->y + yoff) % image_height;
if (sx < 0)
sx += image_width;
if (sy < 0)
sy += image_height;
const int coverage = (spans->coverage * data->texture.const_alpha) >> 8;
while (length) {
int l = qMin(image_width - sx, length);
if (buffer_size < l)
l = buffer_size;
const uint *src = op.src_fetch(src_buffer, &op, data, sy, sx, l);
uint *dest = op.dest_fetch ? op.dest_fetch(buffer, data->rasterBuffer, x, spans->y, l) : buffer;
op.func(dest, src, l, coverage);
if (op.dest_store)
op.dest_store(data->rasterBuffer, x, spans->y, dest, l);
x += l;
sx += l;
length -= l;
if (sx >= image_width)
sx = 0;
}
++spans;
}
}
static void blend_tiled_argb(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
if (data->texture.format != QImage::Format_ARGB32_Premultiplied
&& data->texture.format != QImage::Format_RGB32) {
blend_tiled_generic(count, spans, userData);
return;
}
Operator op = getOperator(data, spans, count);
int image_width = data->texture.width;
int image_height = data->texture.height;
int xoff = -qRound(-data->dx) % image_width;
int yoff = -qRound(-data->dy) % image_height;
if (xoff < 0)
xoff += image_width;
if (yoff < 0)
yoff += image_height;
while (count--) {
int x = spans->x;
int length = spans->len;
int sx = (xoff + spans->x) % image_width;
int sy = (spans->y + yoff) % image_height;
if (sx < 0)
sx += image_width;
if (sy < 0)
sy += image_height;
const int coverage = (spans->coverage * data->texture.const_alpha) >> 8;
while (length) {
int l = qMin(image_width - sx, length);
if (buffer_size < l)
l = buffer_size;
const uint *src = (uint *)data->texture.scanLine(sy) + sx;
uint *dest = ((uint *)data->rasterBuffer->scanLine(spans->y)) + x;
op.func(dest, src, l, coverage);
x += l;
length -= l;
sx = 0;
}
++spans;
}
}
template <class DST, class SRC>
Q_STATIC_TEMPLATE_FUNCTION void blendTiled(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData*>(userData);
QPainter::CompositionMode mode = data->rasterBuffer->compositionMode;
if (mode != QPainter::CompositionMode_SourceOver &&
mode != QPainter::CompositionMode_Source)
{
blend_src_generic(count, spans, userData);
return;
}
const bool modeSource = !SRC::hasAlpha() ||
mode == QPainter::CompositionMode_Source;
const int image_width = data->texture.width;
const int image_height = data->texture.height;
int xoff = -qRound(-data->dx) % image_width;
int yoff = -qRound(-data->dy) % image_height;
if (xoff < 0)
xoff += image_width;
if (yoff < 0)
yoff += image_height;
while (count--) {
const quint8 coverage = (data->texture.const_alpha * spans->coverage) >> 8;
if (coverage == 0) {
++spans;
continue;
}
int x = spans->x;
int length = spans->len;
int sx = (xoff + spans->x) % image_width;
int sy = (spans->y + yoff) % image_height;
if (sx < 0)
sx += image_width;
if (sy < 0)
sy += image_height;
if (modeSource && coverage == 255) {
// Copy the first texture block
length = qMin(image_width,length);
int tx = x;
while (length) {
int l = qMin(image_width - sx, length);
if (buffer_size < l)
l = buffer_size;
DST *dest = ((DST*)data->rasterBuffer->scanLine(spans->y)) + tx;
const SRC *src = (SRC*)data->texture.scanLine(sy) + sx;
qt_memconvert<DST, SRC>(dest, src, l);
length -= l;
tx += l;
sx = 0;
}
// Now use the rasterBuffer as the source of the texture,
// We can now progressively copy larger blocks
// - Less cpu time in code figuring out what to copy
// We are dealing with one block of data
// - More likely to fit in the cache
// - can use memcpy
int copy_image_width = qMin(image_width, int(spans->len));
length = spans->len - copy_image_width;
DST *src = ((DST*)data->rasterBuffer->scanLine(spans->y)) + x;
DST *dest = src + copy_image_width;
while (copy_image_width < length) {
qt_memconvert(dest, src, copy_image_width);
dest += copy_image_width;
length -= copy_image_width;
copy_image_width *= 2;
}
if (length > 0)
qt_memconvert(dest, src, length);
} else {
while (length) {
int l = qMin(image_width - sx, length);
if (buffer_size < l)
l = buffer_size;
DST *dest = ((DST*)data->rasterBuffer->scanLine(spans->y)) + x;
const SRC *src = (SRC*)data->texture.scanLine(sy) + sx;
if (sizeof(DST) == 3 && sizeof(SRC) == 3 && l >= 4 &&
(quintptr(dest) & 3) == (quintptr(src) & 3))
{
blendUntransformed_dest24(dest, src, coverage, l);
} else if (sizeof(DST) == 2 && sizeof(SRC) == 2 && l >= 2 &&
(quintptr(dest) & 3) == (quintptr(src) & 3))
{
blendUntransformed_dest16(dest, src, coverage, l);
} else {
blendUntransformed_unaligned(dest, src, coverage, l);
}
x += l;
length -= l;
sx = 0;
}
}
++spans;
}
}
static void blend_tiled_rgb888(int count, const QSpan *spans, void *userData)
{
blend_tiled_generic(count, spans, userData);
}
static void blend_tiled_argb6666(int count, const QSpan *spans, void *userData)
{
blend_tiled_generic(count, spans, userData);
}
static void blend_tiled_rgb666(int count, const QSpan *spans, void *userData)
{
blend_tiled_generic(count, spans, userData);
}
static void blend_tiled_argb8565(int count, const QSpan *spans, void *userData)
{
blend_tiled_generic(count, spans, userData);
}
static void blend_tiled_rgb565(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
if (data->texture.format == QImage::Format_ARGB8565_Premultiplied)
blendTiled<qrgb565, qargb8565>(count, spans, userData);
else if (data->texture.format == QImage::Format_RGB16)
blendTiled<qrgb565, qrgb565>(count, spans, userData);
else
blend_tiled_generic(count, spans, userData);
}
static void blend_tiled_argb8555(int count, const QSpan *spans, void *userData)
{
blend_tiled_generic(count, spans, userData);
}
static void blend_tiled_rgb555(int count, const QSpan *spans, void *userData)
{
blend_tiled_generic(count, spans, userData);
}
static void blend_tiled_argb4444(int count, const QSpan *spans, void *userData)
{
blend_tiled_generic(count, spans, userData);
}
static void blend_tiled_rgb444(int count, const QSpan *spans, void *userData)
{
blend_tiled_generic(count, spans, userData);
}
template <class DST, class SRC>
Q_STATIC_TEMPLATE_FUNCTION void blendTransformedBilinear(int count, const QSpan *spans,
void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData*>(userData);
QPainter::CompositionMode mode = data->rasterBuffer->compositionMode;
if (mode != QPainter::CompositionMode_SourceOver) {
blend_src_generic(count, spans, userData);
return;
}
SRC buffer[buffer_size];
const int src_minx = data->texture.x1;
const int src_miny = data->texture.y1;
const int src_maxx = data->texture.x2 - 1;
const int src_maxy = data->texture.y2 - 1;
if (data->fast_matrix) {
// The increment pr x in the scanline
const int fdx = (int)(data->m11 * fixed_scale);
const int fdy = (int)(data->m12 * fixed_scale);
while (count--) {
const quint8 coverage = (data->texture.const_alpha * spans->coverage) >> 8;
if (coverage == 0) {
++spans;
continue;
}
DST *dest = (DST*)data->rasterBuffer->scanLine(spans->y)
+ spans->x;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
int x = int((data->m21 * cy
+ data->m11 * cx + data->dx) * fixed_scale) - half_point;
int y = int((data->m22 * cy
+ data->m12 * cx + data->dy) * fixed_scale) - half_point;
int length = spans->len;
while (length) {
const int l = qMin(length, buffer_size);
const SRC *end = buffer + l;
SRC *b = buffer;
while (b < end) {
int x1 = (x >> 16);
int x2;
int y1 = (y >> 16);
int y2;
const int distx = (x & 0x0000ffff) >> 8;
const int disty = (y & 0x0000ffff) >> 8;
if (x1 < src_minx) {
x2 = x1 = src_minx;
} else if (x1 >= src_maxx) {
x2 = x1 = src_maxx;
} else {
x2 = x1 + 1;
}
if (y1 < src_miny) {
y2 = y1 = src_miny;
} else if (y1 >= src_maxy) {
y2 = y1 = src_maxy;
} else {
y2 = y1 + 1;
}
#if 0
if (x1 == x2) {
if (y1 == y2) {
*b = ((SRC*)data->texture.scanLine(y1))[x1];
} else {
*b = ((SRC*)data->texture.scanLine(y1))[x1];
const SRC t = data->texture.scanLine(y2)[x1];
interpolate_pixel(*b, SRC::ialpha(disty),
t, SRC::alpha(disty));
}
} else if (y1 == y2) {
*b = ((SRC*)data->texture.scanLine(y1))[x1];
const SRC t = ((SRC*)data->texture.scanLine(y1))[x2];
interpolate_pixel(*b, SRC::ialpha(distx),
t, SRC::alpha(distx));
} else
#endif
{
const SRC *src1 = (SRC*)data->texture.scanLine(y1);
const SRC *src2 = (SRC*)data->texture.scanLine(y2);
SRC tl = src1[x1];
const SRC tr = src1[x2];
SRC bl = src2[x1];
const SRC br = src2[x2];
const quint8 ax = SRC::alpha(distx);
const quint8 iax = SRC::ialpha(distx);
interpolate_pixel(tl, iax, tr, ax);
interpolate_pixel(bl, iax, br, ax);
interpolate_pixel(tl, SRC::ialpha(disty),
bl, SRC::alpha(disty));
*b = tl;
}
++b;
x += fdx;
y += fdy;
}
if (!SRC::hasAlpha() && coverage == 255) {
qt_memconvert(dest, buffer, l);
} else if (sizeof(DST) == 3 && l >= 4 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3))
{
blendUntransformed_dest24(dest, buffer, coverage, l);
} else if (sizeof(DST) == 2 && sizeof(SRC) == 2 && l >= 2 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3)) {
blendUntransformed_dest16(dest, buffer, coverage, l);
} else {
blendUntransformed_unaligned(dest, buffer, coverage, l);
}
dest += l;
length -= l;
}
++spans;
}
} else {
const qreal fdx = data->m11;
const qreal fdy = data->m12;
const qreal fdw = data->m13;
while (count--) {
const quint8 coverage = (data->texture.const_alpha * spans->coverage) >> 8;
if (coverage == 0) {
++spans;
continue;
}
DST *dest = (DST*)data->rasterBuffer->scanLine(spans->y)
+ spans->x;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
qreal x = data->m21 * cy + data->m11 * cx + data->dx;
qreal y = data->m22 * cy + data->m12 * cx + data->dy;
qreal w = data->m23 * cy + data->m13 * cx + data->m33;
int length = spans->len;
while (length) {
const int l = qMin(length, buffer_size);
const SRC *end = buffer + l;
SRC *b = buffer;
while (b < end) {
const qreal iw = w == 0 ? 1 : 1 / w;
const qreal px = x * iw - qreal(0.5);
const qreal py = y * iw - qreal(0.5);
int x1 = int(px) - (px < 0);
int x2;
int y1 = int(py) - (py < 0);
int y2;
const int distx = int((px - x1) * 256);
const int disty = int((py - y1) * 256);
if (x1 < src_minx) {
x2 = x1 = src_minx;
} else if (x1 >= src_maxx) {
x2 = x1 = src_maxx;
} else {
x2 = x1 + 1;
}
if (y1 < src_miny) {
y2 = y1 = src_miny;
} else if (y1 >= src_maxy) {
y2 = y1 = src_maxy;
} else {
y2 = y1 + 1;
}
const SRC *src1 = (SRC*)data->texture.scanLine(y1);
const SRC *src2 = (SRC*)data->texture.scanLine(y2);
SRC tl = src1[x1];
const SRC tr = src1[x2];
SRC bl = src2[x1];
const SRC br = src2[x2];
const quint8 ax = SRC::alpha(distx);
const quint8 iax = SRC::ialpha(distx);
interpolate_pixel(tl, iax, tr, ax);
interpolate_pixel(bl, iax, br, ax);
interpolate_pixel(tl, SRC::ialpha(disty),
bl, SRC::alpha(disty));
*b = tl;
++b;
x += fdx;
y += fdy;
w += fdw;
}
if (!SRC::hasAlpha() && coverage == 255) {
qt_memconvert(dest, buffer, l);
} else if (sizeof(DST) == 3 && l >= 4 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3))
{
blendUntransformed_dest24(dest, buffer, coverage, l);
} else if (sizeof(DST) == 2 && sizeof(SRC) == 2 && l >= 2 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3)) {
blendUntransformed_dest16(dest, buffer, coverage, l);
} else {
blendUntransformed_unaligned(dest, buffer, coverage, l);
}
dest += l;
length -= l;
}
++spans;
}
}
}
static void blend_transformed_bilinear_rgb888(int count, const QSpan *spans, void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_bilinear_argb6666(int count, const QSpan *spans, void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_bilinear_rgb666(int count, const QSpan *spans, void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_bilinear_argb8565(int count, const QSpan *spans, void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_bilinear_rgb565(int count, const QSpan *spans,
void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
if (data->texture.format == QImage::Format_RGB16)
blendTransformedBilinear<qrgb565, qrgb565>(count, spans, userData);
else if (data->texture.format == QImage::Format_ARGB8565_Premultiplied)
blendTransformedBilinear<qrgb565, qargb8565>(count, spans, userData);
else
blend_src_generic(count, spans, userData);
}
static void blend_transformed_bilinear_argb8555(int count, const QSpan *spans, void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_bilinear_rgb555(int count, const QSpan *spans, void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_bilinear_argb4444(int count, const QSpan *spans, void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_bilinear_rgb444(int count, const QSpan *spans, void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_argb(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
if (data->texture.format != QImage::Format_ARGB32_Premultiplied
&& data->texture.format != QImage::Format_RGB32) {
blend_src_generic(count, spans, userData);
return;
}
CompositionFunction func = functionForMode[data->rasterBuffer->compositionMode];
uint buffer[buffer_size];
int image_width = data->texture.width;
int image_height = data->texture.height;
const int scanline_offset = data->texture.bytesPerLine / 4;
if (data->fast_matrix) {
// The increment pr x in the scanline
int fdx = (int)(data->m11 * fixed_scale);
int fdy = (int)(data->m12 * fixed_scale);
while (count--) {
void *t = data->rasterBuffer->scanLine(spans->y);
uint *target = ((uint *)t) + spans->x;
uint *image_bits = (uint *)data->texture.imageData;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
int x = int((data->m21 * cy
+ data->m11 * cx + data->dx) * fixed_scale);
int y = int((data->m22 * cy
+ data->m12 * cx + data->dy) * fixed_scale);
int length = spans->len;
const int coverage = (spans->coverage * data->texture.const_alpha) >> 8;
while (length) {
int l = qMin(length, buffer_size);
const uint *end = buffer + l;
uint *b = buffer;
while (b < end) {
int px = x >> 16;
int py = y >> 16;
bool out = (px < 0) || (px >= image_width)
|| (py < 0) || (py >= image_height);
int y_offset = py * scanline_offset;
*b = out ? uint(0) : image_bits[y_offset + px];
x += fdx;
y += fdy;
++b;
}
func(target, buffer, l, coverage);
target += l;
length -= l;
}
++spans;
}
} else {
const qreal fdx = data->m11;
const qreal fdy = data->m12;
const qreal fdw = data->m13;
while (count--) {
void *t = data->rasterBuffer->scanLine(spans->y);
uint *target = ((uint *)t) + spans->x;
uint *image_bits = (uint *)data->texture.imageData;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
qreal x = data->m21 * cy + data->m11 * cx + data->dx;
qreal y = data->m22 * cy + data->m12 * cx + data->dy;
qreal w = data->m23 * cy + data->m13 * cx + data->m33;
int length = spans->len;
const int coverage = (spans->coverage * data->texture.const_alpha) >> 8;
while (length) {
int l = qMin(length, buffer_size);
const uint *end = buffer + l;
uint *b = buffer;
while (b < end) {
const qreal iw = w == 0 ? 1 : 1 / w;
const qreal tx = x * iw;
const qreal ty = y * iw;
const int px = int(tx) - (tx < 0);
const int py = int(ty) - (ty < 0);
bool out = (px < 0) || (px >= image_width)
|| (py < 0) || (py >= image_height);
int y_offset = py * scanline_offset;
*b = out ? uint(0) : image_bits[y_offset + px];
x += fdx;
y += fdy;
w += fdw;
++b;
}
func(target, buffer, l, coverage);
target += l;
length -= l;
}
++spans;
}
}
}
template <class DST, class SRC>
Q_STATIC_TEMPLATE_FUNCTION void blendTransformed(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData*>(userData);
QPainter::CompositionMode mode = data->rasterBuffer->compositionMode;
if (mode != QPainter::CompositionMode_SourceOver) {
blend_src_generic(count, spans, userData);
return;
}
SRC buffer[buffer_size];
const int image_width = data->texture.width;
const int image_height = data->texture.height;
if (data->fast_matrix) {
// The increment pr x in the scanline
const int fdx = (int)(data->m11 * fixed_scale);
const int fdy = (int)(data->m12 * fixed_scale);
while (count--) {
const quint8 coverage = (data->texture.const_alpha * spans->coverage) >> 8;
if (coverage == 0) {
++spans;
continue;
}
DST *dest = (DST*)data->rasterBuffer->scanLine(spans->y)
+ spans->x;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
int x = int((data->m21 * cy
+ data->m11 * cx + data->dx) * fixed_scale);
int y = int((data->m22 * cy
+ data->m12 * cx + data->dy) * fixed_scale);
int length = spans->len;
while (length) {
const int l = qMin(length, buffer_size);
const SRC *end = buffer + l;
SRC *b = buffer;
while (b < end) {
const int px = (x >> 16);
const int py = (y >> 16);
if ((px < 0) || (px >= image_width) ||
(py < 0) || (py >= image_height))
{
*b = 0;
} else {
*b = ((SRC*)data->texture.scanLine(py))[px];
}
++b;
x += fdx;
y += fdy;
}
if (!SRC::hasAlpha() && coverage == 255) {
qt_memconvert(dest, buffer, l);
} else if (sizeof(DST) == 3 && sizeof(SRC) == 3 && l >= 4 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3))
{
blendUntransformed_dest24(dest, buffer, coverage, l);
} else if (sizeof(DST) == 2 && sizeof(SRC) == 2 && l >= 2 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3)) {
blendUntransformed_dest16(dest, buffer, coverage, l);
} else {
blendUntransformed_unaligned(dest, buffer, coverage, l);
}
dest += l;
length -= l;
}
++spans;
}
} else {
const qreal fdx = data->m11;
const qreal fdy = data->m12;
const qreal fdw = data->m13;
while (count--) {
const quint8 coverage = (data->texture.const_alpha * spans->coverage) >> 8;
if (coverage == 0) {
++spans;
continue;
}
DST *dest = (DST*)data->rasterBuffer->scanLine(spans->y)
+ spans->x;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
qreal x = data->m21 * cy + data->m11 * cx + data->dx;
qreal y = data->m22 * cy + data->m12 * cx + data->dy;
qreal w = data->m23 * cy + data->m13 * cx + data->m33;
int length = spans->len;
while (length) {
const int l = qMin(length, buffer_size);
const SRC *end = buffer + l;
SRC *b = buffer;
while (b < end) {
const qreal iw = w == 0 ? 1 : 1 / w;
const qreal tx = x * iw;
const qreal ty = y * iw;
const int px = int(tx) - (tx < 0);
const int py = int(ty) - (ty < 0);
if ((px < 0) || (px >= image_width) ||
(py < 0) || (py >= image_height))
{
*b = 0;
} else {
*b = ((SRC*)data->texture.scanLine(py))[px];
}
++b;
x += fdx;
y += fdy;
w += fdw;
}
if (!SRC::hasAlpha() && coverage == 255) {
qt_memconvert(dest, buffer, l);
} else if (sizeof(DST) == 3 && sizeof(SRC) == 3 && l >= 4 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3))
{
blendUntransformed_dest24(dest, buffer, coverage, l);
} else if (sizeof(DST) == 2 && sizeof(SRC) == 2 && l >= 2 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3)) {
blendUntransformed_dest16(dest, buffer, coverage, l);
} else {
blendUntransformed_unaligned(dest, buffer, coverage, l);
}
dest += l;
length -= l;
}
++spans;
}
}
}
static void blend_transformed_rgb888(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_argb6666(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_rgb666(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_argb8565(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_rgb565(int count, const QSpan *spans,
void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
if (data->texture.format == QImage::Format_ARGB8565_Premultiplied)
blendTransformed<qrgb565, qargb8565>(count, spans, userData);
else if (data->texture.format == QImage::Format_RGB16)
blendTransformed<qrgb565, qrgb565>(count, spans, userData);
else
blend_src_generic(count, spans, userData);
}
static void blend_transformed_argb8555(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_rgb555(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_argb4444(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_rgb444(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_tiled_argb(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
if (data->texture.format != QImage::Format_ARGB32_Premultiplied
&& data->texture.format != QImage::Format_RGB32) {
blend_src_generic(count, spans, userData);
return;
}
CompositionFunction func = functionForMode[data->rasterBuffer->compositionMode];
uint buffer[buffer_size];
int image_width = data->texture.width;
int image_height = data->texture.height;
const int scanline_offset = data->texture.bytesPerLine / 4;
if (data->fast_matrix) {
// The increment pr x in the scanline
int fdx = (int)(data->m11 * fixed_scale);
int fdy = (int)(data->m12 * fixed_scale);
while (count--) {
void *t = data->rasterBuffer->scanLine(spans->y);
uint *target = ((uint *)t) + spans->x;
uint *image_bits = (uint *)data->texture.imageData;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
int x = int((data->m21 * cy
+ data->m11 * cx + data->dx) * fixed_scale);
int y = int((data->m22 * cy
+ data->m12 * cx + data->dy) * fixed_scale);
const int coverage = (spans->coverage * data->texture.const_alpha) >> 8;
int length = spans->len;
while (length) {
int l = qMin(length, buffer_size);
const uint *end = buffer + l;
uint *b = buffer;
while (b < end) {
int px = x >> 16;
int py = y >> 16;
px %= image_width;
py %= image_height;
if (px < 0) px += image_width;
if (py < 0) py += image_height;
int y_offset = py * scanline_offset;
Q_ASSERT(px >= 0 && px < image_width);
Q_ASSERT(py >= 0 && py < image_height);
*b = image_bits[y_offset + px];
x += fdx;
y += fdy;
++b;
}
func(target, buffer, l, coverage);
target += l;
length -= l;
}
++spans;
}
} else {
const qreal fdx = data->m11;
const qreal fdy = data->m12;
const qreal fdw = data->m13;
while (count--) {
void *t = data->rasterBuffer->scanLine(spans->y);
uint *target = ((uint *)t) + spans->x;
uint *image_bits = (uint *)data->texture.imageData;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
qreal x = data->m21 * cy + data->m11 * cx + data->dx;
qreal y = data->m22 * cy + data->m12 * cx + data->dy;
qreal w = data->m23 * cy + data->m13 * cx + data->m33;
const int coverage = (spans->coverage * data->texture.const_alpha) >> 8;
int length = spans->len;
while (length) {
int l = qMin(length, buffer_size);
const uint *end = buffer + l;
uint *b = buffer;
while (b < end) {
const qreal iw = w == 0 ? 1 : 1 / w;
const qreal tx = x * iw;
const qreal ty = y * iw;
int px = int(tx) - (tx < 0);
int py = int(ty) - (ty < 0);
px %= image_width;
py %= image_height;
if (px < 0) px += image_width;
if (py < 0) py += image_height;
int y_offset = py * scanline_offset;
Q_ASSERT(px >= 0 && px < image_width);
Q_ASSERT(py >= 0 && py < image_height);
*b = image_bits[y_offset + px];
x += fdx;
y += fdy;
w += fdw;
//force increment to avoid /0
if (!w) {
w += fdw;
}
++b;
}
func(target, buffer, l, coverage);
target += l;
length -= l;
}
++spans;
}
}
}
template <class DST, class SRC>
Q_STATIC_TEMPLATE_FUNCTION void blendTransformedTiled(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData*>(userData);
QPainter::CompositionMode mode = data->rasterBuffer->compositionMode;
if (mode != QPainter::CompositionMode_SourceOver) {
blend_src_generic(count, spans, userData);
return;
}
SRC buffer[buffer_size];
const int image_width = data->texture.width;
const int image_height = data->texture.height;
if (data->fast_matrix) {
// The increment pr x in the scanline
const int fdx = (int)(data->m11 * fixed_scale);
const int fdy = (int)(data->m12 * fixed_scale);
while (count--) {
const quint8 coverage = (data->texture.const_alpha * spans->coverage) >> 8;
if (coverage == 0) {
++spans;
continue;
}
DST *dest = (DST*)data->rasterBuffer->scanLine(spans->y)
+ spans->x;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
int x = int((data->m21 * cy
+ data->m11 * cx + data->dx) * fixed_scale);
int y = int((data->m22 * cy
+ data->m12 * cx + data->dy) * fixed_scale);
int length = spans->len;
while (length) {
const int l = qMin(length, buffer_size);
const SRC *end = buffer + l;
SRC *b = buffer;
while (b < end) {
int px = (x >> 16) % image_width;
int py = (y >> 16) % image_height;
if (px < 0)
px += image_width;
if (py < 0)
py += image_height;
*b = ((SRC*)data->texture.scanLine(py))[px];
++b;
x += fdx;
y += fdy;
}
if (!SRC::hasAlpha() && coverage == 255) {
qt_memconvert(dest, buffer, l);
} else if (sizeof(DST) == 3 && sizeof(SRC) == 3 && l >= 4 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3))
{
blendUntransformed_dest24(dest, buffer, coverage, l);
} else if (sizeof(DST) == 2 && sizeof(SRC) == 2 && l >= 2 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3)) {
blendUntransformed_dest16(dest, buffer, coverage, l);
} else {
blendUntransformed_unaligned(dest, buffer, coverage, l);
}
dest += l;
length -= l;
}
++spans;
}
} else {
const qreal fdx = data->m11;
const qreal fdy = data->m12;
const qreal fdw = data->m13;
while (count--) {
const quint8 coverage = (data->texture.const_alpha * spans->coverage) >> 8;
if (coverage == 0) {
++spans;
continue;
}
DST *dest = (DST*)data->rasterBuffer->scanLine(spans->y)
+ spans->x;
const qreal cx = spans->x + qreal(0.5);
const qreal cy = spans->y + qreal(0.5);
qreal x = data->m21 * cy + data->m11 * cx + data->dx;
qreal y = data->m22 * cy + data->m12 * cx + data->dy;
qreal w = data->m23 * cy + data->m13 * cx + data->m33;
int length = spans->len;
while (length) {
const int l = qMin(length, buffer_size);
const SRC *end = buffer + l;
SRC *b = buffer;
while (b < end) {
const qreal iw = w == 0 ? 1 : 1 / w;
const qreal tx = x * iw;
const qreal ty = y * iw;
int px = int(tx) - (tx < 0);
int py = int(ty) - (ty < 0);
px %= image_width;
py %= image_height;
if (px < 0)
px += image_width;
if (py < 0)
py += image_height;
*b = ((SRC*)data->texture.scanLine(py))[px];
++b;
x += fdx;
y += fdy;
w += fdw;
// force increment to avoid /0
if (!w)
w += fdw;
}
if (!SRC::hasAlpha() && coverage == 255) {
qt_memconvert(dest, buffer, l);
} else if (sizeof(DST) == 3 && sizeof(SRC) == 3 && l >= 4 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3))
{
blendUntransformed_dest24(dest, buffer, coverage, l);
} else if (sizeof(DST) == 2 && sizeof(SRC) == 2 && l >= 2 &&
(quintptr(dest) & 3) == (quintptr(buffer) & 3)) {
blendUntransformed_dest16(dest, buffer, coverage, l);
} else {
blendUntransformed_unaligned(dest, buffer, coverage, l);
}
dest += l;
length -= l;
}
++spans;
}
}
}
static void blend_transformed_tiled_rgb888(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_tiled_argb6666(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_tiled_rgb666(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_tiled_argb8565(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_tiled_rgb565(int count, const QSpan *spans,
void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
if (data->texture.format == QImage::Format_ARGB8565_Premultiplied)
blendTransformedTiled<qrgb565, qargb8565>(count, spans, userData);
else if (data->texture.format == QImage::Format_RGB16)
blendTransformedTiled<qrgb565, qrgb565>(count, spans, userData);
else
blend_src_generic(count, spans, userData);
}
static void blend_transformed_tiled_argb8555(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_tiled_rgb555(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_tiled_argb4444(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
static void blend_transformed_tiled_rgb444(int count, const QSpan *spans,
void *userData)
{
blend_src_generic(count, spans, userData);
}
/* Image formats here are target formats */
static const ProcessSpans processTextureSpans[NBlendTypes][QImage::NImageFormats] = {
// Untransformed
{
0, // Invalid
blend_untransformed_generic, // Mono
blend_untransformed_generic, // MonoLsb
blend_untransformed_generic, // Indexed8
blend_untransformed_generic, // RGB32
blend_untransformed_generic, // ARGB32
blend_untransformed_argb, // ARGB32_Premultiplied
blend_untransformed_rgb565,
blend_untransformed_argb8565,
blend_untransformed_rgb666,
blend_untransformed_argb6666,
blend_untransformed_rgb555,
blend_untransformed_argb8555,
blend_untransformed_rgb888,
blend_untransformed_rgb444,
blend_untransformed_argb4444,
},
// Tiled
{
0, // Invalid
blend_tiled_generic, // Mono
blend_tiled_generic, // MonoLsb
blend_tiled_generic, // Indexed8
blend_tiled_generic, // RGB32
blend_tiled_generic, // ARGB32
blend_tiled_argb, // ARGB32_Premultiplied
blend_tiled_rgb565,
blend_tiled_argb8565,
blend_tiled_rgb666,
blend_tiled_argb6666,
blend_tiled_rgb555,
blend_tiled_argb8555,
blend_tiled_rgb888,
blend_tiled_rgb444,
blend_tiled_argb4444,
},
// Transformed
{
0, // Invalid
blend_src_generic, // Mono
blend_src_generic, // MonoLsb
blend_src_generic, // Indexed8
blend_src_generic, // RGB32
blend_src_generic, // ARGB32
blend_transformed_argb, // ARGB32_Premultiplied
blend_transformed_rgb565,
blend_transformed_argb8565,
blend_transformed_rgb666,
blend_transformed_argb6666,
blend_transformed_rgb555,
blend_transformed_argb8555,
blend_transformed_rgb888,
blend_transformed_rgb444,
blend_transformed_argb4444,
},
// TransformedTiled
{
0,
blend_src_generic, // Mono
blend_src_generic, // MonoLsb
blend_src_generic, // Indexed8
blend_src_generic, // RGB32
blend_src_generic, // ARGB32
blend_transformed_tiled_argb, // ARGB32_Premultiplied
blend_transformed_tiled_rgb565,
blend_transformed_tiled_argb8565,
blend_transformed_tiled_rgb666,
blend_transformed_tiled_argb6666,
blend_transformed_tiled_rgb555,
blend_transformed_tiled_argb8555,
blend_transformed_tiled_rgb888,
blend_transformed_tiled_rgb444,
blend_transformed_tiled_argb4444
},
// Bilinear
{
0,
blend_src_generic, // Mono
blend_src_generic, // MonoLsb
blend_src_generic, // Indexed8
blend_src_generic, // RGB32
blend_src_generic, // ARGB32
blend_src_generic, // ARGB32_Premultiplied
blend_transformed_bilinear_rgb565,
blend_transformed_bilinear_argb8565,
blend_transformed_bilinear_rgb666,
blend_transformed_bilinear_argb6666,
blend_transformed_bilinear_rgb555,
blend_transformed_bilinear_argb8555,
blend_transformed_bilinear_rgb888,
blend_transformed_bilinear_rgb444,
blend_transformed_bilinear_argb4444,
},
// BilinearTiled
{
0,
blend_src_generic, // Mono
blend_src_generic, // MonoLsb
blend_src_generic, // Indexed8
blend_src_generic, // RGB32
blend_src_generic, // ARGB32
blend_src_generic, // ARGB32_Premultiplied
blend_src_generic, // RGB16
blend_src_generic, // ARGB8565_Premultiplied
blend_src_generic, // RGB666
blend_src_generic, // ARGB6666_Premultiplied
blend_src_generic, // RGB555
blend_src_generic, // ARGB8555_Premultiplied
blend_src_generic, // RGB888
blend_src_generic, // RGB444
blend_src_generic, // ARGB4444_Premultiplied
}
};
void qBlendTexture(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
ProcessSpans proc = processTextureSpans[getBlendType(data)][data->rasterBuffer->format];
proc(count, spans, userData);
}
template <class DST>
inline void qt_bitmapblit_template(QRasterBuffer *rasterBuffer,
int x, int y, quint32 color,
const uchar *map,
int mapWidth, int mapHeight, int mapStride,
DST dummy = 0)
{
Q_UNUSED(dummy);
const DST c = qt_colorConvert<DST, quint32>(color, 0);
DST *dest = reinterpret_cast<DST*>(rasterBuffer->scanLine(y)) + x;
const int destStride = rasterBuffer->bytesPerLine() / sizeof(DST);
if (mapWidth > 8) {
while (mapHeight--) {
int x0 = 0;
int n = 0;
for (int x = 0; x < mapWidth; x += 8) {
uchar s = map[x >> 3];
for (int i = 0; i < 8; ++i) {
if (s & 0x80) {
++n;
} else {
if (n) {
qt_memfill(dest + x0, c, n);
x0 += n + 1;
n = 0;
} else {
++x0;
}
if (!s) {
x0 += 8 - 1 - i;
break;
}
}
s <<= 1;
}
}
if (n)
qt_memfill(dest + x0, c, n);
dest += destStride;
map += mapStride;
}
} else {
while (mapHeight--) {
int x0 = 0;
int n = 0;
for (uchar s = *map; s; s <<= 1) {
if (s & 0x80) {
++n;
} else if (n) {
qt_memfill(dest + x0, c, n);
x0 += n + 1;
n = 0;
} else {
++x0;
}
}
if (n)
qt_memfill(dest + x0, c, n);
dest += destStride;
map += mapStride;
}
}
}
static void qt_gradient_quint32(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
bool isVerticalGradient =
data->txop <= QTransform::TxScale &&
data->type == QSpanData::LinearGradient &&
data->gradient.linear.end.x == data->gradient.linear.origin.x;
if (isVerticalGradient) {
LinearGradientValues linear;
getLinearGradientValues(&linear, data);
CompositionFunctionSolid funcSolid =
functionForModeSolid[data->rasterBuffer->compositionMode];
/*
The logic for vertical gradient calculations is a mathematically
reduced copy of that in fetchLinearGradient() - which is basically:
qreal ry = data->m22 * (y + 0.5) + data->dy;
qreal t = linear.dy*ry + linear.off;
t *= (GRADIENT_STOPTABLE_SIZE - 1);
quint32 color =
qt_gradient_pixel_fixed(&data->gradient,
int(t * FIXPT_SIZE));
This has then been converted to fixed point to improve performance.
*/
const int gss = GRADIENT_STOPTABLE_SIZE - 1;
int yinc = int((linear.dy * data->m22 * gss) * FIXPT_SIZE);
int off = int((((linear.dy * (data->m22 * qreal(0.5) + data->dy) + linear.off) * gss) * FIXPT_SIZE));
while (count--) {
int y = spans->y;
int x = spans->x;
quint32 *dst = (quint32 *)(data->rasterBuffer->scanLine(y)) + x;
quint32 color =
qt_gradient_pixel_fixed(&data->gradient, yinc * y + off);
funcSolid(dst, spans->len, color, spans->coverage);
++spans;
}
} else {
blend_src_generic(count, spans, userData);
}
}
static void qt_gradient_quint16(int count, const QSpan *spans, void *userData)
{
QSpanData *data = reinterpret_cast<QSpanData *>(userData);
bool isVerticalGradient =
data->txop <= QTransform::TxScale &&
data->type == QSpanData::LinearGradient &&
data->gradient.linear.end.x == data->gradient.linear.origin.x;
if (isVerticalGradient) {
LinearGradientValues linear;
getLinearGradientValues(&linear, data);
/*
The logic for vertical gradient calculations is a mathematically
reduced copy of that in fetchLinearGradient() - which is basically:
qreal ry = data->m22 * (y + 0.5) + data->dy;
qreal t = linear.dy*ry + linear.off;
t *= (GRADIENT_STOPTABLE_SIZE - 1);
quint32 color =
qt_gradient_pixel_fixed(&data->gradient,
int(t * FIXPT_SIZE));
This has then been converted to fixed point to improve performance.
*/
const int gss = GRADIENT_STOPTABLE_SIZE - 1;
int yinc = int((linear.dy * data->m22 * gss) * FIXPT_SIZE);
int off = int((((linear.dy * (data->m22 * qreal(0.5) + data->dy) + linear.off) * gss) * FIXPT_SIZE));
uint oldColor = data->solid.color;
while (count--) {
int y = spans->y;
quint32 color = qt_gradient_pixel_fixed(&data->gradient, yinc * y + off);
data->solid.color = color;
blend_color_rgb16(1, spans, userData);
++spans;
}
data->solid.color = oldColor;
} else {
blend_src_generic(count, spans, userData);
}
}
inline static void qt_bitmapblit_quint32(QRasterBuffer *rasterBuffer,
int x, int y, quint32 color,
const uchar *map,
int mapWidth, int mapHeight, int mapStride)
{
qt_bitmapblit_template<quint32>(rasterBuffer, x, y, color,
map, mapWidth, mapHeight, mapStride);
}
inline static void qt_bitmapblit_quint16(QRasterBuffer *rasterBuffer,
int x, int y, quint32 color,
const uchar *map,
int mapWidth, int mapHeight, int mapStride)
{
qt_bitmapblit_template<quint16>(rasterBuffer, x, y, color,
map, mapWidth, mapHeight, mapStride);
}
uchar qt_pow_rgb_gamma[256];
uchar qt_pow_rgb_invgamma[256];
uint qt_pow_gamma[256];
uchar qt_pow_invgamma[2048];
static void qt_alphamapblit_quint16(QRasterBuffer *rasterBuffer,
int x, int y, quint32 color,
const uchar *map,
int mapWidth, int mapHeight, int mapStride,
const QClipData *)
{
const quint16 c = qt_colorConvert<quint16, quint32>(color, 0);
quint16 *dest = reinterpret_cast<quint16*>(rasterBuffer->scanLine(y)) + x;
const int destStride = rasterBuffer->bytesPerLine() / sizeof(quint16);
while (mapHeight--) {
for (int i = 0; i < mapWidth; ++i) {
const int coverage = map[i];
if (coverage == 0) {
// nothing
} else if (coverage == 255) {
dest[i] = c;
} else {
int ialpha = 255 - coverage;
dest[i] = BYTE_MUL_RGB16(c, coverage)
+ BYTE_MUL_RGB16(dest[i], ialpha);
}
}
dest += destStride;
map += mapStride;
}
}
static inline void rgbBlendPixel(quint32 *dst, int coverage, int sr, int sg, int sb)
{
// Do a gray alphablend...
int da = qAlpha(*dst);
int dr = qRed(*dst);
int dg = qGreen(*dst);
int db = qBlue(*dst);
if (da != 255
#if defined (Q_WS_WIN)
// Work around GDI messing up alpha channel
&& qRed(*dst) <= da && qBlue(*dst) <= da && qGreen(*dst) <= da
#endif
) {
int a = qGray(coverage);
sr = qt_div_255(qt_pow_rgb_invgamma[sr] * a);
sg = qt_div_255(qt_pow_rgb_invgamma[sg] * a);
sb = qt_div_255(qt_pow_rgb_invgamma[sb] * a);
int ia = 255 - a;
dr = qt_div_255(dr * ia);
dg = qt_div_255(dg * ia);
db = qt_div_255(db * ia);
*dst = ((a + qt_div_255((255 - a) * da)) << 24)
| ((sr + dr) << 16)
| ((sg + dg) << 8)
| ((sb + db));
return;
}
int mr = qRed(coverage);
int mg = qGreen(coverage);
int mb = qBlue(coverage);
dr = qt_pow_rgb_gamma[dr];
dg = qt_pow_rgb_gamma[dg];
db = qt_pow_rgb_gamma[db];
int nr = qt_div_255((sr - dr) * mr) + dr;
int ng = qt_div_255((sg - dg) * mg) + dg;
int nb = qt_div_255((sb - db) * mb) + db;
nr = qt_pow_rgb_invgamma[nr];
ng = qt_pow_rgb_invgamma[ng];
nb = qt_pow_rgb_invgamma[nb];
*dst = qRgb(nr, ng, nb);
}
#if defined(Q_OS_WIN) && !defined(Q_OS_WINCE)
static inline void grayBlendPixel(quint32 *dst, int coverage, int sr, int sg, int sb)
{
// Do a gammacorrected gray alphablend...
int dr = qRed(*dst);
int dg = qGreen(*dst);
int db = qBlue(*dst);
dr = qt_pow_gamma[dr];
dg = qt_pow_gamma[dg];
db = qt_pow_gamma[db];
int alpha = coverage;
int ialpha = 255 - alpha;
int nr = (sr * alpha + ialpha * dr) / 255;
int ng = (sg * alpha + ialpha * dg) / 255;
int nb = (sb * alpha + ialpha * db) / 255;
nr = qt_pow_invgamma[nr];
ng = qt_pow_invgamma[ng];
nb = qt_pow_invgamma[nb];
*dst = qRgb(nr, ng, nb);
}
#endif
static void qt_alphamapblit_quint32(QRasterBuffer *rasterBuffer,
int x, int y, quint32 color,
const uchar *map,
int mapWidth, int mapHeight, int mapStride,
const QClipData *clip)
{
const quint32 c = color;
const int destStride = rasterBuffer->bytesPerLine() / sizeof(quint32);
#if defined(Q_OS_WIN) && !defined(Q_OS_WINCE)
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
sr = qt_pow_gamma[sr];
sg = qt_pow_gamma[sg];
sb = qt_pow_gamma[sb];
bool opaque_src = (qAlpha(color) == 255);
#endif
if (!clip) {
quint32 *dest = reinterpret_cast<quint32*>(rasterBuffer->scanLine(y)) + x;
while (mapHeight--) {
for (int i = 0; i < mapWidth; ++i) {
const int coverage = map[i];
if (coverage == 0) {
// nothing
} else if (coverage == 255) {
dest[i] = c;
} else {
#if defined(Q_OS_WIN) && !defined(Q_OS_WINCE)
if (QSysInfo::WindowsVersion >= QSysInfo::WV_XP && opaque_src
&& qAlpha(dest[i]) == 255) {
grayBlendPixel(dest+i, coverage, sr, sg, sb);
} else
#endif
{
int ialpha = 255 - coverage;
dest[i] = INTERPOLATE_PIXEL_255(c, coverage, dest[i], ialpha);
}
}
}
dest += destStride;
map += mapStride;
}
} else {
int bottom = qMin(y + mapHeight, rasterBuffer->height());
int top = qMax(y, 0);
map += (top - y) * mapStride;
const_cast<QClipData *>(clip)->initialize();
for (int yp = top; yp<bottom; ++yp) {
const QClipData::ClipLine &line = clip->m_clipLines[yp];
quint32 *dest = reinterpret_cast<quint32 *>(rasterBuffer->scanLine(yp));
for (int i=0; i<line.count; ++i) {
const QSpan &clip = line.spans[i];
int start = qMax<int>(x, clip.x);
int end = qMin<int>(x + mapWidth, clip.x + clip.len);
for (int xp=start; xp<end; ++xp) {
const int coverage = map[xp - x];
if (coverage == 0) {
// nothing
} else if (coverage == 255) {
dest[xp] = c;
} else {
#if defined(Q_OS_WIN) && !defined(Q_OS_WINCE)
if (QSysInfo::WindowsVersion >= QSysInfo::WV_XP && opaque_src
&& qAlpha(dest[xp]) == 255) {
grayBlendPixel(dest+xp, coverage, sr, sg, sb);
} else
#endif
{
int ialpha = 255 - coverage;
dest[xp] = INTERPOLATE_PIXEL_255(c, coverage, dest[xp], ialpha);
}
}
} // for (i -> line.count)
} // for (yp -> bottom)
map += mapStride;
}
}
}
static void qt_alphargbblit_quint32(QRasterBuffer *rasterBuffer,
int x, int y, quint32 color,
const uint *src, int mapWidth, int mapHeight, int srcStride,
const QClipData *clip)
{
const quint32 c = color;
int sr = qRed(color);
int sg = qGreen(color);
int sb = qBlue(color);
int sa = qAlpha(color);
sr = qt_pow_rgb_gamma[sr];
sg = qt_pow_rgb_gamma[sg];
sb = qt_pow_rgb_gamma[sb];
if (sa == 0)
return;
if (!clip) {
quint32 *dst = reinterpret_cast<quint32*>(rasterBuffer->scanLine(y)) + x;
const int destStride = rasterBuffer->bytesPerLine() / sizeof(quint32);
while (mapHeight--) {
for (int i = 0; i < mapWidth; ++i) {
const uint coverage = src[i];
if (coverage == 0xffffffff) {
dst[i] = c;
} else if (coverage != 0xff000000) {
rgbBlendPixel(dst+i, coverage, sr, sg, sb);
}
}
dst += destStride;
src += srcStride;
}
} else {
int bottom = qMin(y + mapHeight, rasterBuffer->height());
int top = qMax(y, 0);
src += (top - y) * srcStride;
const_cast<QClipData *>(clip)->initialize();
for (int yp = top; yp<bottom; ++yp) {
const QClipData::ClipLine &line = clip->m_clipLines[yp];
quint32 *dst = reinterpret_cast<quint32 *>(rasterBuffer->scanLine(yp));
for (int i=0; i<line.count; ++i) {
const QSpan &clip = line.spans[i];
int start = qMax<int>(x, clip.x);
int end = qMin<int>(x + mapWidth, clip.x + clip.len);
for (int xp=start; xp<end; ++xp) {
const uint coverage = src[xp - x];
if (coverage == 0xffffffff) {
dst[xp] = c;
} else if (coverage != 0xff000000) {
rgbBlendPixel(dst+xp, coverage, sr, sg, sb);
}
}
} // for (i -> line.count)
src += srcStride;
} // for (yp -> bottom)
}
}
template <class T>
inline void qt_rectfill_template(QRasterBuffer *rasterBuffer,
int x, int y, int width, int height,
quint32 color, T dummy = 0)
{
Q_UNUSED(dummy);
qt_rectfill<T>(reinterpret_cast<T*>(rasterBuffer->buffer()),
qt_colorConvert<T, quint32p>(quint32p::fromRawData(color), 0),
x, y, width, height, rasterBuffer->bytesPerLine());
}
#define QT_RECTFILL(T) \
inline static void qt_rectfill_##T(QRasterBuffer *rasterBuffer, \
int x, int y, int width, int height, \
quint32 color) \
{ \
qt_rectfill_template<T>(rasterBuffer, x, y, width, height, color); \
}
QT_RECTFILL(quint32)
QT_RECTFILL(quint16)
QT_RECTFILL(qargb8565)
QT_RECTFILL(qrgb666)
QT_RECTFILL(qargb6666)
QT_RECTFILL(qrgb555)
QT_RECTFILL(qargb8555)
QT_RECTFILL(qrgb888)
QT_RECTFILL(qrgb444)
QT_RECTFILL(qargb4444)
#undef QT_RECTFILL
inline static void qt_rectfill_nonpremul_quint32(QRasterBuffer *rasterBuffer,
int x, int y, int width, int height,
quint32 color)
{
qt_rectfill<quint32>(reinterpret_cast<quint32 *>(rasterBuffer->buffer()),
INV_PREMUL(color), x, y, width, height, rasterBuffer->bytesPerLine());
}
// Map table for destination image format. Contains function pointers
// for blends of various types unto the destination
DrawHelper qDrawHelper[QImage::NImageFormats] =
{
// Format_Invalid,
{ 0, 0, 0, 0, 0, 0 },
// Format_Mono,
{
blend_color_generic,
blend_src_generic,
0, 0, 0, 0
},
// Format_MonoLSB,
{
blend_color_generic,
blend_src_generic,
0, 0, 0, 0
},
// Format_Indexed8,
{
blend_color_generic,
blend_src_generic,
0, 0, 0, 0
},
// Format_RGB32,
{
blend_color_argb,
qt_gradient_quint32,
qt_bitmapblit_quint32,
qt_alphamapblit_quint32,
qt_alphargbblit_quint32,
qt_rectfill_quint32
},
// Format_ARGB32,
{
blend_color_generic,
qt_gradient_quint32,
qt_bitmapblit_quint32,
qt_alphamapblit_quint32,
qt_alphargbblit_quint32,
qt_rectfill_nonpremul_quint32
},
// Format_ARGB32_Premultiplied
{
blend_color_argb,
qt_gradient_quint32,
qt_bitmapblit_quint32,
qt_alphamapblit_quint32,
qt_alphargbblit_quint32,
qt_rectfill_quint32
},
// Format_RGB16
{
blend_color_rgb16,
qt_gradient_quint16,
qt_bitmapblit_quint16,
qt_alphamapblit_quint16,
0,
qt_rectfill_quint16
},
// Format_ARGB8565_Premultiplied
{
SPANFUNC_POINTER_BLENDCOLOR(qargb8565),
blend_src_generic,
0, 0, 0,
qt_rectfill_qargb8565
},
// Format_RGB666
{
SPANFUNC_POINTER_BLENDCOLOR(qrgb666),
blend_src_generic,
0, 0, 0,
qt_rectfill_qrgb666
},
// Format_ARGB6666_Premultiplied
{
SPANFUNC_POINTER_BLENDCOLOR(qargb6666),
blend_src_generic,
0, 0, 0,
qt_rectfill_qargb6666
},
// Format_RGB555
{
SPANFUNC_POINTER_BLENDCOLOR(qrgb555),
blend_src_generic,
0, 0, 0,
qt_rectfill_qrgb555
},
// Format_ARGB8555_Premultiplied
{
SPANFUNC_POINTER_BLENDCOLOR(qargb8555),
blend_src_generic,
0, 0, 0,
qt_rectfill_qargb8555
},
// Format_RGB888
{
SPANFUNC_POINTER_BLENDCOLOR(qrgb888),
blend_src_generic,
0, 0, 0,
qt_rectfill_qrgb888
},
// Format_RGB444
{
SPANFUNC_POINTER_BLENDCOLOR(qrgb444),
blend_src_generic,
0, 0, 0,
qt_rectfill_qrgb444
},
// Format_ARGB4444_Premultiplied
{
SPANFUNC_POINTER_BLENDCOLOR(qargb4444),
blend_src_generic,
0, 0, 0,
qt_rectfill_qargb4444
}
};
void qInitDrawhelperAsm()
{
qreal smoothing = qreal(1.7);
#ifdef Q_WS_MAC
// decided by testing a few things on an iMac, should probably get this from the
// system...
smoothing = qreal(2.0);
#endif
#ifdef Q_WS_WIN
extern qreal qt_fontsmoothing_gamma; // qapplication_win.cpp
smoothing = qt_fontsmoothing_gamma;
#endif
#ifdef Q_WS_X11
Q_UNUSED(smoothing);
for (int i=0; i<256; ++i) {
qt_pow_rgb_gamma[i] = uchar(i);
qt_pow_rgb_invgamma[i] = uchar(i);
}
#else
for (int i=0; i<256; ++i) {
qt_pow_rgb_gamma[i] = uchar(qRound(qPow(i / qreal(255.0), smoothing) * 255));
qt_pow_rgb_invgamma[i] = uchar(qRound(qPow(i / qreal(255.), 1 / smoothing) * 255));
}
#endif
#if defined(Q_OS_WIN) && !defined(Q_OS_WINCE)
const qreal gray_gamma = 2.31;
for (int i=0; i<256; ++i)
qt_pow_gamma[i] = uint(qRound(qPow(i / qreal(255.), gray_gamma) * 2047));
for (int i=0; i<2048; ++i)
qt_pow_invgamma[i] = uchar(qRound(qPow(i / qreal(2047.0), 1 / gray_gamma) * 255));
#endif
}
QT_END_NAMESPACE