mirror of
https://bitbucket.org/smil3y/katie.git
synced 2025-02-27 04:13:08 +00:00
606 lines
16 KiB
C++
606 lines
16 KiB
C++
/****************************************************************************
|
|
**
|
|
** Copyright (C) 2015 The Qt Company Ltd.
|
|
** Copyright (C) 2016-2020 Ivailo Monev
|
|
**
|
|
** This file is part of the QtGui module of the Katie Toolkit.
|
|
**
|
|
** $QT_BEGIN_LICENSE:LGPL$
|
|
**
|
|
** GNU Lesser General Public License Usage
|
|
** This file may be used under the terms of the GNU Lesser
|
|
** General Public License version 2.1 as published by the Free Software
|
|
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
** packaging of this file. Please review the following information to
|
|
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
**
|
|
** As a special exception, The Qt Company gives you certain additional
|
|
** rights. These rights are described in The Qt Company LGPL Exception
|
|
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
**
|
|
** GNU General Public License Usage
|
|
** Alternatively, this file may be used under the terms of the GNU
|
|
** General Public License version 3.0 as published by the Free Software
|
|
** Foundation and appearing in the file LICENSE.GPL included in the
|
|
** packaging of this file. Please review the following information to
|
|
** ensure the GNU General Public License version 3.0 requirements will be
|
|
** met: http://www.gnu.org/copyleft/gpl.html.
|
|
**
|
|
** $QT_END_LICENSE$
|
|
**
|
|
****************************************************************************/
|
|
|
|
#include "qbezier_p.h"
|
|
#include "qpainterpath_p.h"
|
|
#include "qdebug.h"
|
|
#include "qline.h"
|
|
#include "qpolygon.h"
|
|
#include "qvector.h"
|
|
#include "qlist.h"
|
|
#include "qmath.h"
|
|
|
|
#include "qmath_p.h"
|
|
|
|
QT_BEGIN_NAMESPACE
|
|
|
|
//#define QDEBUG_BEZIER
|
|
|
|
#ifdef FLOAT_ACCURACY
|
|
#define INV_EPS (1L<<23)
|
|
#else
|
|
/* The value of 1.0 / (1L<<14) is enough for most applications */
|
|
#define INV_EPS (1L<<14)
|
|
#endif
|
|
|
|
#ifndef M_SQRT2
|
|
#define M_SQRT2 1.41421356237309504880
|
|
#endif
|
|
|
|
/*!
|
|
\internal
|
|
*/
|
|
QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2,
|
|
const QPointF &p3, const QPointF &p4)
|
|
{
|
|
QBezier b;
|
|
b.x1 = p1.x();
|
|
b.y1 = p1.y();
|
|
b.x2 = p2.x();
|
|
b.y2 = p2.y();
|
|
b.x3 = p3.x();
|
|
b.y3 = p3.y();
|
|
b.x4 = p4.x();
|
|
b.y4 = p4.y();
|
|
return b;
|
|
}
|
|
|
|
/*!
|
|
\internal
|
|
*/
|
|
QPolygonF QBezier::toPolygon(qreal bezier_flattening_threshold) const
|
|
{
|
|
// flattening is done by splitting the bezier until we can replace the segment by a straight
|
|
// line. We split further until the control points are close enough to the line connecting the
|
|
// boundary points.
|
|
//
|
|
// the Distance of a point p from a line given by the points (a,b) is given by:
|
|
//
|
|
// d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length
|
|
//
|
|
// We can stop splitting if both control points are close enough to the line.
|
|
// To make the algorithm faster we use the manhattan length of the line.
|
|
|
|
QPolygonF polygon;
|
|
polygon.append(QPointF(x1, y1));
|
|
addToPolygon(&polygon, bezier_flattening_threshold);
|
|
return polygon;
|
|
}
|
|
|
|
QBezier QBezier::mapBy(const QTransform &transform) const
|
|
{
|
|
return QBezier::fromPoints(transform.map(pt1()), transform.map(pt2()), transform.map(pt3()), transform.map(pt4()));
|
|
}
|
|
|
|
QBezier QBezier::getSubRange(qreal t0, qreal t1) const
|
|
{
|
|
QBezier result;
|
|
QBezier temp;
|
|
|
|
// cut at t1
|
|
if (qFuzzyIsNull(t1 - qreal(1.))) {
|
|
result = *this;
|
|
} else {
|
|
temp = *this;
|
|
temp.parameterSplitLeft(t1, &result);
|
|
}
|
|
|
|
// cut at t0
|
|
if (!qFuzzyIsNull(t0))
|
|
result.parameterSplitLeft(t0 / t1, &temp);
|
|
|
|
return result;
|
|
}
|
|
|
|
void QBezier::addToPolygon(QPolygonF *polygon, qreal bezier_flattening_threshold) const
|
|
{
|
|
QBezier beziers[32];
|
|
beziers[0] = *this;
|
|
QBezier *b = beziers;
|
|
|
|
while (b >= beziers) {
|
|
// check if we can pop the top bezier curve from the stack
|
|
qreal y4y1 = b->y4 - b->y1;
|
|
qreal x4x1 = b->x4 - b->x1;
|
|
qreal l = qAbs(x4x1) + qAbs(y4y1);
|
|
qreal d;
|
|
if (l > 1.) {
|
|
d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
|
|
+ qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
|
|
} else {
|
|
d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
|
|
qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
|
|
l = 1.;
|
|
}
|
|
if (d < bezier_flattening_threshold*l || b == beziers + 31) {
|
|
// good enough, we pop it off and add the endpoint
|
|
polygon->append(QPointF(b->x4, b->y4));
|
|
--b;
|
|
} else {
|
|
// split, second half of the polygon goes lower into the stack
|
|
b->split(b+1, b);
|
|
++b;
|
|
}
|
|
}
|
|
}
|
|
|
|
QRectF QBezier::bounds() const
|
|
{
|
|
qreal xmin = x1;
|
|
qreal xmax = x1;
|
|
if (x2 < xmin)
|
|
xmin = x2;
|
|
else if (x2 > xmax)
|
|
xmax = x2;
|
|
if (x3 < xmin)
|
|
xmin = x3;
|
|
else if (x3 > xmax)
|
|
xmax = x3;
|
|
if (x4 < xmin)
|
|
xmin = x4;
|
|
else if (x4 > xmax)
|
|
xmax = x4;
|
|
|
|
qreal ymin = y1;
|
|
qreal ymax = y1;
|
|
if (y2 < ymin)
|
|
ymin = y2;
|
|
else if (y2 > ymax)
|
|
ymax = y2;
|
|
if (y3 < ymin)
|
|
ymin = y3;
|
|
else if (y3 > ymax)
|
|
ymax = y3;
|
|
if (y4 < ymin)
|
|
ymin = y4;
|
|
else if (y4 > ymax)
|
|
ymax = y4;
|
|
return QRectF(xmin, ymin, xmax-xmin, ymax-ymin);
|
|
}
|
|
|
|
|
|
enum ShiftResult {
|
|
Ok,
|
|
Discard,
|
|
Split,
|
|
Circle
|
|
};
|
|
|
|
static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold)
|
|
{
|
|
const qreal o2 = offset*offset;
|
|
const qreal max_dist_line = threshold*offset*offset;
|
|
const qreal max_dist_normal = threshold*offset;
|
|
const qreal spacing = qreal(0.25);
|
|
for (qreal i = spacing; i < qreal(0.99); i += spacing) {
|
|
QPointF p1 = b1->pointAt(i);
|
|
QPointF p2 = b2->pointAt(i);
|
|
qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y());
|
|
if (qAbs(d - o2) > max_dist_line)
|
|
return Split;
|
|
|
|
QPointF normalPoint = b1->normalVector(i);
|
|
qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y());
|
|
if (l != qreal(0.0)) {
|
|
d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l;
|
|
if (d > max_dist_normal)
|
|
return Split;
|
|
}
|
|
}
|
|
return Ok;
|
|
}
|
|
|
|
static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold)
|
|
{
|
|
int map[4];
|
|
bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2);
|
|
bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3);
|
|
bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4);
|
|
|
|
QPointF points[4];
|
|
int np = 0;
|
|
points[np] = QPointF(orig->x1, orig->y1);
|
|
map[0] = 0;
|
|
++np;
|
|
if (!p1_p2_equal) {
|
|
points[np] = QPointF(orig->x2, orig->y2);
|
|
++np;
|
|
}
|
|
map[1] = np - 1;
|
|
if (!p2_p3_equal) {
|
|
points[np] = QPointF(orig->x3, orig->y3);
|
|
++np;
|
|
}
|
|
map[2] = np - 1;
|
|
if (!p3_p4_equal) {
|
|
points[np] = QPointF(orig->x4, orig->y4);
|
|
++np;
|
|
}
|
|
map[3] = np - 1;
|
|
if (np == 1)
|
|
return Discard;
|
|
|
|
QRectF b = orig->bounds();
|
|
if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) {
|
|
qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) +
|
|
(orig->y1 - orig->y2)*(orig->y1 - orig->y1) *
|
|
(orig->x3 - orig->x4)*(orig->x3 - orig->x4) +
|
|
(orig->y3 - orig->y4)*(orig->y3 - orig->y4);
|
|
qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) +
|
|
(orig->y1 - orig->y2)*(orig->y3 - orig->y4);
|
|
if (dot < 0 && dot*dot < 0.8*l)
|
|
// the points are close and reverse dirction. Approximate the whole
|
|
// thing by a semi circle
|
|
return Circle;
|
|
}
|
|
|
|
QPointF points_shifted[4];
|
|
|
|
QLineF prev = QLineF(QPointF(), points[1] - points[0]);
|
|
QPointF prev_normal = prev.normalVector().unitVector().p2();
|
|
|
|
points_shifted[0] = points[0] + offset * prev_normal;
|
|
|
|
for (int i = 1; i < np - 1; ++i) {
|
|
QLineF next = QLineF(QPointF(), points[i + 1] - points[i]);
|
|
QPointF next_normal = next.normalVector().unitVector().p2();
|
|
|
|
QPointF normal_sum = prev_normal + next_normal;
|
|
|
|
qreal r = qreal(1.0) + prev_normal.x() * next_normal.x()
|
|
+ prev_normal.y() * next_normal.y();
|
|
|
|
if (qFuzzyIsNull(r)) {
|
|
points_shifted[i] = points[i] + offset * prev_normal;
|
|
} else {
|
|
qreal k = offset / r;
|
|
points_shifted[i] = points[i] + k * normal_sum;
|
|
}
|
|
|
|
prev_normal = next_normal;
|
|
}
|
|
|
|
points_shifted[np - 1] = points[np - 1] + offset * prev_normal;
|
|
|
|
*shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]],
|
|
points_shifted[map[2]], points_shifted[map[3]]);
|
|
|
|
return good_offset(orig, shifted, offset, threshold);
|
|
}
|
|
|
|
static bool addCircle(const QBezier *b, qreal offset, QBezier *o)
|
|
{
|
|
QPointF normals[3];
|
|
|
|
normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2);
|
|
qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y());
|
|
if (qFuzzyIsNull(dist))
|
|
return false;
|
|
normals[0] /= dist;
|
|
normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4);
|
|
dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y());
|
|
if (qFuzzyIsNull(dist))
|
|
return false;
|
|
normals[2] /= dist;
|
|
|
|
normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4);
|
|
normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y());
|
|
|
|
qreal angles[2];
|
|
qreal sign = 1.;
|
|
for (int i = 0; i < 2; ++i) {
|
|
qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y();
|
|
if (cos_a > 1.)
|
|
cos_a = 1.;
|
|
if (cos_a < -1.)
|
|
cos_a = -1;
|
|
angles[i] = qAcos(cos_a)/Q_PI;
|
|
}
|
|
|
|
if (angles[0] + angles[1] > 1.) {
|
|
// more than 180 degrees
|
|
normals[1] = -normals[1];
|
|
angles[0] = 1. - angles[0];
|
|
angles[1] = 1. - angles[1];
|
|
sign = -1.;
|
|
|
|
}
|
|
|
|
QPointF circle[3];
|
|
circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset;
|
|
circle[1] = QPointF(qreal(0.5)*(b->x1 + b->x4), qreal(0.5)*(b->y1 + b->y4)) + normals[1]*offset;
|
|
circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset;
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
qreal kappa = qreal(2.0) * KAPPA * sign * offset * angles[i];
|
|
|
|
o->x1 = circle[i].x();
|
|
o->y1 = circle[i].y();
|
|
o->x2 = circle[i].x() - normals[i].y()*kappa;
|
|
o->y2 = circle[i].y() + normals[i].x()*kappa;
|
|
o->x3 = circle[i+1].x() + normals[i+1].y()*kappa;
|
|
o->y3 = circle[i+1].y() - normals[i+1].x()*kappa;
|
|
o->x4 = circle[i+1].x();
|
|
o->y4 = circle[i+1].y();
|
|
|
|
++o;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const
|
|
{
|
|
Q_ASSERT(curveSegments);
|
|
Q_ASSERT(maxSegments > 0);
|
|
|
|
if (x1 == x2 && x1 == x3 && x1 == x4 &&
|
|
y1 == y2 && y1 == y3 && y1 == y4)
|
|
return 0;
|
|
|
|
--maxSegments;
|
|
QBezier beziers[10];
|
|
redo:
|
|
beziers[0] = *this;
|
|
QBezier *b = beziers;
|
|
QBezier *o = curveSegments;
|
|
|
|
while (b >= beziers) {
|
|
int stack_segments = b - beziers + 1;
|
|
if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) {
|
|
threshold *= qreal(1.5);
|
|
if (threshold > qreal(2.0))
|
|
goto give_up;
|
|
goto redo;
|
|
}
|
|
ShiftResult res = shift(b, o, offset, threshold);
|
|
if (res == Discard) {
|
|
--b;
|
|
} else if (res == Ok) {
|
|
++o;
|
|
--b;
|
|
continue;
|
|
} else if (res == Circle && maxSegments - (o - curveSegments) >= 2) {
|
|
// add semi circle
|
|
if (addCircle(b, offset, o))
|
|
o += 2;
|
|
--b;
|
|
} else {
|
|
b->split(b+1, b);
|
|
++b;
|
|
}
|
|
}
|
|
|
|
give_up:
|
|
while (b >= beziers) {
|
|
ShiftResult res = shift(b, o, offset, threshold);
|
|
|
|
// if res isn't Ok or Split then *o is undefined
|
|
if (res == Ok || res == Split)
|
|
++o;
|
|
|
|
--b;
|
|
}
|
|
|
|
Q_ASSERT(o - curveSegments <= maxSegments);
|
|
return o - curveSegments;
|
|
}
|
|
|
|
#ifdef QDEBUG_BEZIER
|
|
static QDebug operator<<(QDebug dbg, const QBezier &bz)
|
|
{
|
|
dbg << '[' << bz.x1<< ", " << bz.y1 << "], "
|
|
<< '[' << bz.x2 <<", " << bz.y2 << "], "
|
|
<< '[' << bz.x3 <<", " << bz.y3 << "], "
|
|
<< '[' << bz.x4 <<", " << bz.y4 << ']';
|
|
return dbg;
|
|
}
|
|
#endif
|
|
|
|
qreal QBezier::length(qreal error) const
|
|
{
|
|
qreal length = qreal(0.0);
|
|
|
|
addIfClose(&length, error);
|
|
|
|
return length;
|
|
}
|
|
|
|
void QBezier::addIfClose(qreal *length, qreal error) const
|
|
{
|
|
QBezier left, right; /* bez poly splits */
|
|
|
|
qreal len = qreal(0.0); /* arc length */
|
|
qreal chord; /* chord length */
|
|
|
|
len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length();
|
|
len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length();
|
|
len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length();
|
|
|
|
chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length();
|
|
|
|
if((len-chord) > error) {
|
|
split(&left, &right); /* split in two */
|
|
left.addIfClose(length, error); /* try left side */
|
|
right.addIfClose(length, error); /* try right side */
|
|
return;
|
|
}
|
|
|
|
*length = *length + len;
|
|
|
|
return;
|
|
}
|
|
|
|
qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const
|
|
{
|
|
qreal py0 = pointAt(t0).y();
|
|
qreal py1 = pointAt(t1).y();
|
|
|
|
if (py0 > py1) {
|
|
qSwap(py0, py1);
|
|
qSwap(t0, t1);
|
|
}
|
|
|
|
Q_ASSERT(py0 <= py1);
|
|
|
|
if (py0 >= y)
|
|
return t0;
|
|
else if (py1 <= y)
|
|
return t1;
|
|
|
|
Q_ASSERT(py0 < y && y < py1);
|
|
|
|
qreal lt = t0;
|
|
qreal dt;
|
|
do {
|
|
qreal t = qreal(0.5) * (t0 + t1);
|
|
|
|
qreal a, b, c, d;
|
|
QBezier::coefficients(t, a, b, c, d);
|
|
qreal yt = a * y1 + b * y2 + c * y3 + d * y4;
|
|
|
|
if (yt < y) {
|
|
t0 = t;
|
|
py0 = yt;
|
|
} else {
|
|
t1 = t;
|
|
py1 = yt;
|
|
}
|
|
dt = lt - t;
|
|
lt = t;
|
|
} while (qAbs(dt) > qreal(1e-7));
|
|
|
|
return t0;
|
|
}
|
|
|
|
int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const
|
|
{
|
|
// y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4
|
|
// y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4)
|
|
// y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2))
|
|
|
|
const qreal a = -y1 + 3 * y2 - 3 * y3 + y4;
|
|
const qreal b = 2 * y1 - 4 * y2 + 2 * y3;
|
|
const qreal c = -y1 + y2;
|
|
|
|
if (qFuzzyIsNull(a)) {
|
|
if (qFuzzyIsNull(b))
|
|
return 0;
|
|
|
|
t0 = -c / b;
|
|
return t0 > 0 && t0 < 1;
|
|
}
|
|
|
|
qreal reciprocal = b * b - 4 * a * c;
|
|
|
|
if (qFuzzyIsNull(reciprocal)) {
|
|
t0 = -b / (2 * a);
|
|
return t0 > 0 && t0 < 1;
|
|
} else if (reciprocal > 0) {
|
|
qreal temp = qSqrt(reciprocal);
|
|
|
|
t0 = (-b - temp)/(2*a);
|
|
t1 = (-b + temp)/(2*a);
|
|
|
|
if (t1 < t0)
|
|
qSwap(t0, t1);
|
|
|
|
int count = 0;
|
|
qreal t[2] = { 0, 1 };
|
|
|
|
if (t0 > 0 && t0 < 1)
|
|
t[count++] = t0;
|
|
if (t1 > 0 && t1 < 1)
|
|
t[count++] = t1;
|
|
|
|
t0 = t[0];
|
|
t1 = t[1];
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
qreal QBezier::tAtLength(qreal l) const
|
|
{
|
|
qreal len = length();
|
|
qreal t = qreal(1.0);
|
|
const qreal error = qreal(0.01);
|
|
if (l > len || qFuzzyCompare(l, len))
|
|
return t;
|
|
|
|
t *= qreal(0.5);
|
|
//int iters = 0;
|
|
//qDebug()<<"LEN is "<<l<<len;
|
|
qreal lastBigger = qreal(1.0);
|
|
while (1) {
|
|
//qDebug()<<"\tt is "<<t;
|
|
QBezier right = *this;
|
|
QBezier left;
|
|
right.parameterSplitLeft(t, &left);
|
|
qreal lLen = left.length();
|
|
if (qAbs(lLen - l) < error)
|
|
break;
|
|
|
|
if (lLen < l) {
|
|
t += (lastBigger - t) * qreal(0.5);
|
|
} else {
|
|
lastBigger = t;
|
|
t -= t * qreal(0.5);
|
|
}
|
|
//++iters;
|
|
}
|
|
//qDebug()<<"number of iters is "<<iters;
|
|
return t;
|
|
}
|
|
|
|
QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const
|
|
{
|
|
if (t0 == 0 && t1 == 1)
|
|
return *this;
|
|
|
|
QBezier bezier = *this;
|
|
|
|
QBezier result;
|
|
bezier.parameterSplitLeft(t0, &result);
|
|
qreal trueT = (t1-t0)/(1-t0);
|
|
bezier.parameterSplitLeft(trueT, &result);
|
|
|
|
return result;
|
|
}
|
|
|
|
QT_END_NAMESPACE
|
|
|
|
|
|
|
|
|