mirror of
https://bitbucket.org/smil3y/katie.git
synced 2025-02-23 18:32:55 +00:00
drop BLAKE2b and BLAKE2s in favour of BLAKE3
unfortunetly the reference C implementation (https://github.com/oconnor663/blake3_reference_impl_c) was slower on static hash benchmark, faster on incremental hashing tho. while BLAKE2b and BLAKE2s were faster than SHA-2 on incremental hashing BLAKE3 is faster on both static and incremental hashing (compared to SHA-256), benchmark results: ********* Start testing of tst_qcryptographichash ********* Config: Using QTest library 4.12.0, Katie 4.12.0 PASS : tst_qcryptographichash::initTestCase() RESULT : tst_qcryptographichash::append():"10 (Md5)": 0.00281 msecs per iteration (total: 563, iterations: 200000) RESULT : tst_qcryptographichash::append():"10 (Sha1)": 0.00334 msecs per iteration (total: 669, iterations: 200000) RESULT : tst_qcryptographichash::append():"10 (Sha256)": 0.00468 msecs per iteration (total: 936, iterations: 200000) RESULT : tst_qcryptographichash::append():"10 (Sha512)": 0.00366 msecs per iteration (total: 732, iterations: 200000) RESULT : tst_qcryptographichash::append():"10 (BLAKE3)": 0.00219 msecs per iteration (total: 438, iterations: 200000) RESULT : tst_qcryptographichash::append():"100 (Md5)": 0.000660 msecs per iteration (total: 132, iterations: 200000) RESULT : tst_qcryptographichash::append():"100 (Sha1)": 0.00112 msecs per iteration (total: 224, iterations: 200000) RESULT : tst_qcryptographichash::append():"100 (Sha256)": 0.000935 msecs per iteration (total: 187, iterations: 200000) RESULT : tst_qcryptographichash::append():"100 (Sha512)": 0.00108 msecs per iteration (total: 216, iterations: 200000) RESULT : tst_qcryptographichash::append():"100 (BLAKE3)": 0.000775 msecs per iteration (total: 155, iterations: 200000) RESULT : tst_qcryptographichash::append():"250 (Md5)": 0.000590 msecs per iteration (total: 118, iterations: 200000) RESULT : tst_qcryptographichash::append():"250 (Sha1)": 0.00135 msecs per iteration (total: 271, iterations: 200000) RESULT : tst_qcryptographichash::append():"250 (Sha256)": 0.000870 msecs per iteration (total: 174, iterations: 200000) RESULT : tst_qcryptographichash::append():"250 (Sha512)": 0.00101 msecs per iteration (total: 203, iterations: 200000) RESULT : tst_qcryptographichash::append():"250 (BLAKE3)": 0.000655 msecs per iteration (total: 131, iterations: 200000) RESULT : tst_qcryptographichash::append():"500 (Md5)": 0.000575 msecs per iteration (total: 115, iterations: 200000) RESULT : tst_qcryptographichash::append():"500 (Sha1)": 0.00138 msecs per iteration (total: 276, iterations: 200000) RESULT : tst_qcryptographichash::append():"500 (Sha256)": 0.000855 msecs per iteration (total: 171, iterations: 200000) RESULT : tst_qcryptographichash::append():"500 (Sha512)": 0.00100 msecs per iteration (total: 200, iterations: 200000) RESULT : tst_qcryptographichash::append():"500 (BLAKE3)": 0.000610 msecs per iteration (total: 122, iterations: 200000) PASS : tst_qcryptographichash::append() RESULT : tst_qcryptographichash::append_once():"Md5": 0.00157 msecs per iteration (total: 315, iterations: 200000) RESULT : tst_qcryptographichash::append_once():"Sha1": 0.00217 msecs per iteration (total: 434, iterations: 200000) RESULT : tst_qcryptographichash::append_once():"Sha256": 0.00428 msecs per iteration (total: 857, iterations: 200000) RESULT : tst_qcryptographichash::append_once():"Sha512": 0.00319 msecs per iteration (total: 638, iterations: 200000) RESULT : tst_qcryptographichash::append_once():"BLAKE3": 0.00164 msecs per iteration (total: 329, iterations: 200000) PASS : tst_qcryptographichash::append_once() RESULT : tst_qcryptographichash::statichash():"Md5": 0.00149 msecs per iteration (total: 299, iterations: 200000) RESULT : tst_qcryptographichash::statichash():"Sha1": 0.00206 msecs per iteration (total: 413, iterations: 200000) RESULT : tst_qcryptographichash::statichash():"Sha256": 0.00408 msecs per iteration (total: 816, iterations: 200000) RESULT : tst_qcryptographichash::statichash():"Sha512": 0.00308 msecs per iteration (total: 616, iterations: 200000) RESULT : tst_qcryptographichash::statichash():"BLAKE3": 0.00137 msecs per iteration (total: 274, iterations: 200000) PASS : tst_qcryptographichash::statichash() PASS : tst_qcryptographichash::cleanupTestCase() Totals: 5 passed, 0 failed, 0 skipped ********* Finished testing of tst_qcryptographichash ********* Signed-off-by: Ivailo Monev <xakepa10@gmail.com>
This commit is contained in:
parent
c7a0ad8a5e
commit
4e5220dede
18 changed files with 1968 additions and 698 deletions
2
README
2
README
|
@ -59,7 +59,7 @@ There are several things you should be aware before considering Katie:
|
|||
- support for AArch64 architecture
|
||||
- support for locale aliases
|
||||
- support for generating SHA-256 and SHA-512 hash sums (SHA-2)
|
||||
- support for generating BLAKE2b and BLAKE2s hash sums
|
||||
- support for generating BLAKE3 hash sums
|
||||
- verification section for plugins build with Clang
|
||||
- qCompress() and qUncompress() use libdeflate which is much faster
|
||||
- stack backtrace on assert, crash or warning via execinfo
|
||||
|
|
330
src/3rdparty/BLAKE3/LICENSE
vendored
Normal file
330
src/3rdparty/BLAKE3/LICENSE
vendored
Normal file
|
@ -0,0 +1,330 @@
|
|||
This work is released into the public domain with CC0 1.0. Alternatively, it is
|
||||
licensed under the Apache License 2.0.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
Creative Commons Legal Code
|
||||
|
||||
CC0 1.0 Universal
|
||||
|
||||
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
|
||||
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
|
||||
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
|
||||
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
|
||||
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
|
||||
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
|
||||
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
|
||||
HEREUNDER.
|
||||
|
||||
Statement of Purpose
|
||||
|
||||
The laws of most jurisdictions throughout the world automatically confer
|
||||
exclusive Copyright and Related Rights (defined below) upon the creator
|
||||
and subsequent owner(s) (each and all, an "owner") of an original work of
|
||||
authorship and/or a database (each, a "Work").
|
||||
|
||||
Certain owners wish to permanently relinquish those rights to a Work for
|
||||
the purpose of contributing to a commons of creative, cultural and
|
||||
scientific works ("Commons") that the public can reliably and without fear
|
||||
of later claims of infringement build upon, modify, incorporate in other
|
||||
works, reuse and redistribute as freely as possible in any form whatsoever
|
||||
and for any purposes, including without limitation commercial purposes.
|
||||
These owners may contribute to the Commons to promote the ideal of a free
|
||||
culture and the further production of creative, cultural and scientific
|
||||
works, or to gain reputation or greater distribution for their Work in
|
||||
part through the use and efforts of others.
|
||||
|
||||
For these and/or other purposes and motivations, and without any
|
||||
expectation of additional consideration or compensation, the person
|
||||
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
|
||||
is an owner of Copyright and Related Rights in the Work, voluntarily
|
||||
elects to apply CC0 to the Work and publicly distribute the Work under its
|
||||
terms, with knowledge of his or her Copyright and Related Rights in the
|
||||
Work and the meaning and intended legal effect of CC0 on those rights.
|
||||
|
||||
1. Copyright and Related Rights. A Work made available under CC0 may be
|
||||
protected by copyright and related or neighboring rights ("Copyright and
|
||||
Related Rights"). Copyright and Related Rights include, but are not
|
||||
limited to, the following:
|
||||
|
||||
i. the right to reproduce, adapt, distribute, perform, display,
|
||||
communicate, and translate a Work;
|
||||
ii. moral rights retained by the original author(s) and/or performer(s);
|
||||
iii. publicity and privacy rights pertaining to a person's image or
|
||||
likeness depicted in a Work;
|
||||
iv. rights protecting against unfair competition in regards to a Work,
|
||||
subject to the limitations in paragraph 4(a), below;
|
||||
v. rights protecting the extraction, dissemination, use and reuse of data
|
||||
in a Work;
|
||||
vi. database rights (such as those arising under Directive 96/9/EC of the
|
||||
European Parliament and of the Council of 11 March 1996 on the legal
|
||||
protection of databases, and under any national implementation
|
||||
thereof, including any amended or successor version of such
|
||||
directive); and
|
||||
vii. other similar, equivalent or corresponding rights throughout the
|
||||
world based on applicable law or treaty, and any national
|
||||
implementations thereof.
|
||||
|
||||
2. Waiver. To the greatest extent permitted by, but not in contravention
|
||||
of, applicable law, Affirmer hereby overtly, fully, permanently,
|
||||
irrevocably and unconditionally waives, abandons, and surrenders all of
|
||||
Affirmer's Copyright and Related Rights and associated claims and causes
|
||||
of action, whether now known or unknown (including existing as well as
|
||||
future claims and causes of action), in the Work (i) in all territories
|
||||
worldwide, (ii) for the maximum duration provided by applicable law or
|
||||
treaty (including future time extensions), (iii) in any current or future
|
||||
medium and for any number of copies, and (iv) for any purpose whatsoever,
|
||||
including without limitation commercial, advertising or promotional
|
||||
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
|
||||
member of the public at large and to the detriment of Affirmer's heirs and
|
||||
successors, fully intending that such Waiver shall not be subject to
|
||||
revocation, rescission, cancellation, termination, or any other legal or
|
||||
equitable action to disrupt the quiet enjoyment of the Work by the public
|
||||
as contemplated by Affirmer's express Statement of Purpose.
|
||||
|
||||
3. Public License Fallback. Should any part of the Waiver for any reason
|
||||
be judged legally invalid or ineffective under applicable law, then the
|
||||
Waiver shall be preserved to the maximum extent permitted taking into
|
||||
account Affirmer's express Statement of Purpose. In addition, to the
|
||||
extent the Waiver is so judged Affirmer hereby grants to each affected
|
||||
person a royalty-free, non transferable, non sublicensable, non exclusive,
|
||||
irrevocable and unconditional license to exercise Affirmer's Copyright and
|
||||
Related Rights in the Work (i) in all territories worldwide, (ii) for the
|
||||
maximum duration provided by applicable law or treaty (including future
|
||||
time extensions), (iii) in any current or future medium and for any number
|
||||
of copies, and (iv) for any purpose whatsoever, including without
|
||||
limitation commercial, advertising or promotional purposes (the
|
||||
"License"). The License shall be deemed effective as of the date CC0 was
|
||||
applied by Affirmer to the Work. Should any part of the License for any
|
||||
reason be judged legally invalid or ineffective under applicable law, such
|
||||
partial invalidity or ineffectiveness shall not invalidate the remainder
|
||||
of the License, and in such case Affirmer hereby affirms that he or she
|
||||
will not (i) exercise any of his or her remaining Copyright and Related
|
||||
Rights in the Work or (ii) assert any associated claims and causes of
|
||||
action with respect to the Work, in either case contrary to Affirmer's
|
||||
express Statement of Purpose.
|
||||
|
||||
4. Limitations and Disclaimers.
|
||||
|
||||
a. No trademark or patent rights held by Affirmer are waived, abandoned,
|
||||
surrendered, licensed or otherwise affected by this document.
|
||||
b. Affirmer offers the Work as-is and makes no representations or
|
||||
warranties of any kind concerning the Work, express, implied,
|
||||
statutory or otherwise, including without limitation warranties of
|
||||
title, merchantability, fitness for a particular purpose, non
|
||||
infringement, or the absence of latent or other defects, accuracy, or
|
||||
the present or absence of errors, whether or not discoverable, all to
|
||||
the greatest extent permissible under applicable law.
|
||||
c. Affirmer disclaims responsibility for clearing rights of other persons
|
||||
that may apply to the Work or any use thereof, including without
|
||||
limitation any person's Copyright and Related Rights in the Work.
|
||||
Further, Affirmer disclaims responsibility for obtaining any necessary
|
||||
consents, permissions or other rights required for any use of the
|
||||
Work.
|
||||
d. Affirmer understands and acknowledges that Creative Commons is not a
|
||||
party to this document and has no duty or obligation with respect to
|
||||
this CC0 or use of the Work.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright 2019 Jack O'Connor and Samuel Neves
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
2
src/3rdparty/BLAKE3/NOTE
vendored
Normal file
2
src/3rdparty/BLAKE3/NOTE
vendored
Normal file
|
@ -0,0 +1,2 @@
|
|||
This is Git checkout 9cd41c0cfdc2fa2fcb8261ff3e1446d98495c991
|
||||
from https://github.com/BLAKE3-team/BLAKE3 that has been modified.
|
203
src/3rdparty/BLAKE3/README.md
vendored
Normal file
203
src/3rdparty/BLAKE3/README.md
vendored
Normal file
|
@ -0,0 +1,203 @@
|
|||
# <a href="#"><img src="media/BLAKE3.svg" alt="BLAKE3" height=50></a>
|
||||
|
||||
BLAKE3 is a cryptographic hash function that is:
|
||||
|
||||
- **Much faster** than MD5, SHA-1, SHA-2, SHA-3, and BLAKE2.
|
||||
- **Secure**, unlike MD5 and SHA-1. And secure against length extension,
|
||||
unlike SHA-2.
|
||||
- **Highly parallelizable** across any number of threads and SIMD lanes,
|
||||
because it's a Merkle tree on the inside.
|
||||
- Capable of **verified streaming** and **incremental updates**, again
|
||||
because it's a Merkle tree.
|
||||
- A **PRF**, **MAC**, **KDF**, and **XOF**, as well as a regular hash.
|
||||
- **One algorithm with no variants**, which is fast on x86-64 and also
|
||||
on smaller architectures.
|
||||
|
||||
The [chart below](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/benchmarks/bar_chart.py)
|
||||
is an example benchmark of 16 KiB inputs on modern server hardware (a Cascade
|
||||
Lake-SP 8275CL processor). For more detailed benchmarks, see the
|
||||
[BLAKE3 paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf).
|
||||
|
||||
<p align="center">
|
||||
<img src="media/speed.svg" alt="performance graph">
|
||||
</p>
|
||||
|
||||
BLAKE3 is based on an optimized instance of the established hash
|
||||
function [BLAKE2](https://blake2.net) and on the [original Bao tree
|
||||
mode](https://github.com/oconnor663/bao/blob/master/docs/spec_0.9.1.md).
|
||||
The specifications and design rationale are available in the [BLAKE3
|
||||
paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf).
|
||||
The default output size is 256 bits. The current version of
|
||||
[Bao](https://github.com/oconnor663/bao) implements verified streaming
|
||||
with BLAKE3.
|
||||
|
||||
This repository is the official implementation of BLAKE3. It includes:
|
||||
|
||||
* The [`blake3`](https://crates.io/crates/blake3) Rust crate, which
|
||||
includes optimized implementations for SSE2, SSE4.1, AVX2, AVX-512,
|
||||
and NEON, with automatic runtime CPU feature detection on x86. The
|
||||
`rayon` feature provides multithreading.
|
||||
|
||||
* The [`b3sum`](https://crates.io/crates/b3sum) Rust crate, which
|
||||
provides a command line interface. It uses multithreading by default,
|
||||
making it an order of magnitude faster than e.g. `sha256sum` on
|
||||
typical desktop hardware.
|
||||
|
||||
* The [C implementation](c), which like the Rust implementation includes
|
||||
SIMD code and runtime CPU feature detection on x86. Unlike the Rust
|
||||
implementation, it's not currently multithreaded. See
|
||||
[`c/README.md`](c/README.md).
|
||||
|
||||
* The [Rust reference implementation](reference_impl/reference_impl.rs),
|
||||
which is discussed in Section 5.1 of the [BLAKE3
|
||||
paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf).
|
||||
This implementation is much smaller and simpler than the optimized
|
||||
ones above. If you want to see how BLAKE3 works, or you're writing a
|
||||
port that doesn't need multithreading or SIMD optimizations, start
|
||||
here. Ports of the reference implementation to other languages are
|
||||
hosted in separate repositories
|
||||
([C](https://github.com/oconnor663/blake3_reference_impl_c),
|
||||
[Python](https://github.com/oconnor663/pure_python_blake3)).
|
||||
|
||||
* A [set of test
|
||||
vectors](https://github.com/BLAKE3-team/BLAKE3/blob/master/test_vectors/test_vectors.json)
|
||||
that covers extended outputs, all three modes, and a variety of input
|
||||
lengths.
|
||||
|
||||
* [](https://github.com/BLAKE3-team/BLAKE3/actions)
|
||||
|
||||
BLAKE3 was designed by:
|
||||
|
||||
* [@oconnor663 ](https://github.com/oconnor663) (Jack O'Connor)
|
||||
* [@sneves](https://github.com/sneves) (Samuel Neves)
|
||||
* [@veorq](https://github.com/veorq) (Jean-Philippe Aumasson)
|
||||
* [@zookozcash](https://github.com/zookozcash) (Zooko)
|
||||
|
||||
The development of BLAKE3 was sponsored by [Electric Coin Company](https://electriccoin.co).
|
||||
|
||||
*NOTE: BLAKE3 is not a password hashing algorithm, because it's
|
||||
designed to be fast, whereas password hashing should not be fast. If you
|
||||
hash passwords to store the hashes or if you derive keys from passwords,
|
||||
we recommend [Argon2](https://github.com/P-H-C/phc-winner-argon2).*
|
||||
|
||||
## Usage
|
||||
|
||||
### The `b3sum` utility
|
||||
|
||||
The `b3sum` command line utility prints the BLAKE3 hashes of files or of
|
||||
standard input. Prebuilt binaries are available for Linux, Windows, and
|
||||
macOS (requiring the [unidentified developer
|
||||
workaround](https://support.apple.com/guide/mac-help/open-a-mac-app-from-an-unidentified-developer-mh40616/mac))
|
||||
on the [releases page](https://github.com/BLAKE3-team/BLAKE3/releases).
|
||||
If you've [installed Rust and
|
||||
Cargo](https://doc.rust-lang.org/cargo/getting-started/installation.html),
|
||||
you can also build `b3sum` yourself with:
|
||||
|
||||
```bash
|
||||
cargo install b3sum
|
||||
```
|
||||
|
||||
If `rustup` didn't configure your `PATH` for you, you might need to go
|
||||
looking for the installed binary in e.g. `~/.cargo/bin`. You can test
|
||||
out how fast BLAKE3 is on your machine by creating a big file and
|
||||
hashing it, for example:
|
||||
|
||||
```bash
|
||||
# Create a 1 GB file.
|
||||
head -c 1000000000 /dev/zero > /tmp/bigfile
|
||||
# Hash it with SHA-256.
|
||||
time openssl sha256 /tmp/bigfile
|
||||
# Hash it with BLAKE3.
|
||||
time b3sum /tmp/bigfile
|
||||
```
|
||||
|
||||
### The `blake3` crate [](https://docs.rs/blake3)
|
||||
|
||||
To use BLAKE3 from Rust code, add a dependency on the `blake3` crate to
|
||||
your `Cargo.toml`. Here's an example of hashing some input bytes:
|
||||
|
||||
```rust
|
||||
// Hash an input all at once.
|
||||
let hash1 = blake3::hash(b"foobarbaz");
|
||||
|
||||
// Hash an input incrementally.
|
||||
let mut hasher = blake3::Hasher::new();
|
||||
hasher.update(b"foo");
|
||||
hasher.update(b"bar");
|
||||
hasher.update(b"baz");
|
||||
let hash2 = hasher.finalize();
|
||||
assert_eq!(hash1, hash2);
|
||||
|
||||
// Extended output. OutputReader also implements Read and Seek.
|
||||
let mut output = [0; 1000];
|
||||
let mut output_reader = hasher.finalize_xof();
|
||||
output_reader.fill(&mut output);
|
||||
assert_eq!(&output[..32], hash1.as_bytes());
|
||||
|
||||
// Print a hash as hex.
|
||||
println!("{}", hash1);
|
||||
```
|
||||
|
||||
Besides `hash`, BLAKE3 provides two other modes, `keyed_hash` and
|
||||
`derive_key`. The `keyed_hash` mode takes a 256-bit key:
|
||||
|
||||
```rust
|
||||
// MAC an input all at once.
|
||||
let example_key = [42u8; 32];
|
||||
let mac1 = blake3::keyed_hash(&example_key, b"example input");
|
||||
|
||||
// MAC incrementally.
|
||||
let mut hasher = blake3::Hasher::new_keyed(&example_key);
|
||||
hasher.update(b"example input");
|
||||
let mac2 = hasher.finalize();
|
||||
assert_eq!(mac1, mac2);
|
||||
```
|
||||
|
||||
The `derive_key` mode takes a context string and some key material (not a
|
||||
password). The context string should be hardcoded, globally unique, and
|
||||
application-specific. A good default format for the context string is
|
||||
`"[application] [commit timestamp] [purpose]"`:
|
||||
|
||||
```rust
|
||||
// Derive a couple of subkeys for different purposes.
|
||||
const EMAIL_CONTEXT: &str = "BLAKE3 example 2020-01-07 17:10:44 email key";
|
||||
const API_CONTEXT: &str = "BLAKE3 example 2020-01-07 17:11:21 API key";
|
||||
let input_key_material = b"usually at least 32 random bytes, not a password";
|
||||
let email_key = blake3::derive_key(EMAIL_CONTEXT, input_key_material);
|
||||
let api_key = blake3::derive_key(API_CONTEXT, input_key_material);
|
||||
assert_ne!(email_key, api_key);
|
||||
```
|
||||
|
||||
### The C implementation
|
||||
|
||||
See [`c/README.md`](c/README.md).
|
||||
|
||||
### Other implementations
|
||||
|
||||
We post links to third-party bindings and implementations on the
|
||||
[@BLAKE3team Twitter account](https://twitter.com/BLAKE3team) whenever
|
||||
we hear about them. Some highlights include [an optimized Go
|
||||
implementation](https://github.com/zeebo/blake3), [Wasm bindings for
|
||||
Node.js and browsers](https://github.com/connor4312/blake3), [binary
|
||||
wheels for Python](https://github.com/oconnor663/blake3-py), [.NET
|
||||
bindings](https://github.com/xoofx/Blake3.NET), and [JNI
|
||||
bindings](https://github.com/sken77/BLAKE3jni).
|
||||
|
||||
## Contributing
|
||||
|
||||
Please see [CONTRIBUTING.md](CONTRIBUTING.md).
|
||||
|
||||
## Intellectual property
|
||||
|
||||
The Rust code is copyright Jack O'Connor, 2019-2020. The C code is
|
||||
copyright Samuel Neves and Jack O'Connor, 2019-2020. The assembly code
|
||||
is copyright Samuel Neves, 2019-2020.
|
||||
|
||||
This work is released into the public domain with CC0 1.0.
|
||||
Alternatively, it is licensed under the Apache License 2.0.
|
||||
|
||||
## Miscellany
|
||||
|
||||
- [@veorq](https://github.com/veorq) and
|
||||
[@oconnor663](https://github.com/oconnor663) did [a podcast
|
||||
interview](https://www.cryptography.fm/3) about designing BLAKE3.
|
616
src/3rdparty/BLAKE3/blake3.c
vendored
Normal file
616
src/3rdparty/BLAKE3/blake3.c
vendored
Normal file
|
@ -0,0 +1,616 @@
|
|||
#include <assert.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "blake3.h"
|
||||
#include "blake3_impl.h"
|
||||
|
||||
const char *blake3_version(void) { return BLAKE3_VERSION_STRING; }
|
||||
|
||||
INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8],
|
||||
uint8_t flags) {
|
||||
memcpy(self->cv, key, BLAKE3_KEY_LEN);
|
||||
self->chunk_counter = 0;
|
||||
memset(self->buf, 0, BLAKE3_BLOCK_LEN);
|
||||
self->buf_len = 0;
|
||||
self->blocks_compressed = 0;
|
||||
self->flags = flags;
|
||||
}
|
||||
|
||||
INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8],
|
||||
uint64_t chunk_counter) {
|
||||
memcpy(self->cv, key, BLAKE3_KEY_LEN);
|
||||
self->chunk_counter = chunk_counter;
|
||||
self->blocks_compressed = 0;
|
||||
memset(self->buf, 0, BLAKE3_BLOCK_LEN);
|
||||
self->buf_len = 0;
|
||||
}
|
||||
|
||||
INLINE size_t chunk_state_len(const blake3_chunk_state *self) {
|
||||
return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) +
|
||||
((size_t)self->buf_len);
|
||||
}
|
||||
|
||||
INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self,
|
||||
const uint8_t *input, size_t input_len) {
|
||||
size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len);
|
||||
if (take > input_len) {
|
||||
take = input_len;
|
||||
}
|
||||
uint8_t *dest = self->buf + ((size_t)self->buf_len);
|
||||
memcpy(dest, input, take);
|
||||
self->buf_len += (uint8_t)take;
|
||||
return take;
|
||||
}
|
||||
|
||||
INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) {
|
||||
if (self->blocks_compressed == 0) {
|
||||
return CHUNK_START;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
uint32_t input_cv[8];
|
||||
uint64_t counter;
|
||||
uint8_t block[BLAKE3_BLOCK_LEN];
|
||||
uint8_t block_len;
|
||||
uint8_t flags;
|
||||
} output_t;
|
||||
|
||||
INLINE output_t make_output(const uint32_t input_cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags) {
|
||||
output_t ret;
|
||||
memcpy(ret.input_cv, input_cv, 32);
|
||||
memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
|
||||
ret.block_len = block_len;
|
||||
ret.counter = counter;
|
||||
ret.flags = flags;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Chaining values within a given chunk (specifically the compress_in_place
|
||||
// interface) are represented as words. This avoids unnecessary bytes<->words
|
||||
// conversion overhead in the portable implementation. However, the hash_many
|
||||
// interface handles both user input and parent node blocks, so it accepts
|
||||
// bytes. For that reason, chaining values in the CV stack are represented as
|
||||
// bytes.
|
||||
INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) {
|
||||
uint32_t cv_words[8];
|
||||
memcpy(cv_words, self->input_cv, 32);
|
||||
blake3_compress_in_place(cv_words, self->block, self->block_len,
|
||||
self->counter, self->flags);
|
||||
store_cv_words(cv, cv_words);
|
||||
}
|
||||
|
||||
INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out,
|
||||
size_t out_len) {
|
||||
uint64_t output_block_counter = seek / 64;
|
||||
size_t offset_within_block = seek % 64;
|
||||
uint8_t wide_buf[64];
|
||||
while (out_len > 0) {
|
||||
blake3_compress_xof(self->input_cv, self->block, self->block_len,
|
||||
output_block_counter, self->flags | ROOT, wide_buf);
|
||||
size_t available_bytes = 64 - offset_within_block;
|
||||
size_t memcpy_len;
|
||||
if (out_len > available_bytes) {
|
||||
memcpy_len = available_bytes;
|
||||
} else {
|
||||
memcpy_len = out_len;
|
||||
}
|
||||
memcpy(out, wide_buf + offset_within_block, memcpy_len);
|
||||
out += memcpy_len;
|
||||
out_len -= memcpy_len;
|
||||
output_block_counter += 1;
|
||||
offset_within_block = 0;
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input,
|
||||
size_t input_len) {
|
||||
if (self->buf_len > 0) {
|
||||
size_t take = chunk_state_fill_buf(self, input, input_len);
|
||||
input += take;
|
||||
input_len -= take;
|
||||
if (input_len > 0) {
|
||||
blake3_compress_in_place(
|
||||
self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter,
|
||||
self->flags | chunk_state_maybe_start_flag(self));
|
||||
self->blocks_compressed += 1;
|
||||
self->buf_len = 0;
|
||||
memset(self->buf, 0, BLAKE3_BLOCK_LEN);
|
||||
}
|
||||
}
|
||||
|
||||
while (input_len > BLAKE3_BLOCK_LEN) {
|
||||
blake3_compress_in_place(self->cv, input, BLAKE3_BLOCK_LEN,
|
||||
self->chunk_counter,
|
||||
self->flags | chunk_state_maybe_start_flag(self));
|
||||
self->blocks_compressed += 1;
|
||||
input += BLAKE3_BLOCK_LEN;
|
||||
input_len -= BLAKE3_BLOCK_LEN;
|
||||
}
|
||||
|
||||
size_t take = chunk_state_fill_buf(self, input, input_len);
|
||||
input += take;
|
||||
input_len -= take;
|
||||
}
|
||||
|
||||
INLINE output_t chunk_state_output(const blake3_chunk_state *self) {
|
||||
uint8_t block_flags =
|
||||
self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END;
|
||||
return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter,
|
||||
block_flags);
|
||||
}
|
||||
|
||||
INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
const uint32_t key[8], uint8_t flags) {
|
||||
return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT);
|
||||
}
|
||||
|
||||
// Given some input larger than one chunk, return the number of bytes that
|
||||
// should go in the left subtree. This is the largest power-of-2 number of
|
||||
// chunks that leaves at least 1 byte for the right subtree.
|
||||
INLINE size_t left_len(size_t content_len) {
|
||||
// Subtract 1 to reserve at least one byte for the right side. content_len
|
||||
// should always be greater than BLAKE3_CHUNK_LEN.
|
||||
size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
|
||||
return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN;
|
||||
}
|
||||
|
||||
// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
|
||||
// on a single thread. Write out the chunk chaining values and return the
|
||||
// number of chunks hashed. These chunks are never the root and never empty;
|
||||
// those cases use a different codepath.
|
||||
INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len,
|
||||
const uint32_t key[8],
|
||||
uint64_t chunk_counter, uint8_t flags,
|
||||
uint8_t *out) {
|
||||
#if defined(BLAKE3_TESTING)
|
||||
assert(0 < input_len);
|
||||
assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN);
|
||||
#endif
|
||||
|
||||
const uint8_t *chunks_array[MAX_SIMD_DEGREE];
|
||||
size_t input_position = 0;
|
||||
size_t chunks_array_len = 0;
|
||||
while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
|
||||
chunks_array[chunks_array_len] = &input[input_position];
|
||||
input_position += BLAKE3_CHUNK_LEN;
|
||||
chunks_array_len += 1;
|
||||
}
|
||||
|
||||
blake3_hash_many(chunks_array, chunks_array_len,
|
||||
BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter,
|
||||
true, flags, CHUNK_START, CHUNK_END, out);
|
||||
|
||||
// Hash the remaining partial chunk, if there is one. Note that the empty
|
||||
// chunk (meaning the empty message) is a different codepath.
|
||||
if (input_len > input_position) {
|
||||
uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
|
||||
blake3_chunk_state chunk_state;
|
||||
chunk_state_init(&chunk_state, key, flags);
|
||||
chunk_state.chunk_counter = counter;
|
||||
chunk_state_update(&chunk_state, &input[input_position],
|
||||
input_len - input_position);
|
||||
output_t output = chunk_state_output(&chunk_state);
|
||||
output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]);
|
||||
return chunks_array_len + 1;
|
||||
} else {
|
||||
return chunks_array_len;
|
||||
}
|
||||
}
|
||||
|
||||
// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
|
||||
// on a single thread. Write out the parent chaining values and return the
|
||||
// number of parents hashed. (If there's an odd input chaining value left over,
|
||||
// return it as an additional output.) These parents are never the root and
|
||||
// never empty; those cases use a different codepath.
|
||||
INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values,
|
||||
size_t num_chaining_values,
|
||||
const uint32_t key[8], uint8_t flags,
|
||||
uint8_t *out) {
|
||||
#if defined(BLAKE3_TESTING)
|
||||
assert(2 <= num_chaining_values);
|
||||
assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2);
|
||||
#endif
|
||||
|
||||
const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2];
|
||||
size_t parents_array_len = 0;
|
||||
while (num_chaining_values - (2 * parents_array_len) >= 2) {
|
||||
parents_array[parents_array_len] =
|
||||
&child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN];
|
||||
parents_array_len += 1;
|
||||
}
|
||||
|
||||
blake3_hash_many(parents_array, parents_array_len, 1, key,
|
||||
0, // Parents always use counter 0.
|
||||
false, flags | PARENT,
|
||||
0, // Parents have no start flags.
|
||||
0, // Parents have no end flags.
|
||||
out);
|
||||
|
||||
// If there's an odd child left over, it becomes an output.
|
||||
if (num_chaining_values > 2 * parents_array_len) {
|
||||
memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
|
||||
&child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN],
|
||||
BLAKE3_OUT_LEN);
|
||||
return parents_array_len + 1;
|
||||
} else {
|
||||
return parents_array_len;
|
||||
}
|
||||
}
|
||||
|
||||
// The wide helper function returns (writes out) an array of chaining values
|
||||
// and returns the length of that array. The number of chaining values returned
|
||||
// is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
|
||||
// if the input is shorter than that many chunks. The reason for maintaining a
|
||||
// wide array of chaining values going back up the tree, is to allow the
|
||||
// implementation to hash as many parents in parallel as possible.
|
||||
//
|
||||
// As a special case when the SIMD degree is 1, this function will still return
|
||||
// at least 2 outputs. This guarantees that this function doesn't perform the
|
||||
// root compression. (If it did, it would use the wrong flags, and also we
|
||||
// wouldn't be able to implement exendable output.) Note that this function is
|
||||
// not used when the whole input is only 1 chunk long; that's a different
|
||||
// codepath.
|
||||
//
|
||||
// Why not just have the caller split the input on the first update(), instead
|
||||
// of implementing this special rule? Because we don't want to limit SIMD or
|
||||
// multi-threading parallelism for that update().
|
||||
static size_t blake3_compress_subtree_wide(const uint8_t *input,
|
||||
size_t input_len,
|
||||
const uint32_t key[8],
|
||||
uint64_t chunk_counter,
|
||||
uint8_t flags, uint8_t *out) {
|
||||
// Note that the single chunk case does *not* bump the SIMD degree up to 2
|
||||
// when it is 1. If this implementation adds multi-threading in the future,
|
||||
// this gives us the option of multi-threading even the 2-chunk case, which
|
||||
// can help performance on smaller platforms.
|
||||
if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) {
|
||||
return compress_chunks_parallel(input, input_len, key, chunk_counter, flags,
|
||||
out);
|
||||
}
|
||||
|
||||
// With more than simd_degree chunks, we need to recurse. Start by dividing
|
||||
// the input into left and right subtrees. (Note that this is only optimal
|
||||
// as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
|
||||
// of 3 or something, we'll need a more complicated strategy.)
|
||||
size_t left_input_len = left_len(input_len);
|
||||
size_t right_input_len = input_len - left_input_len;
|
||||
const uint8_t *right_input = &input[left_input_len];
|
||||
uint64_t right_chunk_counter =
|
||||
chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
|
||||
|
||||
// Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
|
||||
// account for the special case of returning 2 outputs when the SIMD degree
|
||||
// is 1.
|
||||
uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
|
||||
size_t degree = blake3_simd_degree();
|
||||
if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
|
||||
// The special case: We always use a degree of at least two, to make
|
||||
// sure there are two outputs. Except, as noted above, at the chunk
|
||||
// level, where we allow degree=1. (Note that the 1-chunk-input case is
|
||||
// a different codepath.)
|
||||
degree = 2;
|
||||
}
|
||||
uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
|
||||
|
||||
// Recurse! If this implementation adds multi-threading support in the
|
||||
// future, this is where it will go.
|
||||
size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key,
|
||||
chunk_counter, flags, cv_array);
|
||||
size_t right_n = blake3_compress_subtree_wide(
|
||||
right_input, right_input_len, key, right_chunk_counter, flags, right_cvs);
|
||||
|
||||
// The special case again. If simd_degree=1, then we'll have left_n=1 and
|
||||
// right_n=1. Rather than compressing them into a single output, return
|
||||
// them directly, to make sure we always have at least two outputs.
|
||||
if (left_n == 1) {
|
||||
memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
|
||||
return 2;
|
||||
}
|
||||
|
||||
// Otherwise, do one layer of parent node compression.
|
||||
size_t num_chaining_values = left_n + right_n;
|
||||
return compress_parents_parallel(cv_array, num_chaining_values, key, flags,
|
||||
out);
|
||||
}
|
||||
|
||||
// Hash a subtree with compress_subtree_wide(), and then condense the resulting
|
||||
// list of chaining values down to a single parent node. Don't compress that
|
||||
// last parent node, however. Instead, return its message bytes (the
|
||||
// concatenated chaining values of its children). This is necessary when the
|
||||
// first call to update() supplies a complete subtree, because the topmost
|
||||
// parent node of that subtree could end up being the root. It's also necessary
|
||||
// for extended output in the general case.
|
||||
//
|
||||
// As with compress_subtree_wide(), this function is not used on inputs of 1
|
||||
// chunk or less. That's a different codepath.
|
||||
INLINE void compress_subtree_to_parent_node(
|
||||
const uint8_t *input, size_t input_len, const uint32_t key[8],
|
||||
uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) {
|
||||
#if defined(BLAKE3_TESTING)
|
||||
assert(input_len > BLAKE3_CHUNK_LEN);
|
||||
#endif
|
||||
|
||||
uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
|
||||
size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key,
|
||||
chunk_counter, flags, cv_array);
|
||||
assert(num_cvs <= MAX_SIMD_DEGREE_OR_2);
|
||||
|
||||
// If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
|
||||
// compress_subtree_wide() returns more than 2 chaining values. Condense
|
||||
// them into 2 by forming parent nodes repeatedly.
|
||||
uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
|
||||
// The second half of this loop condition is always true, and we just
|
||||
// asserted it above. But GCC can't tell that it's always true, and if NDEBUG
|
||||
// is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious
|
||||
// warnings here. GCC 8.5 is particularly sensitive, so if you're changing
|
||||
// this code, test it against that version.
|
||||
while (num_cvs > 2 && num_cvs <= MAX_SIMD_DEGREE_OR_2) {
|
||||
num_cvs =
|
||||
compress_parents_parallel(cv_array, num_cvs, key, flags, out_array);
|
||||
memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
|
||||
}
|
||||
memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
|
||||
}
|
||||
|
||||
INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8],
|
||||
uint8_t flags) {
|
||||
memcpy(self->key, key, BLAKE3_KEY_LEN);
|
||||
chunk_state_init(&self->chunk, key, flags);
|
||||
self->cv_stack_len = 0;
|
||||
}
|
||||
|
||||
void blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, IV, 0); }
|
||||
|
||||
void blake3_hasher_init_keyed(blake3_hasher *self,
|
||||
const uint8_t key[BLAKE3_KEY_LEN]) {
|
||||
uint32_t key_words[8];
|
||||
load_key_words(key, key_words);
|
||||
hasher_init_base(self, key_words, KEYED_HASH);
|
||||
}
|
||||
|
||||
void blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context,
|
||||
size_t context_len) {
|
||||
blake3_hasher context_hasher;
|
||||
hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT);
|
||||
blake3_hasher_update(&context_hasher, context, context_len);
|
||||
uint8_t context_key[BLAKE3_KEY_LEN];
|
||||
blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN);
|
||||
uint32_t context_key_words[8];
|
||||
load_key_words(context_key, context_key_words);
|
||||
hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL);
|
||||
}
|
||||
|
||||
void blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) {
|
||||
blake3_hasher_init_derive_key_raw(self, context, strlen(context));
|
||||
}
|
||||
|
||||
// As described in hasher_push_cv() below, we do "lazy merging", delaying
|
||||
// merges until right before the next CV is about to be added. This is
|
||||
// different from the reference implementation. Another difference is that we
|
||||
// aren't always merging 1 chunk at a time. Instead, each CV might represent
|
||||
// any power-of-two number of chunks, as long as the smaller-above-larger stack
|
||||
// order is maintained. Instead of the "count the trailing 0-bits" algorithm
|
||||
// described in the spec, we use a "count the total number of 1-bits" variant
|
||||
// that doesn't require us to retain the subtree size of the CV on top of the
|
||||
// stack. The principle is the same: each CV that should remain in the stack is
|
||||
// represented by a 1-bit in the total number of chunks (or bytes) so far.
|
||||
INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) {
|
||||
size_t post_merge_stack_len = (size_t)popcnt(total_len);
|
||||
while (self->cv_stack_len > post_merge_stack_len) {
|
||||
uint8_t *parent_node =
|
||||
&self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN];
|
||||
output_t output = parent_output(parent_node, self->key, self->chunk.flags);
|
||||
output_chaining_value(&output, parent_node);
|
||||
self->cv_stack_len -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
// In reference_impl.rs, we merge the new CV with existing CVs from the stack
|
||||
// before pushing it. We can do that because we know more input is coming, so
|
||||
// we know none of the merges are root.
|
||||
//
|
||||
// This setting is different. We want to feed as much input as possible to
|
||||
// compress_subtree_wide(), without setting aside anything for the chunk_state.
|
||||
// If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
|
||||
// as a single subtree, if at all possible.
|
||||
//
|
||||
// This leads to two problems:
|
||||
// 1) This 64 KiB input might be the only call that ever gets made to update.
|
||||
// In this case, the root node of the 64 KiB subtree would be the root node
|
||||
// of the whole tree, and it would need to be ROOT finalized. We can't
|
||||
// compress it until we know.
|
||||
// 2) This 64 KiB input might complete a larger tree, whose root node is
|
||||
// similarly going to be the the root of the whole tree. For example, maybe
|
||||
// we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
|
||||
// node at the root of the 256 KiB subtree until we know how to finalize it.
|
||||
//
|
||||
// The second problem is solved with "lazy merging". That is, when we're about
|
||||
// to add a CV to the stack, we don't merge it with anything first, as the
|
||||
// reference impl does. Instead we do merges using the *previous* CV that was
|
||||
// added, which is sitting on top of the stack, and we put the new CV
|
||||
// (unmerged) on top of the stack afterwards. This guarantees that we never
|
||||
// merge the root node until finalize().
|
||||
//
|
||||
// Solving the first problem requires an additional tool,
|
||||
// compress_subtree_to_parent_node(). That function always returns the top
|
||||
// *two* chaining values of the subtree it's compressing. We then do lazy
|
||||
// merging with each of them separately, so that the second CV will always
|
||||
// remain unmerged. (That also helps us support extendable output when we're
|
||||
// hashing an input all-at-once.)
|
||||
INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN],
|
||||
uint64_t chunk_counter) {
|
||||
hasher_merge_cv_stack(self, chunk_counter);
|
||||
memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
|
||||
BLAKE3_OUT_LEN);
|
||||
self->cv_stack_len += 1;
|
||||
}
|
||||
|
||||
void blake3_hasher_update(blake3_hasher *self, const void *input,
|
||||
size_t input_len) {
|
||||
// Explicitly checking for zero avoids causing UB by passing a null pointer
|
||||
// to memcpy. This comes up in practice with things like:
|
||||
// std::vector<uint8_t> v;
|
||||
// blake3_hasher_update(&hasher, v.data(), v.size());
|
||||
if (input_len == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint8_t *input_bytes = (const uint8_t *)input;
|
||||
|
||||
// If we have some partial chunk bytes in the internal chunk_state, we need
|
||||
// to finish that chunk first.
|
||||
if (chunk_state_len(&self->chunk) > 0) {
|
||||
size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk);
|
||||
if (take > input_len) {
|
||||
take = input_len;
|
||||
}
|
||||
chunk_state_update(&self->chunk, input_bytes, take);
|
||||
input_bytes += take;
|
||||
input_len -= take;
|
||||
// If we've filled the current chunk and there's more coming, finalize this
|
||||
// chunk and proceed. In this case we know it's not the root.
|
||||
if (input_len > 0) {
|
||||
output_t output = chunk_state_output(&self->chunk);
|
||||
uint8_t chunk_cv[32];
|
||||
output_chaining_value(&output, chunk_cv);
|
||||
hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter);
|
||||
chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Now the chunk_state is clear, and we have more input. If there's more than
|
||||
// a single chunk (so, definitely not the root chunk), hash the largest whole
|
||||
// subtree we can, with the full benefits of SIMD (and maybe in the future,
|
||||
// multi-threading) parallelism. Two restrictions:
|
||||
// - The subtree has to be a power-of-2 number of chunks. Only subtrees along
|
||||
// the right edge can be incomplete, and we don't know where the right edge
|
||||
// is going to be until we get to finalize().
|
||||
// - The subtree must evenly divide the total number of chunks up until this
|
||||
// point (if total is not 0). If the current incomplete subtree is only
|
||||
// waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have
|
||||
// to complete the current subtree first.
|
||||
// Because we might need to break up the input to form powers of 2, or to
|
||||
// evenly divide what we already have, this part runs in a loop.
|
||||
while (input_len > BLAKE3_CHUNK_LEN) {
|
||||
size_t subtree_len = round_down_to_power_of_2(input_len);
|
||||
uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
|
||||
// Shrink the subtree_len until it evenly divides the count so far. We know
|
||||
// that subtree_len itself is a power of 2, so we can use a bitmasking
|
||||
// trick instead of an actual remainder operation. (Note that if the caller
|
||||
// consistently passes power-of-2 inputs of the same size, as is hopefully
|
||||
// typical, this loop condition will always fail, and subtree_len will
|
||||
// always be the full length of the input.)
|
||||
//
|
||||
// An aside: We don't have to shrink subtree_len quite this much. For
|
||||
// example, if count_so_far is 1, we could pass 2 chunks to
|
||||
// compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still
|
||||
// get the right answer in the end, and we might get to use 2-way SIMD
|
||||
// parallelism. The problem with this optimization, is that it gets us
|
||||
// stuck always hashing 2 chunks. The total number of chunks will remain
|
||||
// odd, and we'll never graduate to higher degrees of parallelism. See
|
||||
// https://github.com/BLAKE3-team/BLAKE3/issues/69.
|
||||
while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
|
||||
subtree_len /= 2;
|
||||
}
|
||||
// The shrunken subtree_len might now be 1 chunk long. If so, hash that one
|
||||
// chunk by itself. Otherwise, compress the subtree into a pair of CVs.
|
||||
uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
|
||||
if (subtree_len <= BLAKE3_CHUNK_LEN) {
|
||||
blake3_chunk_state chunk_state;
|
||||
chunk_state_init(&chunk_state, self->key, self->chunk.flags);
|
||||
chunk_state.chunk_counter = self->chunk.chunk_counter;
|
||||
chunk_state_update(&chunk_state, input_bytes, subtree_len);
|
||||
output_t output = chunk_state_output(&chunk_state);
|
||||
uint8_t cv[BLAKE3_OUT_LEN];
|
||||
output_chaining_value(&output, cv);
|
||||
hasher_push_cv(self, cv, chunk_state.chunk_counter);
|
||||
} else {
|
||||
// This is the high-performance happy path, though getting here depends
|
||||
// on the caller giving us a long enough input.
|
||||
uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
|
||||
compress_subtree_to_parent_node(input_bytes, subtree_len, self->key,
|
||||
self->chunk.chunk_counter,
|
||||
self->chunk.flags, cv_pair);
|
||||
hasher_push_cv(self, cv_pair, self->chunk.chunk_counter);
|
||||
hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN],
|
||||
self->chunk.chunk_counter + (subtree_chunks / 2));
|
||||
}
|
||||
self->chunk.chunk_counter += subtree_chunks;
|
||||
input_bytes += subtree_len;
|
||||
input_len -= subtree_len;
|
||||
}
|
||||
|
||||
// If there's any remaining input less than a full chunk, add it to the chunk
|
||||
// state. In that case, also do a final merge loop to make sure the subtree
|
||||
// stack doesn't contain any unmerged pairs. The remaining input means we
|
||||
// know these merges are non-root. This merge loop isn't strictly necessary
|
||||
// here, because hasher_push_chunk_cv already does its own merge loop, but it
|
||||
// simplifies blake3_hasher_finalize below.
|
||||
if (input_len > 0) {
|
||||
chunk_state_update(&self->chunk, input_bytes, input_len);
|
||||
hasher_merge_cv_stack(self, self->chunk.chunk_counter);
|
||||
}
|
||||
}
|
||||
|
||||
void blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out,
|
||||
size_t out_len) {
|
||||
blake3_hasher_finalize_seek(self, 0, out, out_len);
|
||||
}
|
||||
|
||||
void blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek,
|
||||
uint8_t *out, size_t out_len) {
|
||||
// Explicitly checking for zero avoids causing UB by passing a null pointer
|
||||
// to memcpy. This comes up in practice with things like:
|
||||
// std::vector<uint8_t> v;
|
||||
// blake3_hasher_finalize(&hasher, v.data(), v.size());
|
||||
if (out_len == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// If the subtree stack is empty, then the current chunk is the root.
|
||||
if (self->cv_stack_len == 0) {
|
||||
output_t output = chunk_state_output(&self->chunk);
|
||||
output_root_bytes(&output, seek, out, out_len);
|
||||
return;
|
||||
}
|
||||
// If there are any bytes in the chunk state, finalize that chunk and do a
|
||||
// roll-up merge between that chunk hash and every subtree in the stack. In
|
||||
// this case, the extra merge loop at the end of blake3_hasher_update
|
||||
// guarantees that none of the subtrees in the stack need to be merged with
|
||||
// each other first. Otherwise, if there are no bytes in the chunk state,
|
||||
// then the top of the stack is a chunk hash, and we start the merge from
|
||||
// that.
|
||||
output_t output;
|
||||
size_t cvs_remaining;
|
||||
if (chunk_state_len(&self->chunk) > 0) {
|
||||
cvs_remaining = self->cv_stack_len;
|
||||
output = chunk_state_output(&self->chunk);
|
||||
} else {
|
||||
// There are always at least 2 CVs in the stack in this case.
|
||||
cvs_remaining = self->cv_stack_len - 2;
|
||||
output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key,
|
||||
self->chunk.flags);
|
||||
}
|
||||
while (cvs_remaining > 0) {
|
||||
cvs_remaining -= 1;
|
||||
uint8_t parent_block[BLAKE3_BLOCK_LEN];
|
||||
memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32);
|
||||
output_chaining_value(&output, &parent_block[32]);
|
||||
output = parent_output(parent_block, self->key, self->chunk.flags);
|
||||
}
|
||||
output_root_bytes(&output, seek, out, out_len);
|
||||
}
|
||||
|
||||
void blake3_hasher_reset(blake3_hasher *self) {
|
||||
chunk_state_reset(&self->chunk, self->key, 0);
|
||||
self->cv_stack_len = 0;
|
||||
}
|
65
src/3rdparty/BLAKE3/blake3.h
vendored
Normal file
65
src/3rdparty/BLAKE3/blake3.h
vendored
Normal file
|
@ -0,0 +1,65 @@
|
|||
#ifndef BLAKE3_H
|
||||
#define BLAKE3_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#define BLAKE3_NO_SSE2
|
||||
#define BLAKE3_NO_SSE41
|
||||
#define BLAKE3_NO_AVX2
|
||||
#define BLAKE3_NO_AVX512
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define BLAKE3_VERSION_STRING "1.3.1"
|
||||
#define BLAKE3_KEY_LEN 32
|
||||
#define BLAKE3_OUT_LEN 32
|
||||
#define BLAKE3_BLOCK_LEN 64
|
||||
#define BLAKE3_CHUNK_LEN 1024
|
||||
#define BLAKE3_MAX_DEPTH 54
|
||||
|
||||
// This struct is a private implementation detail. It has to be here because
|
||||
// it's part of blake3_hasher below.
|
||||
typedef struct {
|
||||
uint32_t cv[8];
|
||||
uint64_t chunk_counter;
|
||||
uint8_t buf[BLAKE3_BLOCK_LEN];
|
||||
uint8_t buf_len;
|
||||
uint8_t blocks_compressed;
|
||||
uint8_t flags;
|
||||
} blake3_chunk_state;
|
||||
|
||||
typedef struct {
|
||||
uint32_t key[8];
|
||||
blake3_chunk_state chunk;
|
||||
uint8_t cv_stack_len;
|
||||
// The stack size is MAX_DEPTH + 1 because we do lazy merging. For example,
|
||||
// with 7 chunks, we have 3 entries in the stack. Adding an 8th chunk
|
||||
// requires a 4th entry, rather than merging everything down to 1, because we
|
||||
// don't know whether more input is coming. This is different from how the
|
||||
// reference implementation does things.
|
||||
uint8_t cv_stack[(BLAKE3_MAX_DEPTH + 1) * BLAKE3_OUT_LEN];
|
||||
} blake3_hasher;
|
||||
|
||||
const char *blake3_version(void);
|
||||
void blake3_hasher_init(blake3_hasher *self);
|
||||
void blake3_hasher_init_keyed(blake3_hasher *self,
|
||||
const uint8_t key[BLAKE3_KEY_LEN]);
|
||||
void blake3_hasher_init_derive_key(blake3_hasher *self, const char *context);
|
||||
void blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context,
|
||||
size_t context_len);
|
||||
void blake3_hasher_update(blake3_hasher *self, const void *input,
|
||||
size_t input_len);
|
||||
void blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out,
|
||||
size_t out_len);
|
||||
void blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek,
|
||||
uint8_t *out, size_t out_len);
|
||||
void blake3_hasher_reset(blake3_hasher *self);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* BLAKE3_H */
|
276
src/3rdparty/BLAKE3/blake3_dispatch.c
vendored
Normal file
276
src/3rdparty/BLAKE3/blake3_dispatch.c
vendored
Normal file
|
@ -0,0 +1,276 @@
|
|||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "blake3_impl.h"
|
||||
|
||||
#if defined(IS_X86)
|
||||
#if defined(_MSC_VER)
|
||||
#include <intrin.h>
|
||||
#elif defined(__GNUC__)
|
||||
#include <immintrin.h>
|
||||
#else
|
||||
#error "Unimplemented!"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define MAYBE_UNUSED(x) (void)((x))
|
||||
|
||||
#if defined(IS_X86)
|
||||
static uint64_t xgetbv() {
|
||||
#if defined(_MSC_VER)
|
||||
return _xgetbv(0);
|
||||
#else
|
||||
uint32_t eax = 0, edx = 0;
|
||||
__asm__ __volatile__("xgetbv\n" : "=a"(eax), "=d"(edx) : "c"(0));
|
||||
return ((uint64_t)edx << 32) | eax;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void cpuid(uint32_t out[4], uint32_t id) {
|
||||
#if defined(_MSC_VER)
|
||||
__cpuid((int *)out, id);
|
||||
#elif defined(__i386__) || defined(_M_IX86)
|
||||
__asm__ __volatile__("movl %%ebx, %1\n"
|
||||
"cpuid\n"
|
||||
"xchgl %1, %%ebx\n"
|
||||
: "=a"(out[0]), "=r"(out[1]), "=c"(out[2]), "=d"(out[3])
|
||||
: "a"(id));
|
||||
#else
|
||||
__asm__ __volatile__("cpuid\n"
|
||||
: "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3])
|
||||
: "a"(id));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void cpuidex(uint32_t out[4], uint32_t id, uint32_t sid) {
|
||||
#if defined(_MSC_VER)
|
||||
__cpuidex((int *)out, id, sid);
|
||||
#elif defined(__i386__) || defined(_M_IX86)
|
||||
__asm__ __volatile__("movl %%ebx, %1\n"
|
||||
"cpuid\n"
|
||||
"xchgl %1, %%ebx\n"
|
||||
: "=a"(out[0]), "=r"(out[1]), "=c"(out[2]), "=d"(out[3])
|
||||
: "a"(id), "c"(sid));
|
||||
#else
|
||||
__asm__ __volatile__("cpuid\n"
|
||||
: "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3])
|
||||
: "a"(id), "c"(sid));
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
enum cpu_feature {
|
||||
SSE2 = 1 << 0,
|
||||
SSSE3 = 1 << 1,
|
||||
SSE41 = 1 << 2,
|
||||
AVX = 1 << 3,
|
||||
AVX2 = 1 << 4,
|
||||
AVX512F = 1 << 5,
|
||||
AVX512VL = 1 << 6,
|
||||
/* ... */
|
||||
UNDEFINED = 1 << 30
|
||||
};
|
||||
|
||||
#if !defined(BLAKE3_TESTING)
|
||||
static /* Allow the variable to be controlled manually for testing */
|
||||
#endif
|
||||
enum cpu_feature g_cpu_features = UNDEFINED;
|
||||
|
||||
#if !defined(BLAKE3_TESTING)
|
||||
static
|
||||
#endif
|
||||
enum cpu_feature
|
||||
get_cpu_features() {
|
||||
|
||||
if (g_cpu_features != UNDEFINED) {
|
||||
return g_cpu_features;
|
||||
} else {
|
||||
#if defined(IS_X86)
|
||||
uint32_t regs[4] = {0};
|
||||
uint32_t *eax = ®s[0], *ebx = ®s[1], *ecx = ®s[2], *edx = ®s[3];
|
||||
(void)edx;
|
||||
enum cpu_feature features = 0;
|
||||
cpuid(regs, 0);
|
||||
const int max_id = *eax;
|
||||
cpuid(regs, 1);
|
||||
#if defined(__amd64__) || defined(_M_X64)
|
||||
features |= SSE2;
|
||||
#else
|
||||
if (*edx & (1UL << 26))
|
||||
features |= SSE2;
|
||||
#endif
|
||||
if (*ecx & (1UL << 0))
|
||||
features |= SSSE3;
|
||||
if (*ecx & (1UL << 19))
|
||||
features |= SSE41;
|
||||
|
||||
if (*ecx & (1UL << 27)) { // OSXSAVE
|
||||
const uint64_t mask = xgetbv();
|
||||
if ((mask & 6) == 6) { // SSE and AVX states
|
||||
if (*ecx & (1UL << 28))
|
||||
features |= AVX;
|
||||
if (max_id >= 7) {
|
||||
cpuidex(regs, 7, 0);
|
||||
if (*ebx & (1UL << 5))
|
||||
features |= AVX2;
|
||||
if ((mask & 224) == 224) { // Opmask, ZMM_Hi256, Hi16_Zmm
|
||||
if (*ebx & (1UL << 31))
|
||||
features |= AVX512VL;
|
||||
if (*ebx & (1UL << 16))
|
||||
features |= AVX512F;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
g_cpu_features = features;
|
||||
return features;
|
||||
#else
|
||||
/* How to detect NEON? */
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void blake3_compress_in_place(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags) {
|
||||
#if defined(IS_X86)
|
||||
const enum cpu_feature features = get_cpu_features();
|
||||
MAYBE_UNUSED(features);
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
if (features & AVX512VL) {
|
||||
blake3_compress_in_place_avx512(cv, block, block_len, counter, flags);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
if (features & SSE41) {
|
||||
blake3_compress_in_place_sse41(cv, block, block_len, counter, flags);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
if (features & SSE2) {
|
||||
blake3_compress_in_place_sse2(cv, block, block_len, counter, flags);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
blake3_compress_in_place_portable(cv, block, block_len, counter, flags);
|
||||
}
|
||||
|
||||
void blake3_compress_xof(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter, uint8_t flags,
|
||||
uint8_t out[64]) {
|
||||
#if defined(IS_X86)
|
||||
const enum cpu_feature features = get_cpu_features();
|
||||
MAYBE_UNUSED(features);
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
if (features & AVX512VL) {
|
||||
blake3_compress_xof_avx512(cv, block, block_len, counter, flags, out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
if (features & SSE41) {
|
||||
blake3_compress_xof_sse41(cv, block, block_len, counter, flags, out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
if (features & SSE2) {
|
||||
blake3_compress_xof_sse2(cv, block, block_len, counter, flags, out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
blake3_compress_xof_portable(cv, block, block_len, counter, flags, out);
|
||||
}
|
||||
|
||||
void blake3_hash_many(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8], uint64_t counter,
|
||||
bool increment_counter, uint8_t flags,
|
||||
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
|
||||
#if defined(IS_X86)
|
||||
const enum cpu_feature features = get_cpu_features();
|
||||
MAYBE_UNUSED(features);
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
if ((features & (AVX512F|AVX512VL)) == (AVX512F|AVX512VL)) {
|
||||
blake3_hash_many_avx512(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_AVX2)
|
||||
if (features & AVX2) {
|
||||
blake3_hash_many_avx2(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
if (features & SSE41) {
|
||||
blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
if (features & SSE2) {
|
||||
blake3_hash_many_sse2(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if BLAKE3_USE_NEON == 1
|
||||
blake3_hash_many_neon(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end, out);
|
||||
return;
|
||||
#endif
|
||||
|
||||
blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
}
|
||||
|
||||
// The dynamically detected SIMD degree of the current platform.
|
||||
size_t blake3_simd_degree(void) {
|
||||
#if defined(IS_X86)
|
||||
const enum cpu_feature features = get_cpu_features();
|
||||
MAYBE_UNUSED(features);
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
if ((features & (AVX512F|AVX512VL)) == (AVX512F|AVX512VL)) {
|
||||
return 16;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_AVX2)
|
||||
if (features & AVX2) {
|
||||
return 8;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
if (features & SSE41) {
|
||||
return 4;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
if (features & SSE2) {
|
||||
return 4;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#if BLAKE3_USE_NEON == 1
|
||||
return 4;
|
||||
#endif
|
||||
return 1;
|
||||
}
|
282
src/3rdparty/BLAKE3/blake3_impl.h
vendored
Normal file
282
src/3rdparty/BLAKE3/blake3_impl.h
vendored
Normal file
|
@ -0,0 +1,282 @@
|
|||
#ifndef BLAKE3_IMPL_H
|
||||
#define BLAKE3_IMPL_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "blake3.h"
|
||||
|
||||
// internal flags
|
||||
enum blake3_flags {
|
||||
CHUNK_START = 1 << 0,
|
||||
CHUNK_END = 1 << 1,
|
||||
PARENT = 1 << 2,
|
||||
ROOT = 1 << 3,
|
||||
KEYED_HASH = 1 << 4,
|
||||
DERIVE_KEY_CONTEXT = 1 << 5,
|
||||
DERIVE_KEY_MATERIAL = 1 << 6,
|
||||
};
|
||||
|
||||
// This C implementation tries to support recent versions of GCC, Clang, and
|
||||
// MSVC.
|
||||
#if defined(_MSC_VER)
|
||||
#define INLINE static __forceinline
|
||||
#else
|
||||
#define INLINE static inline __attribute__((always_inline))
|
||||
#endif
|
||||
|
||||
#if defined(__x86_64__) || defined(_M_X64)
|
||||
#define IS_X86
|
||||
#define IS_X86_64
|
||||
#endif
|
||||
|
||||
#if defined(__i386__) || defined(_M_IX86)
|
||||
#define IS_X86
|
||||
#define IS_X86_32
|
||||
#endif
|
||||
|
||||
#if defined(__aarch64__) || defined(_M_ARM64)
|
||||
#define IS_AARCH64
|
||||
#endif
|
||||
|
||||
#if defined(IS_X86)
|
||||
#if defined(_MSC_VER)
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
#if !defined(BLAKE3_USE_NEON)
|
||||
// If BLAKE3_USE_NEON not manually set, autodetect based on AArch64ness
|
||||
#if defined(IS_AARCH64)
|
||||
#define BLAKE3_USE_NEON 1
|
||||
#else
|
||||
#define BLAKE3_USE_NEON 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(IS_X86)
|
||||
#define MAX_SIMD_DEGREE 16
|
||||
#elif BLAKE3_USE_NEON == 1
|
||||
#define MAX_SIMD_DEGREE 4
|
||||
#else
|
||||
#define MAX_SIMD_DEGREE 1
|
||||
#endif
|
||||
|
||||
// There are some places where we want a static size that's equal to the
|
||||
// MAX_SIMD_DEGREE, but also at least 2.
|
||||
#define MAX_SIMD_DEGREE_OR_2 (MAX_SIMD_DEGREE > 2 ? MAX_SIMD_DEGREE : 2)
|
||||
|
||||
static const uint32_t IV[8] = {0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL,
|
||||
0xA54FF53AUL, 0x510E527FUL, 0x9B05688CUL,
|
||||
0x1F83D9ABUL, 0x5BE0CD19UL};
|
||||
|
||||
static const uint8_t MSG_SCHEDULE[7][16] = {
|
||||
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
|
||||
{2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8},
|
||||
{3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1},
|
||||
{10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6},
|
||||
{12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4},
|
||||
{9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7},
|
||||
{11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13},
|
||||
};
|
||||
|
||||
/* Find index of the highest set bit */
|
||||
/* x is assumed to be nonzero. */
|
||||
static unsigned int highest_one(uint64_t x) {
|
||||
#if defined(__GNUC__) || defined(__clang__)
|
||||
return 63 ^ __builtin_clzll(x);
|
||||
#elif defined(_MSC_VER) && defined(IS_X86_64)
|
||||
unsigned long index;
|
||||
_BitScanReverse64(&index, x);
|
||||
return index;
|
||||
#elif defined(_MSC_VER) && defined(IS_X86_32)
|
||||
if(x >> 32) {
|
||||
unsigned long index;
|
||||
_BitScanReverse(&index, (unsigned long)(x >> 32));
|
||||
return 32 + index;
|
||||
} else {
|
||||
unsigned long index;
|
||||
_BitScanReverse(&index, (unsigned long)x);
|
||||
return index;
|
||||
}
|
||||
#else
|
||||
unsigned int c = 0;
|
||||
if(x & 0xffffffff00000000ULL) { x >>= 32; c += 32; }
|
||||
if(x & 0x00000000ffff0000ULL) { x >>= 16; c += 16; }
|
||||
if(x & 0x000000000000ff00ULL) { x >>= 8; c += 8; }
|
||||
if(x & 0x00000000000000f0ULL) { x >>= 4; c += 4; }
|
||||
if(x & 0x000000000000000cULL) { x >>= 2; c += 2; }
|
||||
if(x & 0x0000000000000002ULL) { c += 1; }
|
||||
return c;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Count the number of 1 bits.
|
||||
INLINE unsigned int popcnt(uint64_t x) {
|
||||
#if defined(__GNUC__) || defined(__clang__)
|
||||
return __builtin_popcountll(x);
|
||||
#else
|
||||
unsigned int count = 0;
|
||||
while (x != 0) {
|
||||
count += 1;
|
||||
x &= x - 1;
|
||||
}
|
||||
return count;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Largest power of two less than or equal to x. As a special case, returns 1
|
||||
// when x is 0.
|
||||
INLINE uint64_t round_down_to_power_of_2(uint64_t x) {
|
||||
return 1ULL << highest_one(x | 1);
|
||||
}
|
||||
|
||||
INLINE uint32_t counter_low(uint64_t counter) { return (uint32_t)counter; }
|
||||
|
||||
INLINE uint32_t counter_high(uint64_t counter) {
|
||||
return (uint32_t)(counter >> 32);
|
||||
}
|
||||
|
||||
INLINE uint32_t load32(const void *src) {
|
||||
const uint8_t *p = (const uint8_t *)src;
|
||||
return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) |
|
||||
((uint32_t)(p[2]) << 16) | ((uint32_t)(p[3]) << 24);
|
||||
}
|
||||
|
||||
INLINE void load_key_words(const uint8_t key[BLAKE3_KEY_LEN],
|
||||
uint32_t key_words[8]) {
|
||||
key_words[0] = load32(&key[0 * 4]);
|
||||
key_words[1] = load32(&key[1 * 4]);
|
||||
key_words[2] = load32(&key[2 * 4]);
|
||||
key_words[3] = load32(&key[3 * 4]);
|
||||
key_words[4] = load32(&key[4 * 4]);
|
||||
key_words[5] = load32(&key[5 * 4]);
|
||||
key_words[6] = load32(&key[6 * 4]);
|
||||
key_words[7] = load32(&key[7 * 4]);
|
||||
}
|
||||
|
||||
INLINE void store32(void *dst, uint32_t w) {
|
||||
uint8_t *p = (uint8_t *)dst;
|
||||
p[0] = (uint8_t)(w >> 0);
|
||||
p[1] = (uint8_t)(w >> 8);
|
||||
p[2] = (uint8_t)(w >> 16);
|
||||
p[3] = (uint8_t)(w >> 24);
|
||||
}
|
||||
|
||||
INLINE void store_cv_words(uint8_t bytes_out[32], uint32_t cv_words[8]) {
|
||||
store32(&bytes_out[0 * 4], cv_words[0]);
|
||||
store32(&bytes_out[1 * 4], cv_words[1]);
|
||||
store32(&bytes_out[2 * 4], cv_words[2]);
|
||||
store32(&bytes_out[3 * 4], cv_words[3]);
|
||||
store32(&bytes_out[4 * 4], cv_words[4]);
|
||||
store32(&bytes_out[5 * 4], cv_words[5]);
|
||||
store32(&bytes_out[6 * 4], cv_words[6]);
|
||||
store32(&bytes_out[7 * 4], cv_words[7]);
|
||||
}
|
||||
|
||||
void blake3_compress_in_place(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
|
||||
void blake3_compress_xof(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter, uint8_t flags,
|
||||
uint8_t out[64]);
|
||||
|
||||
void blake3_hash_many(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8], uint64_t counter,
|
||||
bool increment_counter, uint8_t flags,
|
||||
uint8_t flags_start, uint8_t flags_end, uint8_t *out);
|
||||
|
||||
size_t blake3_simd_degree(void);
|
||||
|
||||
|
||||
// Declarations for implementation-specific functions.
|
||||
void blake3_compress_in_place_portable(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
|
||||
void blake3_compress_xof_portable(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]);
|
||||
|
||||
void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
|
||||
#if defined(IS_X86)
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
void blake3_compress_in_place_sse2(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
void blake3_compress_xof_sse2(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]);
|
||||
void blake3_hash_many_sse2(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
void blake3_compress_in_place_sse41(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
void blake3_compress_xof_sse41(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]);
|
||||
void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_AVX2)
|
||||
void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
void blake3_compress_in_place_avx512(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
|
||||
void blake3_compress_xof_avx512(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]);
|
||||
|
||||
void blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if BLAKE3_USE_NEON == 1
|
||||
void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* BLAKE3_IMPL_H */
|
160
src/3rdparty/BLAKE3/blake3_portable.c
vendored
Normal file
160
src/3rdparty/BLAKE3/blake3_portable.c
vendored
Normal file
|
@ -0,0 +1,160 @@
|
|||
#include "blake3_impl.h"
|
||||
#include <string.h>
|
||||
|
||||
INLINE uint32_t rotr32(uint32_t w, uint32_t c) {
|
||||
return (w >> c) | (w << (32 - c));
|
||||
}
|
||||
|
||||
INLINE void g(uint32_t *state, size_t a, size_t b, size_t c, size_t d,
|
||||
uint32_t x, uint32_t y) {
|
||||
state[a] = state[a] + state[b] + x;
|
||||
state[d] = rotr32(state[d] ^ state[a], 16);
|
||||
state[c] = state[c] + state[d];
|
||||
state[b] = rotr32(state[b] ^ state[c], 12);
|
||||
state[a] = state[a] + state[b] + y;
|
||||
state[d] = rotr32(state[d] ^ state[a], 8);
|
||||
state[c] = state[c] + state[d];
|
||||
state[b] = rotr32(state[b] ^ state[c], 7);
|
||||
}
|
||||
|
||||
INLINE void round_fn(uint32_t state[16], const uint32_t *msg, size_t round) {
|
||||
// Select the message schedule based on the round.
|
||||
const uint8_t *schedule = MSG_SCHEDULE[round];
|
||||
|
||||
// Mix the columns.
|
||||
g(state, 0, 4, 8, 12, msg[schedule[0]], msg[schedule[1]]);
|
||||
g(state, 1, 5, 9, 13, msg[schedule[2]], msg[schedule[3]]);
|
||||
g(state, 2, 6, 10, 14, msg[schedule[4]], msg[schedule[5]]);
|
||||
g(state, 3, 7, 11, 15, msg[schedule[6]], msg[schedule[7]]);
|
||||
|
||||
// Mix the rows.
|
||||
g(state, 0, 5, 10, 15, msg[schedule[8]], msg[schedule[9]]);
|
||||
g(state, 1, 6, 11, 12, msg[schedule[10]], msg[schedule[11]]);
|
||||
g(state, 2, 7, 8, 13, msg[schedule[12]], msg[schedule[13]]);
|
||||
g(state, 3, 4, 9, 14, msg[schedule[14]], msg[schedule[15]]);
|
||||
}
|
||||
|
||||
INLINE void compress_pre(uint32_t state[16], const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter, uint8_t flags) {
|
||||
uint32_t block_words[16];
|
||||
block_words[0] = load32(block + 4 * 0);
|
||||
block_words[1] = load32(block + 4 * 1);
|
||||
block_words[2] = load32(block + 4 * 2);
|
||||
block_words[3] = load32(block + 4 * 3);
|
||||
block_words[4] = load32(block + 4 * 4);
|
||||
block_words[5] = load32(block + 4 * 5);
|
||||
block_words[6] = load32(block + 4 * 6);
|
||||
block_words[7] = load32(block + 4 * 7);
|
||||
block_words[8] = load32(block + 4 * 8);
|
||||
block_words[9] = load32(block + 4 * 9);
|
||||
block_words[10] = load32(block + 4 * 10);
|
||||
block_words[11] = load32(block + 4 * 11);
|
||||
block_words[12] = load32(block + 4 * 12);
|
||||
block_words[13] = load32(block + 4 * 13);
|
||||
block_words[14] = load32(block + 4 * 14);
|
||||
block_words[15] = load32(block + 4 * 15);
|
||||
|
||||
state[0] = cv[0];
|
||||
state[1] = cv[1];
|
||||
state[2] = cv[2];
|
||||
state[3] = cv[3];
|
||||
state[4] = cv[4];
|
||||
state[5] = cv[5];
|
||||
state[6] = cv[6];
|
||||
state[7] = cv[7];
|
||||
state[8] = IV[0];
|
||||
state[9] = IV[1];
|
||||
state[10] = IV[2];
|
||||
state[11] = IV[3];
|
||||
state[12] = counter_low(counter);
|
||||
state[13] = counter_high(counter);
|
||||
state[14] = (uint32_t)block_len;
|
||||
state[15] = (uint32_t)flags;
|
||||
|
||||
round_fn(state, &block_words[0], 0);
|
||||
round_fn(state, &block_words[0], 1);
|
||||
round_fn(state, &block_words[0], 2);
|
||||
round_fn(state, &block_words[0], 3);
|
||||
round_fn(state, &block_words[0], 4);
|
||||
round_fn(state, &block_words[0], 5);
|
||||
round_fn(state, &block_words[0], 6);
|
||||
}
|
||||
|
||||
void blake3_compress_in_place_portable(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags) {
|
||||
uint32_t state[16];
|
||||
compress_pre(state, cv, block, block_len, counter, flags);
|
||||
cv[0] = state[0] ^ state[8];
|
||||
cv[1] = state[1] ^ state[9];
|
||||
cv[2] = state[2] ^ state[10];
|
||||
cv[3] = state[3] ^ state[11];
|
||||
cv[4] = state[4] ^ state[12];
|
||||
cv[5] = state[5] ^ state[13];
|
||||
cv[6] = state[6] ^ state[14];
|
||||
cv[7] = state[7] ^ state[15];
|
||||
}
|
||||
|
||||
void blake3_compress_xof_portable(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]) {
|
||||
uint32_t state[16];
|
||||
compress_pre(state, cv, block, block_len, counter, flags);
|
||||
|
||||
store32(&out[0 * 4], state[0] ^ state[8]);
|
||||
store32(&out[1 * 4], state[1] ^ state[9]);
|
||||
store32(&out[2 * 4], state[2] ^ state[10]);
|
||||
store32(&out[3 * 4], state[3] ^ state[11]);
|
||||
store32(&out[4 * 4], state[4] ^ state[12]);
|
||||
store32(&out[5 * 4], state[5] ^ state[13]);
|
||||
store32(&out[6 * 4], state[6] ^ state[14]);
|
||||
store32(&out[7 * 4], state[7] ^ state[15]);
|
||||
store32(&out[8 * 4], state[8] ^ cv[0]);
|
||||
store32(&out[9 * 4], state[9] ^ cv[1]);
|
||||
store32(&out[10 * 4], state[10] ^ cv[2]);
|
||||
store32(&out[11 * 4], state[11] ^ cv[3]);
|
||||
store32(&out[12 * 4], state[12] ^ cv[4]);
|
||||
store32(&out[13 * 4], state[13] ^ cv[5]);
|
||||
store32(&out[14 * 4], state[14] ^ cv[6]);
|
||||
store32(&out[15 * 4], state[15] ^ cv[7]);
|
||||
}
|
||||
|
||||
INLINE void hash_one_portable(const uint8_t *input, size_t blocks,
|
||||
const uint32_t key[8], uint64_t counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
|
||||
uint32_t cv[8];
|
||||
memcpy(cv, key, BLAKE3_KEY_LEN);
|
||||
uint8_t block_flags = flags | flags_start;
|
||||
while (blocks > 0) {
|
||||
if (blocks == 1) {
|
||||
block_flags |= flags_end;
|
||||
}
|
||||
blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
|
||||
block_flags);
|
||||
input = &input[BLAKE3_BLOCK_LEN];
|
||||
blocks -= 1;
|
||||
block_flags = flags;
|
||||
}
|
||||
store_cv_words(out, cv);
|
||||
}
|
||||
|
||||
void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out) {
|
||||
while (num_inputs > 0) {
|
||||
hash_one_portable(inputs[0], blocks, key, counter, flags, flags_start,
|
||||
flags_end, out);
|
||||
if (increment_counter) {
|
||||
counter += 1;
|
||||
}
|
||||
inputs += 1;
|
||||
num_inputs -= 1;
|
||||
out = &out[BLAKE3_OUT_LEN];
|
||||
}
|
||||
}
|
265
src/3rdparty/digest/blake2b.c
vendored
265
src/3rdparty/digest/blake2b.c
vendored
|
@ -1,265 +0,0 @@
|
|||
/*-
|
||||
* Copyright (c) 2015 Taylor R. Campbell
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "blake2b.h"
|
||||
|
||||
static inline uint64_t
|
||||
rotr64(uint64_t x, unsigned c)
|
||||
{
|
||||
|
||||
return ((x >> c) | (x << (64 - c)));
|
||||
}
|
||||
|
||||
static inline uint64_t
|
||||
le64dec(const void *buf)
|
||||
{
|
||||
const uint8_t *p = buf;
|
||||
|
||||
return (((uint64_t)p[0]) |
|
||||
((uint64_t)p[1] << 8) |
|
||||
((uint64_t)p[2] << 16) |
|
||||
((uint64_t)p[3] << 24) |
|
||||
((uint64_t)p[4] << 32) |
|
||||
((uint64_t)p[5] << 40) |
|
||||
((uint64_t)p[6] << 48) |
|
||||
((uint64_t)p[7] << 56));
|
||||
}
|
||||
|
||||
static inline void
|
||||
le64enc(void *buf, uint64_t v)
|
||||
{
|
||||
uint8_t *p = buf;
|
||||
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v;
|
||||
}
|
||||
|
||||
#define BLAKE2B_G(VA, VB, VC, VD, X, Y) do \
|
||||
{ \
|
||||
(VA) = (VA) + (VB) + (X); \
|
||||
(VD) = rotr64((VD) ^ (VA), 32); \
|
||||
(VC) = (VC) + (VD); \
|
||||
(VB) = rotr64((VB) ^ (VC), 24); \
|
||||
(VA) = (VA) + (VB) + (Y); \
|
||||
(VD) = rotr64((VD) ^ (VA), 16); \
|
||||
(VC) = (VC) + (VD); \
|
||||
(VB) = rotr64((VB) ^ (VC), 63); \
|
||||
} while (0)
|
||||
|
||||
static const uint64_t blake2b_iv[8] = {
|
||||
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
|
||||
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
|
||||
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
|
||||
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL,
|
||||
};
|
||||
|
||||
static const uint8_t blake2b_sigma[12][16] = {
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
||||
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
|
||||
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
|
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
|
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
|
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
|
||||
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
|
||||
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
|
||||
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
|
||||
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
||||
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
|
||||
};
|
||||
|
||||
static void
|
||||
blake2b_compress(uint64_t h[8], uint64_t c, uint64_t last,
|
||||
const uint8_t in[128])
|
||||
{
|
||||
uint64_t v0,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15;
|
||||
uint64_t m[16];
|
||||
unsigned i;
|
||||
|
||||
/* Load the variables: first 8 from state, next 8 from IV. */
|
||||
v0 = h[0];
|
||||
v1 = h[1];
|
||||
v2 = h[2];
|
||||
v3 = h[3];
|
||||
v4 = h[4];
|
||||
v5 = h[5];
|
||||
v6 = h[6];
|
||||
v7 = h[7];
|
||||
v8 = blake2b_iv[0];
|
||||
v9 = blake2b_iv[1];
|
||||
v10 = blake2b_iv[2];
|
||||
v11 = blake2b_iv[3];
|
||||
v12 = blake2b_iv[4];
|
||||
v13 = blake2b_iv[5];
|
||||
v14 = blake2b_iv[6];
|
||||
v15 = blake2b_iv[7];
|
||||
|
||||
/* Incorporate the block counter and whether this is last. */
|
||||
v12 ^= c;
|
||||
v14 ^= last;
|
||||
|
||||
/* Load the message block. */
|
||||
for (i = 0; i < 16; i++)
|
||||
m[i] = le64dec(in + 8*i);
|
||||
|
||||
/* Transform the variables. */
|
||||
for (i = 0; i < 12; i++) {
|
||||
const uint8_t *sigma = blake2b_sigma[i];
|
||||
|
||||
BLAKE2B_G(v0, v4, v8, v12, m[sigma[ 0]], m[sigma[ 1]]);
|
||||
BLAKE2B_G(v1, v5, v9, v13, m[sigma[ 2]], m[sigma[ 3]]);
|
||||
BLAKE2B_G(v2, v6, v10, v14, m[sigma[ 4]], m[sigma[ 5]]);
|
||||
BLAKE2B_G(v3, v7, v11, v15, m[sigma[ 6]], m[sigma[ 7]]);
|
||||
BLAKE2B_G(v0, v5, v10, v15, m[sigma[ 8]], m[sigma[ 9]]);
|
||||
BLAKE2B_G(v1, v6, v11, v12, m[sigma[10]], m[sigma[11]]);
|
||||
BLAKE2B_G(v2, v7, v8, v13, m[sigma[12]], m[sigma[13]]);
|
||||
BLAKE2B_G(v3, v4, v9, v14, m[sigma[14]], m[sigma[15]]);
|
||||
}
|
||||
|
||||
/* Update the state. */
|
||||
h[0] ^= v0 ^ v8;
|
||||
h[1] ^= v1 ^ v9;
|
||||
h[2] ^= v2 ^ v10;
|
||||
h[3] ^= v3 ^ v11;
|
||||
h[4] ^= v4 ^ v12;
|
||||
h[5] ^= v5 ^ v13;
|
||||
h[6] ^= v6 ^ v14;
|
||||
h[7] ^= v7 ^ v15;
|
||||
|
||||
(void)memset(m, 0, sizeof m);
|
||||
}
|
||||
|
||||
void
|
||||
blake2b_init(struct blake2b *B, size_t dlen)
|
||||
{
|
||||
uint64_t param0;
|
||||
unsigned i;
|
||||
|
||||
assert(0 < dlen);
|
||||
assert(dlen <= 64);
|
||||
|
||||
/* Record the digest length. */
|
||||
B->dlen = dlen;
|
||||
|
||||
/* Initialize the buffer. */
|
||||
B->nb = 0;
|
||||
|
||||
/* Initialize the state. */
|
||||
B->c = 0;
|
||||
for (i = 0; i < 8; i++)
|
||||
B->h[i] = blake2b_iv[i];
|
||||
|
||||
/*
|
||||
* Set the parameters. We support only variable digest and key
|
||||
* lengths: no tree hashing, no salt, no personalization.
|
||||
*/
|
||||
param0 = 0;
|
||||
param0 |= (uint64_t)dlen << 0;
|
||||
param0 |= (uint64_t)1 << 16; /* tree fanout = 1 */
|
||||
param0 |= (uint64_t)1 << 24; /* tree depth = 1 */
|
||||
B->h[0] ^= param0;
|
||||
}
|
||||
|
||||
void
|
||||
blake2b_update(struct blake2b *B, const void *buf, size_t len)
|
||||
{
|
||||
const uint8_t *p = buf;
|
||||
size_t n = len;
|
||||
|
||||
/* Check the current state of the buffer. */
|
||||
if (n <= 128u - B->nb) {
|
||||
/* Can at most exactly fill the buffer. */
|
||||
(void)memcpy(&B->b[B->nb], p, n);
|
||||
B->nb += n;
|
||||
return;
|
||||
} else if (0 < B->nb) {
|
||||
/* Can fill the buffer and go on. */
|
||||
(void)memcpy(&B->b[B->nb], p, 128 - B->nb);
|
||||
B->c += 128;
|
||||
blake2b_compress(B->h, B->c, 0, B->b);
|
||||
p += 128 - B->nb;
|
||||
n -= 128 - B->nb;
|
||||
}
|
||||
|
||||
/* At a block boundary. Compress straight from the input. */
|
||||
while (128 < n) {
|
||||
B->c += 128;
|
||||
blake2b_compress(B->h, B->c, 0, p);
|
||||
p += 128;
|
||||
n -= 128;
|
||||
}
|
||||
|
||||
/*
|
||||
* Put whatever's left in the buffer. We may fill the buffer,
|
||||
* but we can't compress in that case until we know whether we
|
||||
* are compressing the last block or not.
|
||||
*/
|
||||
(void)memcpy(B->b, p, n);
|
||||
B->nb = n;
|
||||
}
|
||||
|
||||
void
|
||||
blake2b_final(struct blake2b *B, void *digest)
|
||||
{
|
||||
uint8_t *d = digest;
|
||||
unsigned dlen = B->dlen;
|
||||
unsigned i;
|
||||
|
||||
/* Pad with zeros, and do the last compression. */
|
||||
B->c += B->nb;
|
||||
for (i = B->nb; i < 128; i++)
|
||||
B->b[i] = 0;
|
||||
blake2b_compress(B->h, B->c, ~(uint64_t)0, B->b);
|
||||
|
||||
/* Reveal the first dlen/8 words of the state. */
|
||||
for (i = 0; i < dlen/8; i++)
|
||||
le64enc(d + 8*i, B->h[i]);
|
||||
d += 8*i;
|
||||
dlen -= 8*i;
|
||||
|
||||
/* If the caller wants a partial word, reveal that too. */
|
||||
if (dlen) {
|
||||
uint64_t hi = B->h[i];
|
||||
|
||||
do {
|
||||
*d++ = hi;
|
||||
hi >>= 8;
|
||||
} while (--dlen);
|
||||
}
|
||||
|
||||
/* Erase the state. */
|
||||
(void)memset(B, 0, sizeof B);
|
||||
}
|
55
src/3rdparty/digest/blake2b.h
vendored
55
src/3rdparty/digest/blake2b.h
vendored
|
@ -1,55 +0,0 @@
|
|||
/*-
|
||||
* Copyright (c) 2015 Taylor R. Campbell
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef BLAKE2B_H
|
||||
#define BLAKE2B_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct blake2b {
|
||||
uint8_t b[128]; /* 128-byte buffer */
|
||||
uint64_t h[8]; /* 64-byte state */
|
||||
uint64_t c; /* 64-bit input byte counter */
|
||||
uint8_t nb; /* number of bytes in buffer */
|
||||
uint8_t dlen; /* digest length */
|
||||
};
|
||||
|
||||
#define BLAKE2B_MAX_DIGEST 64
|
||||
#define BLAKE2B_MAX_KEY 64
|
||||
|
||||
void blake2b_init(struct blake2b *, size_t);
|
||||
void blake2b_update(struct blake2b *, const void *, size_t);
|
||||
void blake2b_final(struct blake2b *, void *);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* BLAKE2B_H */
|
254
src/3rdparty/digest/blake2s.c
vendored
254
src/3rdparty/digest/blake2s.c
vendored
|
@ -1,254 +0,0 @@
|
|||
/*-
|
||||
* Copyright (c) 2015 Taylor R. Campbell
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "blake2s.h"
|
||||
|
||||
static inline uint32_t
|
||||
rotr32(uint32_t x, unsigned c)
|
||||
{
|
||||
|
||||
return ((x >> c) | (x << (32 - c)));
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
le32dec(const void *buf)
|
||||
{
|
||||
const uint8_t *p = buf;
|
||||
|
||||
return (((uint32_t)p[0]) |
|
||||
((uint32_t)p[1] << 8) |
|
||||
((uint32_t)p[2] << 16) |
|
||||
((uint32_t)p[3] << 24));
|
||||
}
|
||||
|
||||
static inline void
|
||||
le32enc(void *buf, uint32_t v)
|
||||
{
|
||||
uint8_t *p = buf;
|
||||
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v; v >>= 8;
|
||||
*p++ = v;
|
||||
}
|
||||
|
||||
#define BLAKE2S_G(VA, VB, VC, VD, X, Y) do \
|
||||
{ \
|
||||
(VA) = (VA) + (VB) + (X); \
|
||||
(VD) = rotr32((VD) ^ (VA), 16); \
|
||||
(VC) = (VC) + (VD); \
|
||||
(VB) = rotr32((VB) ^ (VC), 12); \
|
||||
(VA) = (VA) + (VB) + (Y); \
|
||||
(VD) = rotr32((VD) ^ (VA), 8); \
|
||||
(VC) = (VC) + (VD); \
|
||||
(VB) = rotr32((VB) ^ (VC), 7); \
|
||||
} while (0)
|
||||
|
||||
static const uint32_t blake2s_iv[8] = {
|
||||
0x6a09e667U, 0xbb67ae85U, 0x3c6ef372U, 0xa54ff53aU,
|
||||
0x510e527fU, 0x9b05688cU, 0x1f83d9abU, 0x5be0cd19U,
|
||||
};
|
||||
|
||||
static const uint8_t blake2s_sigma[10][16] = {
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
||||
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
|
||||
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
|
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
|
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
|
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
|
||||
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
|
||||
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
|
||||
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
|
||||
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
|
||||
};
|
||||
|
||||
static void
|
||||
blake2s_compress(uint32_t h[8], uint64_t c, uint32_t last,
|
||||
const uint8_t in[64])
|
||||
{
|
||||
uint32_t v0,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15;
|
||||
uint32_t m[16];
|
||||
unsigned i;
|
||||
|
||||
/* Load the variables: first 8 from state, next 8 from IV. */
|
||||
v0 = h[0];
|
||||
v1 = h[1];
|
||||
v2 = h[2];
|
||||
v3 = h[3];
|
||||
v4 = h[4];
|
||||
v5 = h[5];
|
||||
v6 = h[6];
|
||||
v7 = h[7];
|
||||
v8 = blake2s_iv[0];
|
||||
v9 = blake2s_iv[1];
|
||||
v10 = blake2s_iv[2];
|
||||
v11 = blake2s_iv[3];
|
||||
v12 = blake2s_iv[4];
|
||||
v13 = blake2s_iv[5];
|
||||
v14 = blake2s_iv[6];
|
||||
v15 = blake2s_iv[7];
|
||||
|
||||
/* Incorporate the block counter and whether this is last. */
|
||||
v12 ^= c & 0xffffffffU;
|
||||
v13 ^= c >> 32;
|
||||
v14 ^= last;
|
||||
|
||||
/* Load the message block. */
|
||||
for (i = 0; i < 16; i++)
|
||||
m[i] = le32dec(in + 4*i);
|
||||
|
||||
/* Transform the variables. */
|
||||
for (i = 0; i < 10; i++) {
|
||||
const uint8_t *sigma = blake2s_sigma[i];
|
||||
|
||||
BLAKE2S_G(v0, v4, v8, v12, m[sigma[ 0]], m[sigma[ 1]]);
|
||||
BLAKE2S_G(v1, v5, v9, v13, m[sigma[ 2]], m[sigma[ 3]]);
|
||||
BLAKE2S_G(v2, v6, v10, v14, m[sigma[ 4]], m[sigma[ 5]]);
|
||||
BLAKE2S_G(v3, v7, v11, v15, m[sigma[ 6]], m[sigma[ 7]]);
|
||||
BLAKE2S_G(v0, v5, v10, v15, m[sigma[ 8]], m[sigma[ 9]]);
|
||||
BLAKE2S_G(v1, v6, v11, v12, m[sigma[10]], m[sigma[11]]);
|
||||
BLAKE2S_G(v2, v7, v8, v13, m[sigma[12]], m[sigma[13]]);
|
||||
BLAKE2S_G(v3, v4, v9, v14, m[sigma[14]], m[sigma[15]]);
|
||||
}
|
||||
|
||||
/* Update the state. */
|
||||
h[0] ^= v0 ^ v8;
|
||||
h[1] ^= v1 ^ v9;
|
||||
h[2] ^= v2 ^ v10;
|
||||
h[3] ^= v3 ^ v11;
|
||||
h[4] ^= v4 ^ v12;
|
||||
h[5] ^= v5 ^ v13;
|
||||
h[6] ^= v6 ^ v14;
|
||||
h[7] ^= v7 ^ v15;
|
||||
|
||||
(void)memset(m, 0, sizeof m);
|
||||
}
|
||||
|
||||
void
|
||||
blake2s_init(struct blake2s *B, size_t dlen)
|
||||
{
|
||||
uint32_t param0;
|
||||
unsigned i;
|
||||
|
||||
assert(0 < dlen);
|
||||
assert(dlen <= 32);
|
||||
|
||||
/* Record the digest length. */
|
||||
B->dlen = dlen;
|
||||
|
||||
/* Initialize the buffer. */
|
||||
B->nb = 0;
|
||||
|
||||
/* Initialize the state. */
|
||||
B->c = 0;
|
||||
for (i = 0; i < 8; i++)
|
||||
B->h[i] = blake2s_iv[i];
|
||||
|
||||
/*
|
||||
* Set the parameters. We support only variable digest and key
|
||||
* lengths: no tree hashing, no salt, no personalization.
|
||||
*/
|
||||
param0 = 0;
|
||||
param0 |= (uint32_t)dlen << 0;
|
||||
param0 |= (uint32_t)1 << 16; /* tree fanout = 1 */
|
||||
param0 |= (uint32_t)1 << 24; /* tree depth = 1 */
|
||||
B->h[0] ^= param0;
|
||||
}
|
||||
|
||||
void
|
||||
blake2s_update(struct blake2s *B, const void *buf, size_t len)
|
||||
{
|
||||
const uint8_t *p = buf;
|
||||
size_t n = len;
|
||||
|
||||
/* Check the current state of the buffer. */
|
||||
if (n <= 64u - B->nb) {
|
||||
/* Can at most exactly fill the buffer. */
|
||||
(void)memcpy(&B->b[B->nb], p, n);
|
||||
B->nb += n;
|
||||
return;
|
||||
} else if (0 < B->nb) {
|
||||
/* Can fill the buffer and go on. */
|
||||
(void)memcpy(&B->b[B->nb], p, 64 - B->nb);
|
||||
B->c += 64;
|
||||
blake2s_compress(B->h, B->c, 0, B->b);
|
||||
p += 64 - B->nb;
|
||||
n -= 64 - B->nb;
|
||||
}
|
||||
|
||||
/* At a block boundary. Compress straight from the input. */
|
||||
while (64 < n) {
|
||||
B->c += 64;
|
||||
blake2s_compress(B->h, B->c, 0, p);
|
||||
p += 64;
|
||||
n -= 64;
|
||||
}
|
||||
|
||||
/*
|
||||
* Put whatever's left in the buffer. We may fill the buffer,
|
||||
* but we can't compress in that case until we know whether we
|
||||
* are compressing the last block or not.
|
||||
*/
|
||||
(void)memcpy(B->b, p, n);
|
||||
B->nb = n;
|
||||
}
|
||||
|
||||
void
|
||||
blake2s_final(struct blake2s *B, void *digest)
|
||||
{
|
||||
uint8_t *d = digest;
|
||||
unsigned dlen = B->dlen;
|
||||
unsigned i;
|
||||
|
||||
/* Pad with zeros, and do the last compression. */
|
||||
B->c += B->nb;
|
||||
for (i = B->nb; i < 64; i++)
|
||||
B->b[i] = 0;
|
||||
blake2s_compress(B->h, B->c, ~(uint32_t)0, B->b);
|
||||
|
||||
/* Reveal the first dlen/4 words of the state. */
|
||||
for (i = 0; i < dlen/4; i++)
|
||||
le32enc(d + 4*i, B->h[i]);
|
||||
d += 4*i;
|
||||
dlen -= 4*i;
|
||||
|
||||
/* If the caller wants a partial word, reveal that too. */
|
||||
if (dlen) {
|
||||
uint32_t hi = B->h[i];
|
||||
|
||||
do {
|
||||
*d++ = hi;
|
||||
hi >>= 8;
|
||||
} while (--dlen);
|
||||
}
|
||||
|
||||
/* Erase the state. */
|
||||
(void)memset(B, 0, sizeof B);
|
||||
}
|
56
src/3rdparty/digest/blake2s.h
vendored
56
src/3rdparty/digest/blake2s.h
vendored
|
@ -1,56 +0,0 @@
|
|||
/*-
|
||||
* Copyright (c) 2015 Taylor R. Campbell
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef BLAKE2S_H
|
||||
#define BLAKE2S_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct blake2s {
|
||||
uint8_t b[64]; /* 64-byte buffer */
|
||||
uint32_t h[8]; /* 32-byte state */
|
||||
uint64_t c; /* 64-bit input byte counter */
|
||||
uint8_t nb; /* number of bytes in buffer */
|
||||
uint8_t dlen; /* digest length */
|
||||
};
|
||||
|
||||
#define BLAKE2S_MAX_DIGEST 32
|
||||
#define BLAKE2S_MAX_KEY 32
|
||||
|
||||
void blake2s_init(struct blake2s *, size_t);
|
||||
void blake2s_update(struct blake2s *, const void *, size_t);
|
||||
void blake2s_final(struct blake2s *, void *);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* BLAKE2S_H */
|
|
@ -20,6 +20,7 @@ include_directories(
|
|||
${CMAKE_BINARY_DIR}/include/QtCore
|
||||
${CMAKE_BINARY_DIR}/include/QtNetwork
|
||||
${CMAKE_SOURCE_DIR}/src/3rdparty/digest
|
||||
${CMAKE_SOURCE_DIR}/src/3rdparty/BLAKE3
|
||||
)
|
||||
|
||||
set(NETWORK_HEADERS
|
||||
|
@ -64,8 +65,9 @@ set(NETWORK_SOURCES
|
|||
${CMAKE_SOURCE_DIR}/src/3rdparty/digest/md5c.c
|
||||
${CMAKE_SOURCE_DIR}/src/3rdparty/digest/sha1.c
|
||||
${CMAKE_SOURCE_DIR}/src/3rdparty/digest/sha2.c
|
||||
${CMAKE_SOURCE_DIR}/src/3rdparty/digest/blake2b.c
|
||||
${CMAKE_SOURCE_DIR}/src/3rdparty/digest/blake2s.c
|
||||
${CMAKE_SOURCE_DIR}/src/3rdparty/BLAKE3/blake3.c
|
||||
${CMAKE_SOURCE_DIR}/src/3rdparty/BLAKE3/blake3_dispatch.c
|
||||
${CMAKE_SOURCE_DIR}/src/3rdparty/BLAKE3/blake3_portable.c
|
||||
)
|
||||
|
||||
katie_generate_misc("${NETWORK_HEADERS}" QtNetwork)
|
||||
|
|
|
@ -27,8 +27,7 @@
|
|||
#include "md5.h"
|
||||
#include "sha1.h"
|
||||
#include "sha2.h"
|
||||
#include "blake2b.h"
|
||||
#include "blake2s.h"
|
||||
#include "blake3.h"
|
||||
|
||||
QT_BEGIN_NAMESPACE
|
||||
|
||||
|
@ -41,8 +40,7 @@ public:
|
|||
SHA1_CTX sha1Context;
|
||||
SHA256_CTX sha256Context;
|
||||
SHA512_CTX sha512Context;
|
||||
struct blake2b blake2bContext;
|
||||
struct blake2s blake2sContext;
|
||||
blake3_hasher blake3Context;
|
||||
bool rehash;
|
||||
const QCryptographicHash::Algorithm method;
|
||||
};
|
||||
|
@ -68,7 +66,7 @@ QCryptographicHashPrivate::QCryptographicHashPrivate(const QCryptographicHash::A
|
|||
QCryptographicHash can be used to generate cryptographic hashes of binary
|
||||
or text data.
|
||||
|
||||
Currently MD5, SHA-1, SHA-256 and SHA-512 are supported.
|
||||
Currently MD5, SHA-1, SHA-256, SHA-512 and BLAKE3 are supported.
|
||||
*/
|
||||
|
||||
/*!
|
||||
|
@ -78,8 +76,7 @@ QCryptographicHashPrivate::QCryptographicHashPrivate(const QCryptographicHash::A
|
|||
\value Sha1 Generate an SHA-1 hash sum
|
||||
\value Sha256 Generate an SHA-256 hash sum (SHA-2). Introduced in Katie 4.9
|
||||
\value Sha512 Generate an SHA-512 hash sum (SHA-2). Introduced in Katie 4.9
|
||||
\value BLAKE2b Generate an BLAKE2b hash sum. Introduced in Katie 4.12
|
||||
\value BLAKE2s Generate an BLAKE2s hash sum. Introduced in Katie 4.12
|
||||
\value BLAKE3 Generate an BLAKE3 hash sum. Introduced in Katie 4.12
|
||||
*/
|
||||
|
||||
/*!
|
||||
|
@ -123,12 +120,8 @@ void QCryptographicHash::reset()
|
|||
SHA512_Init(&d->sha512Context);
|
||||
break;
|
||||
}
|
||||
case QCryptographicHash::BLAKE2b: {
|
||||
blake2b_init(&d->blake2bContext, BLAKE2B_MAX_DIGEST);
|
||||
break;
|
||||
}
|
||||
case QCryptographicHash::BLAKE2s: {
|
||||
blake2s_init(&d->blake2sContext, BLAKE2S_MAX_DIGEST);
|
||||
case QCryptographicHash::BLAKE3: {
|
||||
blake3_hasher_init(&d->blake3Context);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -157,12 +150,8 @@ void QCryptographicHash::addData(const char *data, int length)
|
|||
SHA512_Update(&d->sha512Context, reinterpret_cast<const uchar*>(data), length);
|
||||
break;
|
||||
}
|
||||
case QCryptographicHash::BLAKE2b: {
|
||||
blake2b_update(&d->blake2bContext, reinterpret_cast<const uchar*>(data), length);
|
||||
break;
|
||||
}
|
||||
case QCryptographicHash::BLAKE2s: {
|
||||
blake2s_update(&d->blake2sContext, reinterpret_cast<const uchar*>(data), length);
|
||||
case QCryptographicHash::BLAKE3: {
|
||||
blake3_hasher_update(&d->blake3Context, reinterpret_cast<const uchar*>(data), length);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -228,17 +217,10 @@ QByteArray QCryptographicHash::result() const
|
|||
SHA512_Final(result, ©);
|
||||
return QByteArray(reinterpret_cast<char *>(result), SHA512_DIGEST_LENGTH);
|
||||
}
|
||||
case QCryptographicHash::BLAKE2b: {
|
||||
QSTACKARRAY(char, result, BLAKE2B_MAX_DIGEST);
|
||||
struct blake2b copy = d->blake2bContext;
|
||||
blake2b_final(©, result);
|
||||
return QByteArray(result, BLAKE2B_MAX_DIGEST);
|
||||
}
|
||||
case QCryptographicHash::BLAKE2s: {
|
||||
QSTACKARRAY(char, result, BLAKE2S_MAX_DIGEST);
|
||||
struct blake2s copy = d->blake2sContext;
|
||||
blake2s_final(©, result);
|
||||
return QByteArray(result, BLAKE2S_MAX_DIGEST);
|
||||
case QCryptographicHash::BLAKE3: {
|
||||
QSTACKARRAY(uint8_t, result, BLAKE3_OUT_LEN);
|
||||
blake3_hasher_finalize(&d->blake3Context, result, BLAKE3_OUT_LEN);
|
||||
return QByteArray(reinterpret_cast<char *>(result), BLAKE3_OUT_LEN);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -283,21 +265,13 @@ QByteArray QCryptographicHash::hash(const QByteArray &data, QCryptographicHash::
|
|||
SHA512_Final(result, &sha512Context);
|
||||
return QByteArray(reinterpret_cast<char *>(result), SHA512_DIGEST_LENGTH);
|
||||
}
|
||||
case QCryptographicHash::BLAKE2b: {
|
||||
QSTACKARRAY(char, result, BLAKE2B_MAX_DIGEST);
|
||||
struct blake2b blake2bContext;
|
||||
blake2b_init(&blake2bContext, BLAKE2B_MAX_DIGEST);
|
||||
blake2b_update(&blake2bContext, reinterpret_cast<const uchar*>(data.constData()), data.length());
|
||||
blake2b_final(&blake2bContext, result);
|
||||
return QByteArray(result, BLAKE2B_MAX_DIGEST);
|
||||
}
|
||||
case QCryptographicHash::BLAKE2s: {
|
||||
QSTACKARRAY(char, result, BLAKE2S_MAX_DIGEST);
|
||||
struct blake2s blake2sContext;
|
||||
blake2s_init(&blake2sContext, BLAKE2S_MAX_DIGEST);
|
||||
blake2s_update(&blake2sContext, reinterpret_cast<const uchar*>(data.constData()), data.length());
|
||||
blake2s_final(&blake2sContext, result);
|
||||
return QByteArray(result, BLAKE2S_MAX_DIGEST);
|
||||
case QCryptographicHash::BLAKE3: {
|
||||
QSTACKARRAY(uint8_t, result, BLAKE3_OUT_LEN);
|
||||
blake3_hasher blake3Context;
|
||||
blake3_hasher_init(&blake3Context);
|
||||
blake3_hasher_update(&blake3Context, reinterpret_cast<const uchar*>(data.constData()), data.length());
|
||||
blake3_hasher_finalize(&blake3Context, result, BLAKE3_OUT_LEN);
|
||||
return QByteArray(reinterpret_cast<char *>(result), BLAKE3_OUT_LEN);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -39,8 +39,7 @@ public:
|
|||
Sha1,
|
||||
Sha256,
|
||||
Sha512,
|
||||
BLAKE2b,
|
||||
BLAKE2s
|
||||
BLAKE3
|
||||
};
|
||||
|
||||
explicit QCryptographicHash(Algorithm method);
|
||||
|
|
|
@ -85,14 +85,10 @@ void tst_QCryptographicHash::intermediary_result_data()
|
|||
<< QByteArray("abc") << QByteArray("abc")
|
||||
<< QByteArray::fromHex("DDAF35A193617ABACC417349AE20413112E6FA4E89A97EA20A9EEEE64B55D39A2192992A274FC1A836BA3C23A3FEEBBD454D4423643CE80E2A9AC94FA54CA49F")
|
||||
<< QByteArray::fromHex("F3C41E7B63EE869596FC28BAD64120612C520F65928AB4D126C72C6998B551B8FF1CEDDFED4373E6717554DC89D1EEE6F0AB22FD3675E561ABA9AE26A3EEC53B");
|
||||
QTest::newRow("BLAKE2b") << int(QCryptographicHash::BLAKE2b)
|
||||
QTest::newRow("BLAKE3") << int(QCryptographicHash::BLAKE3)
|
||||
<< QByteArray("abc") << QByteArray("abc")
|
||||
<< QByteArray::fromHex("ba80a53f981c4d0d6a2797b69f12f6e94c212f14685ac4b74b12bb6fdbffa2d17d87c5392aab792dc252d5de4533cc9518d38aa8dbf1925ab92386edd4009923")
|
||||
<< QByteArray::fromHex("60b5c037082a21e1b92bc3484d8bbe015a56574bdf3517796dd9a32095bec69af06104d0391076e9329d150b0ec925af7c482faf4d66127f38b6a65bec4d695b");
|
||||
QTest::newRow("BLAKE2s") << int(QCryptographicHash::BLAKE2s)
|
||||
<< QByteArray("abc") << QByteArray("abc")
|
||||
<< QByteArray::fromHex("508c5e8c327c14e2e1a72ba34eeb452f37458b209ed63a294d999b4c86675982")
|
||||
<< QByteArray::fromHex("3605affd00f95791174cf1f50f90c40aa094dfc5e80898f014729b23eabe6415");
|
||||
<< QByteArray::fromHex("6437b3ac38465133ffb63b75273a8db548c558465d79db03fd359c6cd5bd9d85")
|
||||
<< QByteArray::fromHex("8a120b9472cc2c9873ec4283ff85376799f0864119c167440aeb7ec7a631fbca");
|
||||
}
|
||||
|
||||
void tst_QCryptographicHash::intermediary_result()
|
||||
|
@ -106,7 +102,7 @@ void tst_QCryptographicHash::intermediary_result()
|
|||
|
||||
QFETCH(QByteArray, hash_first);
|
||||
QByteArray result = hash.result();
|
||||
// qDebug() result.toHex();
|
||||
// qDebug() << result.toHex();
|
||||
QCOMPARE(result, hash_first);
|
||||
|
||||
// don't reset
|
||||
|
|
|
@ -49,29 +49,25 @@ void tst_qcryptographichash::append_data()
|
|||
QTest::newRow("10 (Sha1)") << int(10) << QCryptographicHash::Sha1;
|
||||
QTest::newRow("10 (Sha256)") << int(10) << QCryptographicHash::Sha256;
|
||||
QTest::newRow("10 (Sha512)") << int(10) << QCryptographicHash::Sha512;
|
||||
QTest::newRow("10 (BLAKE2b)") << int(10) << QCryptographicHash::BLAKE2b;
|
||||
QTest::newRow("10 (BLAKE2s)") << int(10) << QCryptographicHash::BLAKE2s;
|
||||
QTest::newRow("10 (BLAKE3)") << int(10) << QCryptographicHash::BLAKE3;
|
||||
|
||||
QTest::newRow("100 (Md5)") << int(100) << QCryptographicHash::Md5;
|
||||
QTest::newRow("100 (Sha1)") << int(100) << QCryptographicHash::Sha1;
|
||||
QTest::newRow("100 (Sha256)") << int(100) << QCryptographicHash::Sha256;
|
||||
QTest::newRow("100 (Sha512)") << int(100) << QCryptographicHash::Sha512;
|
||||
QTest::newRow("100 (BLAKE2b)") << int(100) << QCryptographicHash::BLAKE2b;
|
||||
QTest::newRow("100 (BLAKE2s)") << int(100) << QCryptographicHash::BLAKE2s;
|
||||
QTest::newRow("100 (BLAKE3)") << int(100) << QCryptographicHash::BLAKE3;
|
||||
|
||||
QTest::newRow("250 (Md5)") << int(250) << QCryptographicHash::Md5;
|
||||
QTest::newRow("250 (Sha1)") << int(250) << QCryptographicHash::Sha1;
|
||||
QTest::newRow("250 (Sha256)") << int(250) << QCryptographicHash::Sha256;
|
||||
QTest::newRow("250 (Sha512)") << int(250) << QCryptographicHash::Sha512;
|
||||
QTest::newRow("250 (BLAKE2b)") << int(250) << QCryptographicHash::BLAKE2b;
|
||||
QTest::newRow("250 (BLAKE2s)") << int(250) << QCryptographicHash::BLAKE2s;
|
||||
QTest::newRow("250 (BLAKE3)") << int(250) << QCryptographicHash::BLAKE3;
|
||||
|
||||
QTest::newRow("500 (Md5)") << int(500) << QCryptographicHash::Md5;
|
||||
QTest::newRow("500 (Sha1)") << int(500) << QCryptographicHash::Sha1;
|
||||
QTest::newRow("500 (Sha256)") << int(500) << QCryptographicHash::Sha256;
|
||||
QTest::newRow("500 (Sha512)") << int(500) << QCryptographicHash::Sha512;
|
||||
QTest::newRow("500 (BLAKE2b)") << int(500) << QCryptographicHash::BLAKE2b;
|
||||
QTest::newRow("500 (BLAKE2s)") << int(500) << QCryptographicHash::BLAKE2s;
|
||||
QTest::newRow("500 (BLAKE3)") << int(500) << QCryptographicHash::BLAKE3;
|
||||
}
|
||||
|
||||
void tst_qcryptographichash::append()
|
||||
|
@ -105,8 +101,7 @@ void tst_qcryptographichash::append_once_data()
|
|||
QTest::newRow("Sha1") << QCryptographicHash::Sha1;
|
||||
QTest::newRow("Sha256") << QCryptographicHash::Sha256;
|
||||
QTest::newRow("Sha512") << QCryptographicHash::Sha512;
|
||||
QTest::newRow("BLAKE2b") << QCryptographicHash::BLAKE2b;
|
||||
QTest::newRow("BLAKE2s") << QCryptographicHash::BLAKE2s;
|
||||
QTest::newRow("BLAKE3") << QCryptographicHash::BLAKE3;
|
||||
}
|
||||
|
||||
void tst_qcryptographichash::append_once()
|
||||
|
|
Loading…
Add table
Reference in a new issue