mirror of
https://bitbucket.org/smil3y/katie.git
synced 2025-02-26 11:52:57 +00:00
640 lines
16 KiB
C++
640 lines
16 KiB
C++
/****************************************************************************
|
|
**
|
|
** Copyright (C) 2015 The Qt Company Ltd.
|
|
** Copyright (C) 2016-2019 Ivailo Monev
|
|
**
|
|
** This file is part of the QtGui module of the Katie Toolkit.
|
|
**
|
|
** $QT_BEGIN_LICENSE:LGPL$
|
|
** Commercial License Usage
|
|
** Licensees holding valid commercial Qt licenses may use this file in
|
|
** accordance with the commercial license agreement provided with the
|
|
** Software or, alternatively, in accordance with the terms contained in
|
|
** a written agreement between you and The Qt Company. For licensing terms
|
|
** and conditions see http://www.qt.io/terms-conditions. For further
|
|
** information use the contact form at http://www.qt.io/contact-us.
|
|
**
|
|
** GNU Lesser General Public License Usage
|
|
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
** General Public License version 2.1 or version 3 as published by the Free
|
|
** Software Foundation and appearing in the file LICENSE.LGPLv21 and
|
|
** LICENSE.LGPLv3 included in the packaging of this file. Please review the
|
|
** following information to ensure the GNU Lesser General Public License
|
|
** requirements will be met: https://www.gnu.org/licenses/lgpl.html and
|
|
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
**
|
|
** As a special exception, The Qt Company gives you certain additional
|
|
** rights. These rights are described in The Qt Company LGPL Exception
|
|
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
**
|
|
** GNU General Public License Usage
|
|
** Alternatively, this file may be used under the terms of the GNU
|
|
** General Public License version 3.0 as published by the Free Software
|
|
** Foundation and appearing in the file LICENSE.GPL included in the
|
|
** packaging of this file. Please review the following information to
|
|
** ensure the GNU General Public License version 3.0 requirements will be
|
|
** met: http://www.gnu.org/copyleft/gpl.html.
|
|
**
|
|
** $QT_END_LICENSE$
|
|
**
|
|
****************************************************************************/
|
|
|
|
#include "qquaternion.h"
|
|
#include <QtCore/qmath.h>
|
|
#include <QtCore/qvariant.h>
|
|
#include <QtCore/qdebug.h>
|
|
|
|
QT_BEGIN_NAMESPACE
|
|
|
|
#ifndef QT_NO_QUATERNION
|
|
|
|
/*!
|
|
\class QQuaternion
|
|
\brief The QQuaternion class represents a quaternion consisting of a vector and scalar.
|
|
\since 4.6
|
|
\ingroup painting-3D
|
|
|
|
Quaternions are used to represent rotations in 3D space, and
|
|
consist of a 3D rotation axis specified by the x, y, and z
|
|
coordinates, and a scalar representing the rotation angle.
|
|
*/
|
|
|
|
/*!
|
|
\fn QQuaternion::QQuaternion()
|
|
|
|
Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0).
|
|
*/
|
|
|
|
/*!
|
|
\fn QQuaternion::QQuaternion(qreal scalar, qreal xpos, qreal ypos, qreal zpos)
|
|
|
|
Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos)
|
|
and \a scalar.
|
|
*/
|
|
|
|
#ifndef QT_NO_VECTOR3D
|
|
|
|
/*!
|
|
\fn QQuaternion::QQuaternion(qreal scalar, const QVector3D& vector)
|
|
|
|
Constructs a quaternion vector from the specified \a vector and
|
|
\a scalar.
|
|
|
|
\sa vector(), scalar()
|
|
*/
|
|
|
|
/*!
|
|
\fn QVector3D QQuaternion::vector() const
|
|
|
|
Returns the vector component of this quaternion.
|
|
|
|
\sa setVector(), scalar()
|
|
*/
|
|
|
|
/*!
|
|
\fn void QQuaternion::setVector(const QVector3D& vector)
|
|
|
|
Sets the vector component of this quaternion to \a vector.
|
|
|
|
\sa vector(), setScalar()
|
|
*/
|
|
|
|
#endif
|
|
|
|
/*!
|
|
\fn void QQuaternion::setVector(qreal x, qreal y, qreal z)
|
|
|
|
Sets the vector component of this quaternion to (\a x, \a y, \a z).
|
|
|
|
\sa vector(), setScalar()
|
|
*/
|
|
|
|
#ifndef QT_NO_VECTOR4D
|
|
|
|
/*!
|
|
\fn QQuaternion::QQuaternion(const QVector4D& vector)
|
|
|
|
Constructs a quaternion from the components of \a vector.
|
|
*/
|
|
|
|
/*!
|
|
\fn QVector4D QQuaternion::toVector4D() const
|
|
|
|
Returns this quaternion as a 4D vector.
|
|
*/
|
|
|
|
#endif
|
|
|
|
/*!
|
|
\fn bool QQuaternion::isNull() const
|
|
|
|
Returns true if the x, y, z, and scalar components of this
|
|
quaternion are set to 0.0; otherwise returns false.
|
|
*/
|
|
|
|
/*!
|
|
\fn bool QQuaternion::isIdentity() const
|
|
|
|
Returns true if the x, y, and z components of this
|
|
quaternion are set to 0.0, and the scalar component is set
|
|
to 1.0; otherwise returns false.
|
|
*/
|
|
|
|
/*!
|
|
\fn qreal QQuaternion::x() const
|
|
|
|
Returns the x coordinate of this quaternion's vector.
|
|
|
|
\sa setX(), y(), z(), scalar()
|
|
*/
|
|
|
|
/*!
|
|
\fn qreal QQuaternion::y() const
|
|
|
|
Returns the y coordinate of this quaternion's vector.
|
|
|
|
\sa setY(), x(), z(), scalar()
|
|
*/
|
|
|
|
/*!
|
|
\fn qreal QQuaternion::z() const
|
|
|
|
Returns the z coordinate of this quaternion's vector.
|
|
|
|
\sa setZ(), x(), y(), scalar()
|
|
*/
|
|
|
|
/*!
|
|
\fn qreal QQuaternion::scalar() const
|
|
|
|
Returns the scalar component of this quaternion.
|
|
|
|
\sa setScalar(), x(), y(), z()
|
|
*/
|
|
|
|
/*!
|
|
\fn void QQuaternion::setX(qreal x)
|
|
|
|
Sets the x coordinate of this quaternion's vector to the given
|
|
\a x coordinate.
|
|
|
|
\sa x(), setY(), setZ(), setScalar()
|
|
*/
|
|
|
|
/*!
|
|
\fn void QQuaternion::setY(qreal y)
|
|
|
|
Sets the y coordinate of this quaternion's vector to the given
|
|
\a y coordinate.
|
|
|
|
\sa y(), setX(), setZ(), setScalar()
|
|
*/
|
|
|
|
/*!
|
|
\fn void QQuaternion::setZ(qreal z)
|
|
|
|
Sets the z coordinate of this quaternion's vector to the given
|
|
\a z coordinate.
|
|
|
|
\sa z(), setX(), setY(), setScalar()
|
|
*/
|
|
|
|
/*!
|
|
\fn void QQuaternion::setScalar(qreal scalar)
|
|
|
|
Sets the scalar component of this quaternion to \a scalar.
|
|
|
|
\sa scalar(), setX(), setY(), setZ()
|
|
*/
|
|
|
|
/*!
|
|
Returns the length of the quaternion. This is also called the "norm".
|
|
|
|
\sa lengthSquared(), normalized()
|
|
*/
|
|
qreal QQuaternion::length() const
|
|
{
|
|
return qSqrt(xp * xp + yp * yp + zp * zp + wp * wp);
|
|
}
|
|
|
|
/*!
|
|
Returns the squared length of the quaternion.
|
|
|
|
\sa length()
|
|
*/
|
|
qreal QQuaternion::lengthSquared() const
|
|
{
|
|
return xp * xp + yp * yp + zp * zp + wp * wp;
|
|
}
|
|
|
|
/*!
|
|
Returns the normalized unit form of this quaternion.
|
|
|
|
If this quaternion is null, then a null quaternion is returned.
|
|
If the length of the quaternion is very close to 1, then the quaternion
|
|
will be returned as-is. Otherwise the normalized form of the
|
|
quaternion of length 1 will be returned.
|
|
|
|
\sa length(), normalize()
|
|
*/
|
|
QQuaternion QQuaternion::normalized() const
|
|
{
|
|
// Need some extra precision if the length is very small.
|
|
double len = double(xp) * double(xp) +
|
|
double(yp) * double(yp) +
|
|
double(zp) * double(zp) +
|
|
double(wp) * double(wp);
|
|
if (qFuzzyIsNull(len - 1.0f))
|
|
return *this;
|
|
else if (!qFuzzyIsNull(len))
|
|
return *this / qSqrt(len);
|
|
else
|
|
return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
/*!
|
|
Normalizes the currect quaternion in place. Nothing happens if this
|
|
is a null quaternion or the length of the quaternion is very close to 1.
|
|
|
|
\sa length(), normalized()
|
|
*/
|
|
void QQuaternion::normalize()
|
|
{
|
|
// Need some extra precision if the length is very small.
|
|
double len = double(xp) * double(xp) +
|
|
double(yp) * double(yp) +
|
|
double(zp) * double(zp) +
|
|
double(wp) * double(wp);
|
|
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
|
|
return;
|
|
|
|
len = qSqrt(len);
|
|
|
|
xp /= len;
|
|
yp /= len;
|
|
zp /= len;
|
|
wp /= len;
|
|
}
|
|
|
|
/*!
|
|
\fn QQuaternion QQuaternion::conjugate() const
|
|
|
|
Returns the conjugate of this quaternion, which is
|
|
(-x, -y, -z, scalar).
|
|
*/
|
|
|
|
/*!
|
|
Rotates \a vector with this quaternion to produce a new vector
|
|
in 3D space. The following code:
|
|
|
|
\code
|
|
QVector3D result = q.rotatedVector(vector);
|
|
\endcode
|
|
|
|
is equivalent to the following:
|
|
|
|
\code
|
|
QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector();
|
|
\endcode
|
|
*/
|
|
QVector3D QQuaternion::rotatedVector(const QVector3D& vector) const
|
|
{
|
|
return (*this * QQuaternion(0, vector) * conjugate()).vector();
|
|
}
|
|
|
|
/*!
|
|
\fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion)
|
|
|
|
Adds the given \a quaternion to this quaternion and returns a reference to
|
|
this quaternion.
|
|
|
|
\sa operator-=()
|
|
*/
|
|
|
|
/*!
|
|
\fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion)
|
|
|
|
Subtracts the given \a quaternion from this quaternion and returns a
|
|
reference to this quaternion.
|
|
|
|
\sa operator+=()
|
|
*/
|
|
|
|
/*!
|
|
\fn QQuaternion &QQuaternion::operator*=(qreal factor)
|
|
|
|
Multiplies this quaternion's components by the given \a factor, and
|
|
returns a reference to this quaternion.
|
|
|
|
\sa operator/=()
|
|
*/
|
|
|
|
/*!
|
|
\fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion)
|
|
|
|
Multiplies this quaternion by \a quaternion and returns a reference
|
|
to this quaternion.
|
|
*/
|
|
|
|
/*!
|
|
\fn QQuaternion &QQuaternion::operator/=(qreal divisor)
|
|
|
|
Divides this quaternion's components by the given \a divisor, and
|
|
returns a reference to this quaternion.
|
|
|
|
\sa operator*=()
|
|
*/
|
|
|
|
#ifndef QT_NO_VECTOR3D
|
|
|
|
/*!
|
|
Creates a normalized quaternion that corresponds to rotating through
|
|
\a angle degrees about the specified 3D \a axis.
|
|
*/
|
|
QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, qreal angle)
|
|
{
|
|
// Algorithm from:
|
|
// http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
|
|
// We normalize the result just in case the values are close
|
|
// to zero, as suggested in the above FAQ.
|
|
qreal a = (angle / 2.0f) * M_PI / 180.0f;
|
|
qreal s = qSin(a);
|
|
qreal c = qCos(a);
|
|
QVector3D ax = axis.normalized();
|
|
return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized();
|
|
}
|
|
|
|
#endif
|
|
|
|
/*!
|
|
Creates a normalized quaternion that corresponds to rotating through
|
|
\a angle degrees about the 3D axis (\a x, \a y, \a z).
|
|
*/
|
|
QQuaternion QQuaternion::fromAxisAndAngle
|
|
(qreal x, qreal y, qreal z, qreal angle)
|
|
{
|
|
qreal length = qSqrt(x * x + y * y + z * z);
|
|
if (!qFuzzyIsNull(length - 1.0f) && !qFuzzyIsNull(length)) {
|
|
x /= length;
|
|
y /= length;
|
|
z /= length;
|
|
}
|
|
qreal a = (angle / 2.0f) * M_PI / 180.0f;
|
|
qreal s = qSin(a);
|
|
qreal c = qCos(a);
|
|
return QQuaternion(c, x * s, y * s, z * s).normalized();
|
|
}
|
|
|
|
/*!
|
|
\fn bool operator==(const QQuaternion &q1, const QQuaternion &q2)
|
|
\relates QQuaternion
|
|
|
|
Returns true if \a q1 is equal to \a q2; otherwise returns false.
|
|
This operator uses an exact floating-point comparison.
|
|
*/
|
|
|
|
/*!
|
|
\fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2)
|
|
\relates QQuaternion
|
|
|
|
Returns true if \a q1 is not equal to \a q2; otherwise returns false.
|
|
This operator uses an exact floating-point comparison.
|
|
*/
|
|
|
|
/*!
|
|
\fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2)
|
|
\relates QQuaternion
|
|
|
|
Returns a QQuaternion object that is the sum of the given quaternions,
|
|
\a q1 and \a q2; each component is added separately.
|
|
|
|
\sa QQuaternion::operator+=()
|
|
*/
|
|
|
|
/*!
|
|
\fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2)
|
|
\relates QQuaternion
|
|
|
|
Returns a QQuaternion object that is formed by subtracting
|
|
\a q2 from \a q1; each component is subtracted separately.
|
|
|
|
\sa QQuaternion::operator-=()
|
|
*/
|
|
|
|
/*!
|
|
\fn const QQuaternion operator*(qreal factor, const QQuaternion &quaternion)
|
|
\relates QQuaternion
|
|
|
|
Returns a copy of the given \a quaternion, multiplied by the
|
|
given \a factor.
|
|
|
|
\sa QQuaternion::operator*=()
|
|
*/
|
|
|
|
/*!
|
|
\fn const QQuaternion operator*(const QQuaternion &quaternion, qreal factor)
|
|
\relates QQuaternion
|
|
|
|
Returns a copy of the given \a quaternion, multiplied by the
|
|
given \a factor.
|
|
|
|
\sa QQuaternion::operator*=()
|
|
*/
|
|
|
|
/*!
|
|
\fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2)
|
|
\relates QQuaternion
|
|
|
|
Multiplies \a q1 and \a q2 using quaternion multiplication.
|
|
The result corresponds to applying both of the rotations specified
|
|
by \a q1 and \a q2.
|
|
|
|
\sa QQuaternion::operator*=()
|
|
*/
|
|
|
|
/*!
|
|
\fn const QQuaternion operator-(const QQuaternion &quaternion)
|
|
\relates QQuaternion
|
|
\overload
|
|
|
|
Returns a QQuaternion object that is formed by changing the sign of
|
|
all three components of the given \a quaternion.
|
|
|
|
Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}.
|
|
*/
|
|
|
|
/*!
|
|
\fn const QQuaternion operator/(const QQuaternion &quaternion, qreal divisor)
|
|
\relates QQuaternion
|
|
|
|
Returns the QQuaternion object formed by dividing all components of
|
|
the given \a quaternion by the given \a divisor.
|
|
|
|
\sa QQuaternion::operator/=()
|
|
*/
|
|
|
|
/*!
|
|
\fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2)
|
|
\relates QQuaternion
|
|
|
|
Returns true if \a q1 and \a q2 are equal, allowing for a small
|
|
fuzziness factor for floating-point comparisons; false otherwise.
|
|
*/
|
|
|
|
/*!
|
|
Interpolates along the shortest spherical path between the
|
|
rotational positions \a q1 and \a q2. The value \a t should
|
|
be between 0 and 1, indicating the spherical distance to travel
|
|
between \a q1 and \a q2.
|
|
|
|
If \a t is less than or equal to 0, then \a q1 will be returned.
|
|
If \a t is greater than or equal to 1, then \a q2 will be returned.
|
|
|
|
\sa nlerp()
|
|
*/
|
|
QQuaternion QQuaternion::slerp
|
|
(const QQuaternion& q1, const QQuaternion& q2, qreal t)
|
|
{
|
|
// Handle the easy cases first.
|
|
if (t <= 0.0f)
|
|
return q1;
|
|
else if (t >= 1.0f)
|
|
return q2;
|
|
|
|
// Determine the angle between the two quaternions.
|
|
QQuaternion q2b;
|
|
qreal dot;
|
|
dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
|
|
if (dot >= 0.0f) {
|
|
q2b = q2;
|
|
} else {
|
|
q2b = -q2;
|
|
dot = -dot;
|
|
}
|
|
|
|
// Get the scale factors. If they are too small,
|
|
// then revert to simple linear interpolation.
|
|
qreal factor1 = 1.0f - t;
|
|
qreal factor2 = t;
|
|
if ((1.0f - dot) > 0.0000001) {
|
|
qreal angle = qreal(qAcos(dot));
|
|
qreal sinOfAngle = qreal(qSin(angle));
|
|
if (sinOfAngle > 0.0000001) {
|
|
factor1 = qreal(qSin((1.0f - t) * angle)) / sinOfAngle;
|
|
factor2 = qreal(qSin(t * angle)) / sinOfAngle;
|
|
}
|
|
}
|
|
|
|
// Construct the result quaternion.
|
|
return q1 * factor1 + q2b * factor2;
|
|
}
|
|
|
|
/*!
|
|
Interpolates along the shortest linear path between the rotational
|
|
positions \a q1 and \a q2. The value \a t should be between 0 and 1,
|
|
indicating the distance to travel between \a q1 and \a q2.
|
|
The result will be normalized().
|
|
|
|
If \a t is less than or equal to 0, then \a q1 will be returned.
|
|
If \a t is greater than or equal to 1, then \a q2 will be returned.
|
|
|
|
The nlerp() function is typically faster than slerp() and will
|
|
give approximate results to spherical interpolation that are
|
|
good enough for some applications.
|
|
|
|
\sa slerp()
|
|
*/
|
|
QQuaternion QQuaternion::nlerp
|
|
(const QQuaternion& q1, const QQuaternion& q2, qreal t)
|
|
{
|
|
// Handle the easy cases first.
|
|
if (t <= 0.0f)
|
|
return q1;
|
|
else if (t >= 1.0f)
|
|
return q2;
|
|
|
|
// Determine the angle between the two quaternions.
|
|
QQuaternion q2b;
|
|
qreal dot;
|
|
dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
|
|
if (dot >= 0.0f)
|
|
q2b = q2;
|
|
else
|
|
q2b = -q2;
|
|
|
|
// Perform the linear interpolation.
|
|
return (q1 * (1.0f - t) + q2b * t).normalized();
|
|
}
|
|
|
|
/*!
|
|
Returns the quaternion as a QVariant.
|
|
*/
|
|
QQuaternion::operator QVariant() const
|
|
{
|
|
return QVariant(QVariant::Quaternion, this);
|
|
}
|
|
|
|
#ifndef QT_NO_DEBUG_STREAM
|
|
|
|
QDebug operator<<(QDebug dbg, const QQuaternion &q)
|
|
{
|
|
dbg.nospace() << "QQuaternion(scalar:" << q.scalar()
|
|
<< ", vector:(" << q.x() << ", "
|
|
<< q.y() << ", " << q.z() << "))";
|
|
return dbg.space();
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef QT_NO_DATASTREAM
|
|
|
|
/*!
|
|
\fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
|
|
\relates QQuaternion
|
|
|
|
Writes the given \a quaternion to the given \a stream and returns a
|
|
reference to the stream.
|
|
|
|
\sa {Serializing Qt Data Types}
|
|
*/
|
|
|
|
QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
|
|
{
|
|
stream << double(quaternion.scalar()) << double(quaternion.x())
|
|
<< double(quaternion.y()) << double(quaternion.z());
|
|
return stream;
|
|
}
|
|
|
|
/*!
|
|
\fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
|
|
\relates QQuaternion
|
|
|
|
Reads a quaternion from the given \a stream into the given \a quaternion
|
|
and returns a reference to the stream.
|
|
|
|
\sa {Serializing Qt Data Types}
|
|
*/
|
|
|
|
QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
|
|
{
|
|
double scalar, x, y, z;
|
|
stream >> scalar;
|
|
stream >> x;
|
|
stream >> y;
|
|
stream >> z;
|
|
quaternion.setScalar(qreal(scalar));
|
|
quaternion.setX(qreal(x));
|
|
quaternion.setY(qreal(y));
|
|
quaternion.setZ(qreal(z));
|
|
return stream;
|
|
}
|
|
|
|
#endif // QT_NO_DATASTREAM
|
|
|
|
#endif
|
|
|
|
QT_END_NAMESPACE
|
|
|
|
|
|
|
|
|