2015-12-10 05:06:13 +02:00
|
|
|
/****************************************************************************
|
|
|
|
**
|
|
|
|
** Copyright (C) 2015 The Qt Company Ltd.
|
|
|
|
**
|
2019-06-03 13:38:02 +00:00
|
|
|
** This file is part of the QtGui module of the Katie Toolkit.
|
2015-12-10 05:06:13 +02:00
|
|
|
**
|
|
|
|
** $QT_BEGIN_LICENSE:LGPL$
|
|
|
|
** Commercial License Usage
|
|
|
|
** Licensees holding valid commercial Qt licenses may use this file in
|
|
|
|
** accordance with the commercial license agreement provided with the
|
|
|
|
** Software or, alternatively, in accordance with the terms contained in
|
|
|
|
** a written agreement between you and The Qt Company. For licensing terms
|
|
|
|
** and conditions see http://www.qt.io/terms-conditions. For further
|
|
|
|
** information use the contact form at http://www.qt.io/contact-us.
|
|
|
|
**
|
|
|
|
** GNU Lesser General Public License Usage
|
|
|
|
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
|
|
** General Public License version 2.1 or version 3 as published by the Free
|
|
|
|
** Software Foundation and appearing in the file LICENSE.LGPLv21 and
|
|
|
|
** LICENSE.LGPLv3 included in the packaging of this file. Please review the
|
|
|
|
** following information to ensure the GNU Lesser General Public License
|
|
|
|
** requirements will be met: https://www.gnu.org/licenses/lgpl.html and
|
|
|
|
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
|
|
**
|
|
|
|
** As a special exception, The Qt Company gives you certain additional
|
|
|
|
** rights. These rights are described in The Qt Company LGPL Exception
|
|
|
|
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
|
|
**
|
|
|
|
** GNU General Public License Usage
|
|
|
|
** Alternatively, this file may be used under the terms of the GNU
|
|
|
|
** General Public License version 3.0 as published by the Free Software
|
|
|
|
** Foundation and appearing in the file LICENSE.GPL included in the
|
|
|
|
** packaging of this file. Please review the following information to
|
|
|
|
** ensure the GNU General Public License version 3.0 requirements will be
|
|
|
|
** met: http://www.gnu.org/copyleft/gpl.html.
|
|
|
|
**
|
|
|
|
** $QT_END_LICENSE$
|
|
|
|
**
|
|
|
|
****************************************************************************/
|
|
|
|
#include "qtransform.h"
|
|
|
|
|
|
|
|
#include "qdatastream.h"
|
|
|
|
#include "qdebug.h"
|
|
|
|
#include "qmatrix.h"
|
|
|
|
#include "qregion.h"
|
|
|
|
#include "qpainterpath.h"
|
|
|
|
#include "qvariant.h"
|
2017-08-05 06:44:35 +00:00
|
|
|
#include "qmath.h"
|
|
|
|
#include "qnumeric.h"
|
|
|
|
#include "qbezier_p.h"
|
|
|
|
#include "qguicommon_p.h"
|
2015-12-10 05:06:13 +02:00
|
|
|
|
|
|
|
QT_BEGIN_NAMESPACE
|
|
|
|
|
|
|
|
#define Q_NEAR_CLIP (sizeof(qreal) == sizeof(double) ? 0.000001 : 0.0001)
|
|
|
|
|
|
|
|
#ifdef MAP
|
|
|
|
# undef MAP
|
|
|
|
#endif
|
|
|
|
#define MAP(x, y, nx, ny) \
|
|
|
|
do { \
|
|
|
|
qreal FX_ = x; \
|
|
|
|
qreal FY_ = y; \
|
|
|
|
switch(t) { \
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxNone: \
|
2015-12-10 05:06:13 +02:00
|
|
|
nx = FX_; \
|
|
|
|
ny = FY_; \
|
|
|
|
break; \
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxTranslate: \
|
2015-12-10 05:06:13 +02:00
|
|
|
nx = FX_ + affine._dx; \
|
|
|
|
ny = FY_ + affine._dy; \
|
|
|
|
break; \
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxScale: \
|
2015-12-10 05:06:13 +02:00
|
|
|
nx = affine._m11 * FX_ + affine._dx; \
|
|
|
|
ny = affine._m22 * FY_ + affine._dy; \
|
|
|
|
break; \
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxRotate: \
|
|
|
|
case TxShear: \
|
|
|
|
case TxProject: \
|
2015-12-10 05:06:13 +02:00
|
|
|
nx = affine._m11 * FX_ + affine._m21 * FY_ + affine._dx; \
|
|
|
|
ny = affine._m12 * FX_ + affine._m22 * FY_ + affine._dy; \
|
2019-05-27 20:12:31 +00:00
|
|
|
if (t == TxProject) { \
|
2015-12-10 05:06:13 +02:00
|
|
|
qreal w = (m_13 * FX_ + m_23 * FY_ + m_33); \
|
|
|
|
if (w < qreal(Q_NEAR_CLIP)) w = qreal(Q_NEAR_CLIP); \
|
|
|
|
w = 1./w; \
|
|
|
|
nx *= w; \
|
|
|
|
ny *= w; \
|
|
|
|
} \
|
|
|
|
} \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\class QTransform
|
|
|
|
\brief The QTransform class specifies 2D transformations of a coordinate system.
|
|
|
|
\since 4.3
|
|
|
|
\ingroup painting
|
|
|
|
|
|
|
|
A transformation specifies how to translate, scale, shear, rotate
|
|
|
|
or project the coordinate system, and is typically used when
|
|
|
|
rendering graphics.
|
|
|
|
|
|
|
|
QTransform differs from QMatrix in that it is a true 3x3 matrix,
|
|
|
|
allowing perspective transformations. QTransform's toAffine()
|
|
|
|
method allows casting QTransform to QMatrix. If a perspective
|
|
|
|
transformation has been specified on the matrix, then the
|
|
|
|
conversion will cause loss of data.
|
|
|
|
|
|
|
|
QTransform is the recommended transformation class in Qt.
|
|
|
|
|
|
|
|
A QTransform object can be built using the setMatrix(), scale(),
|
|
|
|
rotate(), translate() and shear() functions. Alternatively, it
|
|
|
|
can be built by applying \l {QTransform#Basic Matrix
|
|
|
|
Operations}{basic matrix operations}. The matrix can also be
|
|
|
|
defined when constructed, and it can be reset to the identity
|
|
|
|
matrix (the default) using the reset() function.
|
|
|
|
|
|
|
|
The QTransform class supports mapping of graphic primitives: A given
|
|
|
|
point, line, polygon, region, or painter path can be mapped to the
|
|
|
|
coordinate system defined by \e this matrix using the map()
|
|
|
|
function. In case of a rectangle, its coordinates can be
|
|
|
|
transformed using the mapRect() function. A rectangle can also be
|
|
|
|
transformed into a \e polygon (mapped to the coordinate system
|
|
|
|
defined by \e this matrix), using the mapToPolygon() function.
|
|
|
|
|
|
|
|
QTransform provides the isIdentity() function which returns true if
|
|
|
|
the matrix is the identity matrix, and the isInvertible() function
|
|
|
|
which returns true if the matrix is non-singular (i.e. AB = BA =
|
|
|
|
I). The inverted() function returns an inverted copy of \e this
|
|
|
|
matrix if it is invertible (otherwise it returns the identity
|
|
|
|
matrix), and adjoint() returns the matrix's classical adjoint.
|
|
|
|
In addition, QTransform provides the determinant() function which
|
|
|
|
returns the matrix's determinant.
|
|
|
|
|
|
|
|
Finally, the QTransform class supports matrix multiplication, addition
|
|
|
|
and subtraction, and objects of the class can be streamed as well
|
|
|
|
as compared.
|
|
|
|
|
|
|
|
\tableofcontents
|
|
|
|
|
|
|
|
\section1 Rendering Graphics
|
|
|
|
|
|
|
|
When rendering graphics, the matrix defines the transformations
|
|
|
|
but the actual transformation is performed by the drawing routines
|
|
|
|
in QPainter.
|
|
|
|
|
|
|
|
By default, QPainter operates on the associated device's own
|
|
|
|
coordinate system. The standard coordinate system of a
|
|
|
|
QPaintDevice has its origin located at the top-left position. The
|
|
|
|
\e x values increase to the right; \e y values increase
|
|
|
|
downward. For a complete description, see the \l {Coordinate
|
|
|
|
System} {coordinate system} documentation.
|
|
|
|
|
|
|
|
QPainter has functions to translate, scale, shear and rotate the
|
|
|
|
coordinate system without using a QTransform. For example:
|
|
|
|
|
|
|
|
\table 100%
|
|
|
|
\row
|
|
|
|
\o \inlineimage qtransform-simpletransformation.png
|
|
|
|
\o
|
|
|
|
\snippet doc/src/snippets/transform/main.cpp 0
|
|
|
|
\endtable
|
|
|
|
|
|
|
|
Although these functions are very convenient, it can be more
|
|
|
|
efficient to build a QTransform and call QPainter::setTransform() if you
|
|
|
|
want to perform more than a single transform operation. For
|
|
|
|
example:
|
|
|
|
|
|
|
|
\table 100%
|
|
|
|
\row
|
|
|
|
\o \inlineimage qtransform-combinedtransformation.png
|
|
|
|
\o
|
|
|
|
\snippet doc/src/snippets/transform/main.cpp 1
|
|
|
|
\endtable
|
|
|
|
|
|
|
|
\section1 Basic Matrix Operations
|
|
|
|
|
|
|
|
\image qtransform-representation.png
|
|
|
|
|
|
|
|
A QTransform object contains a 3 x 3 matrix. The \c m31 (\c dx) and
|
|
|
|
\c m32 (\c dy) elements specify horizontal and vertical translation.
|
|
|
|
The \c m11 and \c m22 elements specify horizontal and vertical scaling.
|
|
|
|
The \c m21 and \c m12 elements specify horizontal and vertical \e shearing.
|
|
|
|
And finally, the \c m13 and \c m23 elements specify horizontal and vertical
|
|
|
|
projection, with \c m33 as an additional projection factor.
|
|
|
|
|
|
|
|
QTransform transforms a point in the plane to another point using the
|
|
|
|
following formulas:
|
|
|
|
|
|
|
|
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 0
|
|
|
|
|
|
|
|
The point \e (x, y) is the original point, and \e (x', y') is the
|
|
|
|
transformed point. \e (x', y') can be transformed back to \e (x,
|
|
|
|
y) by performing the same operation on the inverted() matrix.
|
|
|
|
|
|
|
|
The various matrix elements can be set when constructing the
|
|
|
|
matrix, or by using the setMatrix() function later on. They can also
|
|
|
|
be manipulated using the translate(), rotate(), scale() and
|
|
|
|
shear() convenience functions. The currently set values can be
|
|
|
|
retrieved using the m11(), m12(), m13(), m21(), m22(), m23(),
|
|
|
|
m31(), m32(), m33(), dx() and dy() functions.
|
|
|
|
|
|
|
|
Translation is the simplest transformation. Setting \c dx and \c
|
|
|
|
dy will move the coordinate system \c dx units along the X axis
|
|
|
|
and \c dy units along the Y axis. Scaling can be done by setting
|
|
|
|
\c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to
|
|
|
|
1.5 will double the height and increase the width by 50%. The
|
|
|
|
identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set
|
|
|
|
to 0) mapping a point to itself. Shearing is controlled by \c m12
|
|
|
|
and \c m21. Setting these elements to values different from zero
|
|
|
|
will twist the coordinate system. Rotation is achieved by
|
|
|
|
setting both the shearing factors and the scaling factors. Perspective
|
|
|
|
transformation is achieved by setting both the projection factors and
|
|
|
|
the scaling factors.
|
|
|
|
|
|
|
|
Here's the combined transformations example using basic matrix
|
|
|
|
operations:
|
|
|
|
|
|
|
|
\table 100%
|
|
|
|
\row
|
|
|
|
\o \inlineimage qtransform-combinedtransformation2.png
|
|
|
|
\o
|
|
|
|
\snippet doc/src/snippets/transform/main.cpp 2
|
|
|
|
\endtable
|
|
|
|
|
|
|
|
\sa QPainter, {Coordinate System}, {demos/affine}{Affine
|
|
|
|
Transformations Demo}, {Transformations Example}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\enum QTransform::TransformationType
|
|
|
|
|
|
|
|
\value TxNone
|
|
|
|
\value TxTranslate
|
|
|
|
\value TxScale
|
|
|
|
\value TxRotate
|
|
|
|
\value TxShear
|
|
|
|
\value TxProject
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform::QTransform(Qt::Initialization)
|
|
|
|
\internal
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Constructs an identity matrix.
|
|
|
|
|
|
|
|
All elements are set to zero except \c m11 and \c m22 (specifying
|
|
|
|
the scale) and \c m13 which are set to 1.
|
|
|
|
|
|
|
|
\sa reset()
|
|
|
|
*/
|
|
|
|
QTransform::QTransform()
|
|
|
|
: affine(true)
|
|
|
|
, m_13(0), m_23(0), m_33(1)
|
2019-05-27 20:12:31 +00:00
|
|
|
, m_type(TxNone)
|
|
|
|
, m_dirty(TxNone)
|
2015-12-10 05:06:13 +02:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33)
|
|
|
|
|
|
|
|
Constructs a matrix with the elements, \a m11, \a m12, \a m13,
|
|
|
|
\a m21, \a m22, \a m23, \a m31, \a m32, \a m33.
|
|
|
|
|
|
|
|
\sa setMatrix()
|
|
|
|
*/
|
|
|
|
QTransform::QTransform(qreal h11, qreal h12, qreal h13,
|
|
|
|
qreal h21, qreal h22, qreal h23,
|
|
|
|
qreal h31, qreal h32, qreal h33)
|
|
|
|
: affine(h11, h12, h21, h22, h31, h32, true)
|
|
|
|
, m_13(h13), m_23(h23), m_33(h33)
|
2019-05-27 20:12:31 +00:00
|
|
|
, m_type(TxNone)
|
|
|
|
, m_dirty(TxProject)
|
2015-12-10 05:06:13 +02:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy)
|
|
|
|
|
|
|
|
Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy.
|
|
|
|
|
|
|
|
\sa setMatrix()
|
|
|
|
*/
|
|
|
|
QTransform::QTransform(qreal h11, qreal h12, qreal h21,
|
|
|
|
qreal h22, qreal dx, qreal dy)
|
|
|
|
: affine(h11, h12, h21, h22, dx, dy, true)
|
|
|
|
, m_13(0), m_23(0), m_33(1)
|
2019-05-27 20:12:31 +00:00
|
|
|
, m_type(TxNone)
|
|
|
|
, m_dirty(TxShear)
|
2015-12-10 05:06:13 +02:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform::QTransform(const QMatrix &matrix)
|
|
|
|
|
|
|
|
Constructs a matrix that is a copy of the given \a matrix.
|
|
|
|
Note that the \c m13, \c m23, and \c m33 elements are set to 0, 0,
|
|
|
|
and 1 respectively.
|
|
|
|
*/
|
|
|
|
QTransform::QTransform(const QMatrix &mtx)
|
|
|
|
: affine(mtx._m11, mtx._m12, mtx._m21, mtx._m22, mtx._dx, mtx._dy, true),
|
|
|
|
m_13(0), m_23(0), m_33(1)
|
2019-05-27 20:12:31 +00:00
|
|
|
, m_type(TxNone)
|
|
|
|
, m_dirty(TxShear)
|
2015-12-10 05:06:13 +02:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the adjoint of this matrix.
|
|
|
|
*/
|
|
|
|
QTransform QTransform::adjoint() const
|
|
|
|
{
|
|
|
|
qreal h11, h12, h13,
|
|
|
|
h21, h22, h23,
|
|
|
|
h31, h32, h33;
|
|
|
|
h11 = affine._m22*m_33 - m_23*affine._dy;
|
|
|
|
h21 = m_23*affine._dx - affine._m21*m_33;
|
|
|
|
h31 = affine._m21*affine._dy - affine._m22*affine._dx;
|
|
|
|
h12 = m_13*affine._dy - affine._m12*m_33;
|
|
|
|
h22 = affine._m11*m_33 - m_13*affine._dx;
|
|
|
|
h32 = affine._m12*affine._dx - affine._m11*affine._dy;
|
|
|
|
h13 = affine._m12*m_23 - m_13*affine._m22;
|
|
|
|
h23 = m_13*affine._m21 - affine._m11*m_23;
|
|
|
|
h33 = affine._m11*affine._m22 - affine._m12*affine._m21;
|
|
|
|
|
|
|
|
return QTransform(h11, h12, h13,
|
|
|
|
h21, h22, h23,
|
|
|
|
h31, h32, h33, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the transpose of this matrix.
|
|
|
|
*/
|
|
|
|
QTransform QTransform::transposed() const
|
|
|
|
{
|
|
|
|
QTransform t(affine._m11, affine._m21, affine._dx,
|
|
|
|
affine._m12, affine._m22, affine._dy,
|
|
|
|
m_13, m_23, m_33, true);
|
|
|
|
t.m_type = m_type;
|
|
|
|
t.m_dirty = m_dirty;
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns an inverted copy of this matrix.
|
|
|
|
|
|
|
|
If the matrix is singular (not invertible), the returned matrix is
|
|
|
|
the identity matrix. If \a invertible is valid (i.e. not 0), its
|
|
|
|
value is set to true if the matrix is invertible, otherwise it is
|
|
|
|
set to false.
|
|
|
|
|
|
|
|
\sa isInvertible()
|
|
|
|
*/
|
|
|
|
QTransform QTransform::inverted(bool *invertible) const
|
|
|
|
{
|
|
|
|
QTransform invert(true);
|
|
|
|
bool inv = true;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
switch(inline_type()) {
|
|
|
|
case TxNone:
|
2015-12-10 05:06:13 +02:00
|
|
|
break;
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxTranslate:
|
2015-12-10 05:06:13 +02:00
|
|
|
invert.affine._dx = -affine._dx;
|
|
|
|
invert.affine._dy = -affine._dy;
|
|
|
|
break;
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxScale:
|
2015-12-10 05:06:13 +02:00
|
|
|
inv = !qFuzzyIsNull(affine._m11);
|
|
|
|
inv &= !qFuzzyIsNull(affine._m22);
|
|
|
|
if (inv) {
|
|
|
|
invert.affine._m11 = 1. / affine._m11;
|
|
|
|
invert.affine._m22 = 1. / affine._m22;
|
|
|
|
invert.affine._dx = -affine._dx * invert.affine._m11;
|
|
|
|
invert.affine._dy = -affine._dy * invert.affine._m22;
|
|
|
|
}
|
|
|
|
break;
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxRotate:
|
|
|
|
case TxShear:
|
2015-12-10 05:06:13 +02:00
|
|
|
invert.affine = affine.inverted(&inv);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
// general case
|
|
|
|
qreal det = determinant();
|
|
|
|
inv = !qFuzzyIsNull(det);
|
|
|
|
if (inv)
|
|
|
|
invert = adjoint() / det;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (invertible)
|
|
|
|
*invertible = inv;
|
|
|
|
|
|
|
|
if (inv) {
|
|
|
|
// inverting doesn't change the type
|
|
|
|
invert.m_type = m_type;
|
|
|
|
invert.m_dirty = m_dirty;
|
|
|
|
}
|
|
|
|
|
|
|
|
return invert;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Moves the coordinate system \a dx along the x axis and \a dy along
|
|
|
|
the y axis, and returns a reference to the matrix.
|
|
|
|
|
|
|
|
\sa setMatrix()
|
|
|
|
*/
|
|
|
|
QTransform &QTransform::translate(qreal dx, qreal dy)
|
|
|
|
{
|
|
|
|
if (dx == 0 && dy == 0)
|
|
|
|
return *this;
|
|
|
|
#ifndef QT_NO_DEBUG
|
|
|
|
if (qIsNaN(dx) | qIsNaN(dy)) {
|
|
|
|
qWarning() << "QTransform::translate with NaN called";
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
switch(inline_type()) {
|
|
|
|
case TxNone:
|
|
|
|
affine._dx = dx;
|
|
|
|
affine._dy = dy;
|
|
|
|
break;
|
|
|
|
case TxTranslate:
|
|
|
|
affine._dx += dx;
|
|
|
|
affine._dy += dy;
|
|
|
|
break;
|
|
|
|
case TxScale:
|
|
|
|
affine._dx += dx*affine._m11;
|
|
|
|
affine._dy += dy*affine._m22;
|
|
|
|
break;
|
|
|
|
case TxProject:
|
|
|
|
m_33 += dx*m_13 + dy*m_23;
|
|
|
|
// Fall through
|
|
|
|
case TxShear:
|
|
|
|
case TxRotate:
|
|
|
|
affine._dx += dx*affine._m11 + dy*affine._m21;
|
|
|
|
affine._dy += dy*affine._m22 + dx*affine._m12;
|
|
|
|
break;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
2019-05-27 20:12:31 +00:00
|
|
|
if (m_dirty < TxTranslate)
|
|
|
|
m_dirty = TxTranslate;
|
2015-12-10 05:06:13 +02:00
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Creates a matrix which corresponds to a translation of \a dx along
|
|
|
|
the x axis and \a dy along the y axis. This is the same as
|
|
|
|
QTransform().translate(dx, dy) but slightly faster.
|
|
|
|
|
|
|
|
\since 4.5
|
|
|
|
*/
|
|
|
|
QTransform QTransform::fromTranslate(qreal dx, qreal dy)
|
|
|
|
{
|
|
|
|
#ifndef QT_NO_DEBUG
|
|
|
|
if (qIsNaN(dx) | qIsNaN(dy)) {
|
|
|
|
qWarning() << "QTransform::fromTranslate with NaN called";
|
|
|
|
return QTransform();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
QTransform transform(1, 0, 0, 0, 1, 0, dx, dy, 1, true);
|
|
|
|
if (dx == 0 && dy == 0)
|
2019-05-27 20:12:31 +00:00
|
|
|
transform.m_type = TxNone;
|
2015-12-10 05:06:13 +02:00
|
|
|
else
|
2019-05-27 20:12:31 +00:00
|
|
|
transform.m_type = TxTranslate;
|
|
|
|
transform.m_dirty = TxNone;
|
2015-12-10 05:06:13 +02:00
|
|
|
return transform;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Scales the coordinate system by \a sx horizontally and \a sy
|
|
|
|
vertically, and returns a reference to the matrix.
|
|
|
|
|
|
|
|
\sa setMatrix()
|
|
|
|
*/
|
|
|
|
QTransform & QTransform::scale(qreal sx, qreal sy)
|
|
|
|
{
|
|
|
|
if (sx == 1 && sy == 1)
|
|
|
|
return *this;
|
|
|
|
#ifndef QT_NO_DEBUG
|
|
|
|
if (qIsNaN(sx) | qIsNaN(sy)) {
|
|
|
|
qWarning() << "QTransform::scale with NaN called";
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
switch(inline_type()) {
|
|
|
|
case TxNone:
|
|
|
|
case TxTranslate:
|
|
|
|
affine._m11 = sx;
|
|
|
|
affine._m22 = sy;
|
|
|
|
break;
|
|
|
|
case TxProject:
|
|
|
|
m_13 *= sx;
|
|
|
|
m_23 *= sy;
|
|
|
|
// fall through
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear:
|
|
|
|
affine._m12 *= sx;
|
|
|
|
affine._m21 *= sy;
|
|
|
|
// fall through
|
|
|
|
case TxScale:
|
|
|
|
affine._m11 *= sx;
|
|
|
|
affine._m22 *= sy;
|
|
|
|
break;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
2019-05-27 20:12:31 +00:00
|
|
|
if (m_dirty < TxScale)
|
|
|
|
m_dirty = TxScale;
|
2015-12-10 05:06:13 +02:00
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Creates a matrix which corresponds to a scaling of
|
|
|
|
\a sx horizontally and \a sy vertically.
|
|
|
|
This is the same as QTransform().scale(sx, sy) but slightly faster.
|
|
|
|
|
|
|
|
\since 4.5
|
|
|
|
*/
|
|
|
|
QTransform QTransform::fromScale(qreal sx, qreal sy)
|
|
|
|
{
|
|
|
|
#ifndef QT_NO_DEBUG
|
|
|
|
if (qIsNaN(sx) | qIsNaN(sy)) {
|
|
|
|
qWarning() << "QTransform::fromScale with NaN called";
|
|
|
|
return QTransform();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
QTransform transform(sx, 0, 0, 0, sy, 0, 0, 0, 1, true);
|
|
|
|
if (sx == 1. && sy == 1.)
|
2019-05-27 20:12:31 +00:00
|
|
|
transform.m_type = TxNone;
|
2015-12-10 05:06:13 +02:00
|
|
|
else
|
|
|
|
transform.m_type = TxScale;
|
2019-05-27 20:12:31 +00:00
|
|
|
transform.m_dirty = TxNone;
|
2015-12-10 05:06:13 +02:00
|
|
|
return transform;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Shears the coordinate system by \a sh horizontally and \a sv
|
|
|
|
vertically, and returns a reference to the matrix.
|
|
|
|
|
|
|
|
\sa setMatrix()
|
|
|
|
*/
|
|
|
|
QTransform & QTransform::shear(qreal sh, qreal sv)
|
|
|
|
{
|
|
|
|
if (sh == 0 && sv == 0)
|
|
|
|
return *this;
|
|
|
|
#ifndef QT_NO_DEBUG
|
|
|
|
if (qIsNaN(sh) | qIsNaN(sv)) {
|
|
|
|
qWarning() << "QTransform::shear with NaN called";
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
switch(inline_type()) {
|
|
|
|
case TxNone:
|
|
|
|
case TxTranslate:
|
|
|
|
affine._m12 = sv;
|
|
|
|
affine._m21 = sh;
|
|
|
|
break;
|
|
|
|
case TxScale:
|
|
|
|
affine._m12 = sv*affine._m22;
|
|
|
|
affine._m21 = sh*affine._m11;
|
|
|
|
break;
|
|
|
|
case TxProject: {
|
|
|
|
qreal tm13 = sv*m_23;
|
|
|
|
qreal tm23 = sh*m_13;
|
|
|
|
m_13 += tm13;
|
|
|
|
m_23 += tm23;
|
|
|
|
}
|
|
|
|
// fall through
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear: {
|
|
|
|
qreal tm11 = sv*affine._m21;
|
|
|
|
qreal tm22 = sh*affine._m12;
|
|
|
|
qreal tm12 = sv*affine._m22;
|
|
|
|
qreal tm21 = sh*affine._m11;
|
|
|
|
affine._m11 += tm11; affine._m12 += tm12;
|
|
|
|
affine._m21 += tm21; affine._m22 += tm22;
|
|
|
|
break;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
}
|
2019-05-27 20:12:31 +00:00
|
|
|
if (m_dirty < TxShear)
|
|
|
|
m_dirty = TxShear;
|
2015-12-10 05:06:13 +02:00
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform &QTransform::rotate(qreal angle, Qt::Axis axis)
|
|
|
|
|
|
|
|
Rotates the coordinate system counterclockwise by the given \a angle
|
|
|
|
about the specified \a axis and returns a reference to the matrix.
|
|
|
|
|
|
|
|
Note that if you apply a QTransform to a point defined in widget
|
|
|
|
coordinates, the direction of the rotation will be clockwise
|
|
|
|
because the y-axis points downwards.
|
|
|
|
|
|
|
|
The angle is specified in degrees.
|
|
|
|
|
|
|
|
\sa setMatrix()
|
|
|
|
*/
|
|
|
|
QTransform & QTransform::rotate(qreal a, Qt::Axis axis)
|
|
|
|
{
|
|
|
|
if (a == 0)
|
|
|
|
return *this;
|
|
|
|
#ifndef QT_NO_DEBUG
|
|
|
|
if (qIsNaN(a)) {
|
|
|
|
qWarning() << "QTransform::rotate with NaN called";
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
qreal sina = 0;
|
|
|
|
qreal cosa = 0;
|
|
|
|
if (a == 90. || a == -270.)
|
|
|
|
sina = 1.;
|
|
|
|
else if (a == 270. || a == -90.)
|
|
|
|
sina = -1.;
|
|
|
|
else if (a == 180.)
|
|
|
|
cosa = -1.;
|
|
|
|
else{
|
|
|
|
qreal b = deg2rad*a; // convert to radians
|
|
|
|
sina = qSin(b); // fast and convenient
|
|
|
|
cosa = qCos(b);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (axis == Qt::ZAxis) {
|
2019-05-27 20:12:31 +00:00
|
|
|
switch(inline_type()) {
|
|
|
|
case TxNone:
|
|
|
|
case TxTranslate:
|
|
|
|
affine._m11 = cosa;
|
|
|
|
affine._m12 = sina;
|
|
|
|
affine._m21 = -sina;
|
|
|
|
affine._m22 = cosa;
|
|
|
|
break;
|
|
|
|
case TxScale: {
|
|
|
|
qreal tm11 = cosa*affine._m11;
|
|
|
|
qreal tm12 = sina*affine._m22;
|
|
|
|
qreal tm21 = -sina*affine._m11;
|
|
|
|
qreal tm22 = cosa*affine._m22;
|
|
|
|
affine._m11 = tm11; affine._m12 = tm12;
|
|
|
|
affine._m21 = tm21; affine._m22 = tm22;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxProject: {
|
|
|
|
qreal tm13 = cosa*m_13 + sina*m_23;
|
|
|
|
qreal tm23 = -sina*m_13 + cosa*m_23;
|
|
|
|
m_13 = tm13;
|
|
|
|
m_23 = tm23;
|
|
|
|
// fall through
|
|
|
|
}
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear: {
|
|
|
|
qreal tm11 = cosa*affine._m11 + sina*affine._m21;
|
|
|
|
qreal tm12 = cosa*affine._m12 + sina*affine._m22;
|
|
|
|
qreal tm21 = -sina*affine._m11 + cosa*affine._m21;
|
|
|
|
qreal tm22 = -sina*affine._m12 + cosa*affine._m22;
|
|
|
|
affine._m11 = tm11; affine._m12 = tm12;
|
|
|
|
affine._m21 = tm21; affine._m22 = tm22;
|
|
|
|
break;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
}
|
2019-05-27 20:12:31 +00:00
|
|
|
if (m_dirty < TxRotate)
|
|
|
|
m_dirty = TxRotate;
|
2015-12-10 05:06:13 +02:00
|
|
|
} else {
|
|
|
|
QTransform result;
|
|
|
|
if (axis == Qt::YAxis) {
|
|
|
|
result.affine._m11 = cosa;
|
|
|
|
result.m_13 = -sina * inv_dist_to_plane;
|
|
|
|
} else {
|
|
|
|
result.affine._m22 = cosa;
|
|
|
|
result.m_23 = -sina * inv_dist_to_plane;
|
|
|
|
}
|
|
|
|
result.m_type = TxProject;
|
|
|
|
*this = result * *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform & QTransform::rotateRadians(qreal angle, Qt::Axis axis)
|
|
|
|
|
|
|
|
Rotates the coordinate system counterclockwise by the given \a angle
|
|
|
|
about the specified \a axis and returns a reference to the matrix.
|
|
|
|
|
|
|
|
Note that if you apply a QTransform to a point defined in widget
|
|
|
|
coordinates, the direction of the rotation will be clockwise
|
|
|
|
because the y-axis points downwards.
|
|
|
|
|
|
|
|
The angle is specified in radians.
|
|
|
|
|
|
|
|
\sa setMatrix()
|
|
|
|
*/
|
|
|
|
QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis)
|
|
|
|
{
|
|
|
|
#ifndef QT_NO_DEBUG
|
|
|
|
if (qIsNaN(a)) {
|
|
|
|
qWarning() << "QTransform::rotateRadians with NaN called";
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
qreal sina = qSin(a);
|
|
|
|
qreal cosa = qCos(a);
|
|
|
|
|
|
|
|
if (axis == Qt::ZAxis) {
|
2019-05-27 20:12:31 +00:00
|
|
|
switch(inline_type()) {
|
|
|
|
case TxNone:
|
|
|
|
case TxTranslate:
|
|
|
|
affine._m11 = cosa;
|
|
|
|
affine._m12 = sina;
|
|
|
|
affine._m21 = -sina;
|
|
|
|
affine._m22 = cosa;
|
|
|
|
break;
|
|
|
|
case TxScale: {
|
|
|
|
qreal tm11 = cosa*affine._m11;
|
|
|
|
qreal tm12 = sina*affine._m22;
|
|
|
|
qreal tm21 = -sina*affine._m11;
|
|
|
|
qreal tm22 = cosa*affine._m22;
|
|
|
|
affine._m11 = tm11; affine._m12 = tm12;
|
|
|
|
affine._m21 = tm21; affine._m22 = tm22;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxProject: {
|
|
|
|
qreal tm13 = cosa*m_13 + sina*m_23;
|
|
|
|
qreal tm23 = -sina*m_13 + cosa*m_23;
|
|
|
|
m_13 = tm13;
|
|
|
|
m_23 = tm23;
|
|
|
|
// fall through
|
|
|
|
}
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear: {
|
|
|
|
qreal tm11 = cosa*affine._m11 + sina*affine._m21;
|
|
|
|
qreal tm12 = cosa*affine._m12 + sina*affine._m22;
|
|
|
|
qreal tm21 = -sina*affine._m11 + cosa*affine._m21;
|
|
|
|
qreal tm22 = -sina*affine._m12 + cosa*affine._m22;
|
|
|
|
affine._m11 = tm11; affine._m12 = tm12;
|
|
|
|
affine._m21 = tm21; affine._m22 = tm22;
|
|
|
|
break;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
}
|
2019-05-27 20:12:31 +00:00
|
|
|
if (m_dirty < TxRotate)
|
|
|
|
m_dirty = TxRotate;
|
2015-12-10 05:06:13 +02:00
|
|
|
} else {
|
|
|
|
QTransform result;
|
|
|
|
if (axis == Qt::YAxis) {
|
|
|
|
result.affine._m11 = cosa;
|
|
|
|
result.m_13 = -sina * inv_dist_to_plane;
|
|
|
|
} else {
|
|
|
|
result.affine._m22 = cosa;
|
|
|
|
result.m_23 = -sina * inv_dist_to_plane;
|
|
|
|
}
|
2019-05-27 20:12:31 +00:00
|
|
|
result.m_type = TxProject;
|
2015-12-10 05:06:13 +02:00
|
|
|
*this = result * *this;
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool QTransform::operator==(const QTransform &matrix) const
|
|
|
|
Returns true if this matrix is equal to the given \a matrix,
|
|
|
|
otherwise returns false.
|
|
|
|
*/
|
|
|
|
bool QTransform::operator==(const QTransform &o) const
|
|
|
|
{
|
|
|
|
return affine._m11 == o.affine._m11 &&
|
|
|
|
affine._m12 == o.affine._m12 &&
|
|
|
|
affine._m21 == o.affine._m21 &&
|
|
|
|
affine._m22 == o.affine._m22 &&
|
|
|
|
affine._dx == o.affine._dx &&
|
|
|
|
affine._dy == o.affine._dy &&
|
|
|
|
m_13 == o.m_13 &&
|
|
|
|
m_23 == o.m_23 &&
|
|
|
|
m_33 == o.m_33;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool QTransform::operator!=(const QTransform &matrix) const
|
|
|
|
Returns true if this matrix is not equal to the given \a matrix,
|
|
|
|
otherwise returns false.
|
|
|
|
*/
|
|
|
|
bool QTransform::operator!=(const QTransform &o) const
|
|
|
|
{
|
|
|
|
return !operator==(o);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform & QTransform::operator*=(const QTransform &matrix)
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns the result of multiplying this matrix by the given \a
|
|
|
|
matrix.
|
|
|
|
*/
|
|
|
|
QTransform & QTransform::operator*=(const QTransform &o)
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
const TransformationType otherType = o.inline_type();
|
|
|
|
if (otherType == TxNone)
|
2015-12-10 05:06:13 +02:00
|
|
|
return *this;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
const TransformationType thisType = inline_type();
|
|
|
|
if (thisType == TxNone)
|
2015-12-10 05:06:13 +02:00
|
|
|
return operator=(o);
|
|
|
|
|
|
|
|
TransformationType t = qMax(thisType, otherType);
|
|
|
|
switch(t) {
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxNone:
|
|
|
|
break;
|
|
|
|
case TxTranslate:
|
|
|
|
affine._dx += o.affine._dx;
|
|
|
|
affine._dy += o.affine._dy;
|
|
|
|
break;
|
|
|
|
case TxScale:
|
|
|
|
{
|
|
|
|
qreal m11 = affine._m11*o.affine._m11;
|
|
|
|
qreal m22 = affine._m22*o.affine._m22;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
qreal m31 = affine._dx*o.affine._m11 + o.affine._dx;
|
|
|
|
qreal m32 = affine._dy*o.affine._m22 + o.affine._dy;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
affine._m11 = m11;
|
|
|
|
affine._m22 = m22;
|
|
|
|
affine._dx = m31; affine._dy = m32;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear:
|
|
|
|
{
|
|
|
|
qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21;
|
|
|
|
qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21;
|
|
|
|
qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + o.affine._dx;
|
|
|
|
qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + o.affine._dy;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
affine._m11 = m11; affine._m12 = m12;
|
|
|
|
affine._m21 = m21; affine._m22 = m22;
|
|
|
|
affine._dx = m31; affine._dy = m32;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxProject:
|
|
|
|
{
|
|
|
|
qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21 + m_13*o.affine._dx;
|
|
|
|
qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22 + m_13*o.affine._dy;
|
|
|
|
qreal m13 = affine._m11*o.m_13 + affine._m12*o.m_23 + m_13*o.m_33;
|
|
|
|
|
|
|
|
qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21 + m_23*o.affine._dx;
|
|
|
|
qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22 + m_23*o.affine._dy;
|
|
|
|
qreal m23 = affine._m21*o.m_13 + affine._m22*o.m_23 + m_23*o.m_33;
|
|
|
|
|
|
|
|
qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + m_33*o.affine._dx;
|
|
|
|
qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + m_33*o.affine._dy;
|
|
|
|
qreal m33 = affine._dx*o.m_13 + affine._dy*o.m_23 + m_33*o.m_33;
|
|
|
|
|
|
|
|
affine._m11 = m11; affine._m12 = m12; m_13 = m13;
|
|
|
|
affine._m21 = m21; affine._m22 = m22; m_23 = m23;
|
|
|
|
affine._dx = m31; affine._dy = m32; m_33 = m33;
|
|
|
|
}
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
m_dirty = t;
|
|
|
|
m_type = t;
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform QTransform::operator*(const QTransform &matrix) const
|
|
|
|
Returns the result of multiplying this matrix by the given \a
|
|
|
|
matrix.
|
|
|
|
|
|
|
|
Note that matrix multiplication is not commutative, i.e. a*b !=
|
|
|
|
b*a.
|
|
|
|
*/
|
|
|
|
QTransform QTransform::operator*(const QTransform &m) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
const TransformationType otherType = m.inline_type();
|
|
|
|
if (otherType == TxNone)
|
2015-12-10 05:06:13 +02:00
|
|
|
return *this;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
const TransformationType thisType = inline_type();
|
|
|
|
if (thisType == TxNone)
|
2015-12-10 05:06:13 +02:00
|
|
|
return m;
|
|
|
|
|
|
|
|
QTransform t(true);
|
|
|
|
TransformationType type = qMax(thisType, otherType);
|
|
|
|
switch(type) {
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxNone:
|
|
|
|
break;
|
|
|
|
case TxTranslate:
|
|
|
|
t.affine._dx = affine._dx + m.affine._dx;
|
|
|
|
t.affine._dy += affine._dy + m.affine._dy;
|
|
|
|
break;
|
|
|
|
case TxScale:
|
|
|
|
{
|
|
|
|
qreal m11 = affine._m11*m.affine._m11;
|
|
|
|
qreal m22 = affine._m22*m.affine._m22;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
qreal m31 = affine._dx*m.affine._m11 + m.affine._dx;
|
|
|
|
qreal m32 = affine._dy*m.affine._m22 + m.affine._dy;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
t.affine._m11 = m11;
|
|
|
|
t.affine._m22 = m22;
|
|
|
|
t.affine._dx = m31; t.affine._dy = m32;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear:
|
|
|
|
{
|
|
|
|
qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21;
|
|
|
|
qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21;
|
|
|
|
qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m.affine._dx;
|
|
|
|
qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m.affine._dy;
|
2015-12-10 05:06:13 +02:00
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
t.affine._m11 = m11; t.affine._m12 = m12;
|
|
|
|
t.affine._m21 = m21; t.affine._m22 = m22;
|
|
|
|
t.affine._dx = m31; t.affine._dy = m32;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxProject:
|
|
|
|
{
|
|
|
|
qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21 + m_13*m.affine._dx;
|
|
|
|
qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22 + m_13*m.affine._dy;
|
|
|
|
qreal m13 = affine._m11*m.m_13 + affine._m12*m.m_23 + m_13*m.m_33;
|
|
|
|
|
|
|
|
qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21 + m_23*m.affine._dx;
|
|
|
|
qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22 + m_23*m.affine._dy;
|
|
|
|
qreal m23 = affine._m21*m.m_13 + affine._m22*m.m_23 + m_23*m.m_33;
|
|
|
|
|
|
|
|
qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m_33*m.affine._dx;
|
|
|
|
qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m_33*m.affine._dy;
|
|
|
|
qreal m33 = affine._dx*m.m_13 + affine._dy*m.m_23 + m_33*m.m_33;
|
|
|
|
|
|
|
|
t.affine._m11 = m11; t.affine._m12 = m12; t.m_13 = m13;
|
|
|
|
t.affine._m21 = m21; t.affine._m22 = m22; t.m_23 = m23;
|
|
|
|
t.affine._dx = m31; t.affine._dy = m32; t.m_33 = m33;
|
|
|
|
}
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
t.m_dirty = type;
|
|
|
|
t.m_type = type;
|
|
|
|
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform & QTransform::operator*=(qreal scalar)
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns the result of performing an element-wise multiplication of this
|
|
|
|
matrix with the given \a scalar.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform & QTransform::operator/=(qreal scalar)
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns the result of performing an element-wise division of this
|
|
|
|
matrix by the given \a scalar.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform & QTransform::operator+=(qreal scalar)
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns the matrix obtained by adding the given \a scalar to each
|
|
|
|
element of this matrix.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QTransform & QTransform::operator-=(qreal scalar)
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Returns the matrix obtained by subtracting the given \a scalar from each
|
|
|
|
element of this matrix.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Assigns the given \a matrix's values to this matrix.
|
|
|
|
*/
|
|
|
|
QTransform & QTransform::operator=(const QTransform &matrix)
|
|
|
|
{
|
|
|
|
affine._m11 = matrix.affine._m11;
|
|
|
|
affine._m12 = matrix.affine._m12;
|
|
|
|
affine._m21 = matrix.affine._m21;
|
|
|
|
affine._m22 = matrix.affine._m22;
|
|
|
|
affine._dx = matrix.affine._dx;
|
|
|
|
affine._dy = matrix.affine._dy;
|
|
|
|
m_13 = matrix.m_13;
|
|
|
|
m_23 = matrix.m_23;
|
|
|
|
m_33 = matrix.m_33;
|
|
|
|
m_type = matrix.m_type;
|
|
|
|
m_dirty = matrix.m_dirty;
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Resets the matrix to an identity matrix, i.e. all elements are set
|
|
|
|
to zero, except \c m11 and \c m22 (specifying the scale) and \c m33
|
|
|
|
which are set to 1.
|
|
|
|
|
|
|
|
\sa QTransform(), isIdentity(), {QTransform#Basic Matrix
|
|
|
|
Operations}{Basic Matrix Operations}
|
|
|
|
*/
|
|
|
|
void QTransform::reset()
|
|
|
|
{
|
|
|
|
affine._m11 = affine._m22 = m_33 = 1.0;
|
|
|
|
affine._m12 = m_13 = affine._m21 = m_23 = affine._dx = affine._dy = 0;
|
2019-05-27 20:12:31 +00:00
|
|
|
m_type = TxNone;
|
|
|
|
m_dirty = TxNone;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef QT_NO_DATASTREAM
|
|
|
|
/*!
|
|
|
|
\fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix)
|
|
|
|
\since 4.3
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
Writes the given \a matrix to the given \a stream and returns a
|
|
|
|
reference to the stream.
|
|
|
|
|
|
|
|
\sa {Serializing Qt Data Types}
|
|
|
|
*/
|
|
|
|
QDataStream & operator<<(QDataStream &s, const QTransform &m)
|
|
|
|
{
|
|
|
|
s << double(m.m11())
|
|
|
|
<< double(m.m12())
|
|
|
|
<< double(m.m13())
|
|
|
|
<< double(m.m21())
|
|
|
|
<< double(m.m22())
|
|
|
|
<< double(m.m23())
|
|
|
|
<< double(m.m31())
|
|
|
|
<< double(m.m32())
|
|
|
|
<< double(m.m33());
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix)
|
|
|
|
\since 4.3
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
Reads the given \a matrix from the given \a stream and returns a
|
|
|
|
reference to the stream.
|
|
|
|
|
|
|
|
\sa {Serializing Qt Data Types}
|
|
|
|
*/
|
|
|
|
QDataStream & operator>>(QDataStream &s, QTransform &t)
|
|
|
|
{
|
|
|
|
double m11, m12, m13,
|
|
|
|
m21, m22, m23,
|
|
|
|
m31, m32, m33;
|
|
|
|
|
|
|
|
s >> m11;
|
|
|
|
s >> m12;
|
|
|
|
s >> m13;
|
|
|
|
s >> m21;
|
|
|
|
s >> m22;
|
|
|
|
s >> m23;
|
|
|
|
s >> m31;
|
|
|
|
s >> m32;
|
|
|
|
s >> m33;
|
|
|
|
t.setMatrix(m11, m12, m13,
|
|
|
|
m21, m22, m23,
|
|
|
|
m31, m32, m33);
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // QT_NO_DATASTREAM
|
|
|
|
|
|
|
|
#ifndef QT_NO_DEBUG_STREAM
|
|
|
|
QDebug operator<<(QDebug dbg, const QTransform &m)
|
|
|
|
{
|
|
|
|
static const char *typeStr[] =
|
|
|
|
{
|
|
|
|
"TxNone",
|
|
|
|
"TxTranslate",
|
|
|
|
"TxScale",
|
|
|
|
0,
|
|
|
|
"TxRotate",
|
|
|
|
0, 0, 0,
|
|
|
|
"TxShear",
|
|
|
|
0, 0, 0, 0, 0, 0, 0,
|
|
|
|
"TxProject"
|
|
|
|
};
|
|
|
|
|
|
|
|
dbg.nospace() << "QTransform(type=" << typeStr[m.type()] << ','
|
|
|
|
<< " 11=" << m.m11()
|
|
|
|
<< " 12=" << m.m12()
|
|
|
|
<< " 13=" << m.m13()
|
|
|
|
<< " 21=" << m.m21()
|
|
|
|
<< " 22=" << m.m22()
|
|
|
|
<< " 23=" << m.m23()
|
|
|
|
<< " 31=" << m.m31()
|
|
|
|
<< " 32=" << m.m32()
|
|
|
|
<< " 33=" << m.m33()
|
|
|
|
<< ')';
|
|
|
|
|
|
|
|
return dbg.space();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QPoint operator*(const QPoint &point, const QTransform &matrix)
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
This is the same as \a{matrix}.map(\a{point}).
|
|
|
|
|
|
|
|
\sa QTransform::map()
|
|
|
|
*/
|
|
|
|
QPoint QTransform::map(const QPoint &p) const
|
|
|
|
{
|
|
|
|
qreal fx = p.x();
|
|
|
|
qreal fy = p.y();
|
|
|
|
|
|
|
|
qreal x = 0, y = 0;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
2015-12-10 05:06:13 +02:00
|
|
|
switch(t) {
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxNone:
|
|
|
|
x = fx;
|
|
|
|
y = fy;
|
|
|
|
break;
|
|
|
|
case TxTranslate:
|
|
|
|
x = fx + affine._dx;
|
|
|
|
y = fy + affine._dy;
|
|
|
|
break;
|
|
|
|
case TxScale:
|
|
|
|
x = affine._m11 * fx + affine._dx;
|
|
|
|
y = affine._m22 * fy + affine._dy;
|
|
|
|
break;
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear:
|
|
|
|
case TxProject:
|
|
|
|
x = affine._m11 * fx + affine._m21 * fy + affine._dx;
|
|
|
|
y = affine._m12 * fx + affine._m22 * fy + affine._dy;
|
|
|
|
if (t == TxProject) {
|
|
|
|
qreal w = 1./(m_13 * fx + m_23 * fy + m_33);
|
|
|
|
x *= w;
|
|
|
|
y *= w;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return QPoint(qRound(x), qRound(y));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QPointF operator*(const QPointF &point, const QTransform &matrix)
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
Same as \a{matrix}.map(\a{point}).
|
|
|
|
|
|
|
|
\sa QTransform::map()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Creates and returns a QPointF object that is a copy of the given point,
|
|
|
|
\a p, mapped into the coordinate system defined by this matrix.
|
|
|
|
*/
|
|
|
|
QPointF QTransform::map(const QPointF &p) const
|
|
|
|
{
|
|
|
|
qreal fx = p.x();
|
|
|
|
qreal fy = p.y();
|
|
|
|
|
|
|
|
qreal x = 0, y = 0;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
2015-12-10 05:06:13 +02:00
|
|
|
switch(t) {
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxNone:
|
|
|
|
x = fx;
|
|
|
|
y = fy;
|
|
|
|
break;
|
|
|
|
case TxTranslate:
|
|
|
|
x = fx + affine._dx;
|
|
|
|
y = fy + affine._dy;
|
|
|
|
break;
|
|
|
|
case TxScale:
|
|
|
|
x = affine._m11 * fx + affine._dx;
|
|
|
|
y = affine._m22 * fy + affine._dy;
|
|
|
|
break;
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear:
|
|
|
|
case TxProject:
|
|
|
|
x = affine._m11 * fx + affine._m21 * fy + affine._dx;
|
|
|
|
y = affine._m12 * fx + affine._m22 * fy + affine._dy;
|
|
|
|
if (t == TxProject) {
|
|
|
|
qreal w = 1./(m_13 * fx + m_23 * fy + m_33);
|
|
|
|
x *= w;
|
|
|
|
y *= w;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return QPointF(x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QPoint QTransform::map(const QPoint &point) const
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Creates and returns a QPoint object that is a copy of the given \a
|
|
|
|
point, mapped into the coordinate system defined by this
|
|
|
|
matrix. Note that the transformed coordinates are rounded to the
|
|
|
|
nearest integer.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QLineF operator*(const QLineF &line, const QTransform &matrix)
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
This is the same as \a{matrix}.map(\a{line}).
|
|
|
|
|
|
|
|
\sa QTransform::map()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QLine operator*(const QLine &line, const QTransform &matrix)
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
This is the same as \a{matrix}.map(\a{line}).
|
|
|
|
|
|
|
|
\sa QTransform::map()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Creates and returns a QLineF object that is a copy of the given line,
|
|
|
|
\a l, mapped into the coordinate system defined by this matrix.
|
|
|
|
*/
|
|
|
|
QLine QTransform::map(const QLine &l) const
|
|
|
|
{
|
|
|
|
qreal fx1 = l.x1();
|
|
|
|
qreal fy1 = l.y1();
|
|
|
|
qreal fx2 = l.x2();
|
|
|
|
qreal fy2 = l.y2();
|
|
|
|
|
|
|
|
qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
2015-12-10 05:06:13 +02:00
|
|
|
switch(t) {
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxNone:
|
|
|
|
x1 = fx1;
|
|
|
|
y1 = fy1;
|
|
|
|
x2 = fx2;
|
|
|
|
y2 = fy2;
|
|
|
|
break;
|
|
|
|
case TxTranslate:
|
|
|
|
x1 = fx1 + affine._dx;
|
|
|
|
y1 = fy1 + affine._dy;
|
|
|
|
x2 = fx2 + affine._dx;
|
|
|
|
y2 = fy2 + affine._dy;
|
|
|
|
break;
|
|
|
|
case TxScale:
|
|
|
|
x1 = affine._m11 * fx1 + affine._dx;
|
|
|
|
y1 = affine._m22 * fy1 + affine._dy;
|
|
|
|
x2 = affine._m11 * fx2 + affine._dx;
|
|
|
|
y2 = affine._m22 * fy2 + affine._dy;
|
|
|
|
break;
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear:
|
|
|
|
case TxProject:
|
|
|
|
x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx;
|
|
|
|
y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy;
|
|
|
|
x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx;
|
|
|
|
y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy;
|
|
|
|
if (t == TxProject) {
|
|
|
|
qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33);
|
|
|
|
x1 *= w;
|
|
|
|
y1 *= w;
|
|
|
|
w = 1./(m_13 * fx2 + m_23 * fy2 + m_33);
|
|
|
|
x2 *= w;
|
|
|
|
y2 *= w;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return QLine(qRound(x1), qRound(y1), qRound(x2), qRound(y2));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
\fn QLineF QTransform::map(const QLineF &line) const
|
|
|
|
|
|
|
|
Creates and returns a QLine object that is a copy of the given \a
|
|
|
|
line, mapped into the coordinate system defined by this matrix.
|
|
|
|
Note that the transformed coordinates are rounded to the nearest
|
|
|
|
integer.
|
|
|
|
*/
|
|
|
|
|
|
|
|
QLineF QTransform::map(const QLineF &l) const
|
|
|
|
{
|
|
|
|
qreal fx1 = l.x1();
|
|
|
|
qreal fy1 = l.y1();
|
|
|
|
qreal fx2 = l.x2();
|
|
|
|
qreal fy2 = l.y2();
|
|
|
|
|
|
|
|
qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
2015-12-10 05:06:13 +02:00
|
|
|
switch(t) {
|
2019-05-27 20:12:31 +00:00
|
|
|
case TxNone:
|
|
|
|
x1 = fx1;
|
|
|
|
y1 = fy1;
|
|
|
|
x2 = fx2;
|
|
|
|
y2 = fy2;
|
|
|
|
break;
|
|
|
|
case TxTranslate:
|
|
|
|
x1 = fx1 + affine._dx;
|
|
|
|
y1 = fy1 + affine._dy;
|
|
|
|
x2 = fx2 + affine._dx;
|
|
|
|
y2 = fy2 + affine._dy;
|
|
|
|
break;
|
|
|
|
case TxScale:
|
|
|
|
x1 = affine._m11 * fx1 + affine._dx;
|
|
|
|
y1 = affine._m22 * fy1 + affine._dy;
|
|
|
|
x2 = affine._m11 * fx2 + affine._dx;
|
|
|
|
y2 = affine._m22 * fy2 + affine._dy;
|
|
|
|
break;
|
|
|
|
case TxRotate:
|
|
|
|
case TxShear:
|
|
|
|
case TxProject:
|
|
|
|
x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx;
|
|
|
|
y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy;
|
|
|
|
x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx;
|
|
|
|
y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy;
|
|
|
|
if (t == TxProject) {
|
|
|
|
qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33);
|
|
|
|
x1 *= w;
|
|
|
|
y1 *= w;
|
|
|
|
w = 1./(m_13 * fx2 + m_23 * fy2 + m_33);
|
|
|
|
x2 *= w;
|
|
|
|
y2 *= w;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return QLineF(x1, y1, x2, y2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static QPolygonF mapProjective(const QTransform &transform, const QPolygonF &poly)
|
|
|
|
{
|
|
|
|
if (poly.size() == 0)
|
|
|
|
return poly;
|
|
|
|
|
|
|
|
if (poly.size() == 1)
|
|
|
|
return QPolygonF() << transform.map(poly.at(0));
|
|
|
|
|
|
|
|
QPainterPath path;
|
|
|
|
path.addPolygon(poly);
|
|
|
|
|
|
|
|
path = transform.map(path);
|
|
|
|
|
|
|
|
QPolygonF result;
|
|
|
|
for (int i = 0; i < path.elementCount(); ++i)
|
|
|
|
result << path.elementAt(i);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix)
|
|
|
|
\since 4.3
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
This is the same as \a{matrix}.map(\a{polygon}).
|
|
|
|
|
|
|
|
\sa QTransform::map()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix)
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
This is the same as \a{matrix}.map(\a{polygon}).
|
|
|
|
|
|
|
|
\sa QTransform::map()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QPolygonF QTransform::map(const QPolygonF &polygon) const
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Creates and returns a QPolygonF object that is a copy of the given
|
|
|
|
\a polygon, mapped into the coordinate system defined by this
|
|
|
|
matrix.
|
|
|
|
*/
|
|
|
|
QPolygonF QTransform::map(const QPolygonF &a) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
|
|
|
if (t <= TxTranslate)
|
2015-12-10 05:06:13 +02:00
|
|
|
return a.translated(affine._dx, affine._dy);
|
|
|
|
|
|
|
|
if (t >= QTransform::TxProject)
|
|
|
|
return mapProjective(*this, a);
|
|
|
|
|
|
|
|
int size = a.size();
|
|
|
|
int i;
|
|
|
|
QPolygonF p(size);
|
|
|
|
const QPointF *da = a.constData();
|
|
|
|
QPointF *dp = p.data();
|
|
|
|
|
|
|
|
for(i = 0; i < size; ++i) {
|
|
|
|
MAP(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp);
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QPolygon QTransform::map(const QPolygon &polygon) const
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Creates and returns a QPolygon object that is a copy of the given
|
|
|
|
\a polygon, mapped into the coordinate system defined by this
|
|
|
|
matrix. Note that the transformed coordinates are rounded to the
|
|
|
|
nearest integer.
|
|
|
|
*/
|
|
|
|
QPolygon QTransform::map(const QPolygon &a) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
|
|
|
if (t <= TxTranslate)
|
2015-12-10 05:06:13 +02:00
|
|
|
return a.translated(qRound(affine._dx), qRound(affine._dy));
|
|
|
|
|
|
|
|
if (t >= QTransform::TxProject)
|
|
|
|
return mapProjective(*this, QPolygonF(a)).toPolygon();
|
|
|
|
|
|
|
|
int size = a.size();
|
|
|
|
int i;
|
|
|
|
QPolygon p(size);
|
|
|
|
const QPoint *da = a.constData();
|
|
|
|
QPoint *dp = p.data();
|
|
|
|
|
|
|
|
for(i = 0; i < size; ++i) {
|
|
|
|
qreal nx = 0, ny = 0;
|
|
|
|
MAP(da[i].xp, da[i].yp, nx, ny);
|
|
|
|
dp[i].xp = qRound(nx);
|
|
|
|
dp[i].yp = qRound(ny);
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QRegion operator*(const QRegion ®ion, const QTransform &matrix)
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
This is the same as \a{matrix}.map(\a{region}).
|
|
|
|
|
|
|
|
\sa QTransform::map()
|
|
|
|
*/
|
|
|
|
|
|
|
|
extern Q_AUTOTEST_EXPORT QPainterPath qt_regionToPath(const QRegion ®ion);
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QRegion QTransform::map(const QRegion ®ion) const
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Creates and returns a QRegion object that is a copy of the given
|
|
|
|
\a region, mapped into the coordinate system defined by this matrix.
|
|
|
|
|
|
|
|
Calling this method can be rather expensive if rotations or
|
|
|
|
shearing are used.
|
|
|
|
*/
|
|
|
|
QRegion QTransform::map(const QRegion &r) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
|
|
|
if (t == TxNone)
|
2015-12-10 05:06:13 +02:00
|
|
|
return r;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
if (t == TxTranslate) {
|
2015-12-10 05:06:13 +02:00
|
|
|
QRegion copy(r);
|
|
|
|
copy.translate(qRound(affine._dx), qRound(affine._dy));
|
|
|
|
return copy;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t == TxScale && r.rectCount() == 1)
|
|
|
|
return QRegion(mapRect(r.boundingRect()));
|
|
|
|
|
|
|
|
QPainterPath p = map(qt_regionToPath(r));
|
|
|
|
return p.toFillPolygon(QTransform()).toPolygon();
|
|
|
|
}
|
|
|
|
|
|
|
|
struct QHomogeneousCoordinate
|
|
|
|
{
|
|
|
|
qreal x;
|
|
|
|
qreal y;
|
|
|
|
qreal w;
|
|
|
|
|
|
|
|
QHomogeneousCoordinate() {}
|
|
|
|
QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {}
|
|
|
|
|
|
|
|
const QPointF toPoint() const {
|
|
|
|
qreal iw = 1. / w;
|
|
|
|
return QPointF(x * iw, y * iw);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p)
|
|
|
|
{
|
|
|
|
QHomogeneousCoordinate c;
|
|
|
|
c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31();
|
|
|
|
c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32();
|
|
|
|
c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33();
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b,
|
|
|
|
bool needsMoveTo, bool needsLineTo = true)
|
|
|
|
{
|
|
|
|
QHomogeneousCoordinate ha = mapHomogeneous(transform, a);
|
|
|
|
QHomogeneousCoordinate hb = mapHomogeneous(transform, b);
|
|
|
|
|
|
|
|
if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (hb.w < Q_NEAR_CLIP) {
|
|
|
|
const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w);
|
|
|
|
|
|
|
|
hb.x += (ha.x - hb.x) * t;
|
|
|
|
hb.y += (ha.y - hb.y) * t;
|
|
|
|
hb.w = qreal(Q_NEAR_CLIP);
|
|
|
|
} else if (ha.w < Q_NEAR_CLIP) {
|
|
|
|
const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w);
|
|
|
|
|
|
|
|
ha.x += (hb.x - ha.x) * t;
|
|
|
|
ha.y += (hb.y - ha.y) * t;
|
|
|
|
ha.w = qreal(Q_NEAR_CLIP);
|
|
|
|
|
|
|
|
const QPointF p = ha.toPoint();
|
|
|
|
if (needsMoveTo) {
|
|
|
|
path.moveTo(p);
|
|
|
|
needsMoveTo = false;
|
|
|
|
} else {
|
|
|
|
path.lineTo(p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (needsMoveTo)
|
|
|
|
path.moveTo(ha.toPoint());
|
|
|
|
|
|
|
|
if (needsLineTo)
|
|
|
|
path.lineTo(hb.toPoint());
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-08-10 12:59:00 +00:00
|
|
|
|
|
|
|
// returns true if the transform is uniformly scaling
|
|
|
|
// (same scale in x and y direction)
|
|
|
|
// scale is set to the max of x and y scaling factors
|
|
|
|
Q_GUI_EXPORT
|
|
|
|
bool qt_scaleForTransform(const QTransform &transform, qreal *scale)
|
|
|
|
{
|
|
|
|
const QTransform::TransformationType type = transform.type();
|
|
|
|
if (type <= QTransform::TxTranslate) {
|
|
|
|
if (scale)
|
|
|
|
*scale = 1;
|
|
|
|
return true;
|
|
|
|
} else if (type == QTransform::TxScale) {
|
|
|
|
const qreal xScale = qAbs(transform.m11());
|
|
|
|
const qreal yScale = qAbs(transform.m22());
|
|
|
|
if (scale)
|
|
|
|
*scale = qMax(xScale, yScale);
|
|
|
|
return qFuzzyCompare(xScale, yScale);
|
|
|
|
}
|
|
|
|
|
|
|
|
const qreal xScale = transform.m11() * transform.m11()
|
|
|
|
+ transform.m21() * transform.m21();
|
|
|
|
const qreal yScale = transform.m12() * transform.m12()
|
|
|
|
+ transform.m22() * transform.m22();
|
|
|
|
if (scale)
|
|
|
|
*scale = qSqrt(qMax(xScale, yScale));
|
|
|
|
return type == QTransform::TxRotate && qFuzzyCompare(xScale, yScale);
|
|
|
|
}
|
2015-12-10 05:06:13 +02:00
|
|
|
static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo)
|
|
|
|
{
|
|
|
|
// Convert projective xformed curves to line
|
|
|
|
// segments so they can be transformed more accurately
|
|
|
|
|
|
|
|
qreal scale;
|
|
|
|
qt_scaleForTransform(transform, &scale);
|
|
|
|
|
|
|
|
qreal curveThreshold = scale == 0 ? qreal(0.25) : (qreal(0.25) / scale);
|
|
|
|
|
|
|
|
QPolygonF segment = QBezier::fromPoints(a, b, c, d).toPolygon(curveThreshold);
|
|
|
|
|
|
|
|
for (int i = 0; i < segment.size() - 1; ++i)
|
|
|
|
if (lineTo_clipped(path, transform, segment.at(i), segment.at(i+1), needsMoveTo))
|
|
|
|
needsMoveTo = false;
|
|
|
|
|
|
|
|
return !needsMoveTo;
|
|
|
|
}
|
|
|
|
|
|
|
|
static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path)
|
|
|
|
{
|
|
|
|
QPainterPath result;
|
|
|
|
|
|
|
|
QPointF last;
|
|
|
|
QPointF lastMoveTo;
|
|
|
|
bool needsMoveTo = true;
|
|
|
|
for (int i = 0; i < path.elementCount(); ++i) {
|
|
|
|
switch (path.elementAt(i).type) {
|
|
|
|
case QPainterPath::MoveToElement:
|
|
|
|
if (i > 0 && lastMoveTo != last)
|
|
|
|
lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo);
|
|
|
|
|
|
|
|
lastMoveTo = path.elementAt(i);
|
|
|
|
last = path.elementAt(i);
|
|
|
|
needsMoveTo = true;
|
|
|
|
break;
|
|
|
|
case QPainterPath::LineToElement:
|
|
|
|
if (lineTo_clipped(result, transform, last, path.elementAt(i), needsMoveTo))
|
|
|
|
needsMoveTo = false;
|
|
|
|
last = path.elementAt(i);
|
|
|
|
break;
|
|
|
|
case QPainterPath::CurveToElement:
|
|
|
|
if (cubicTo_clipped(result, transform, last, path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2), needsMoveTo))
|
|
|
|
needsMoveTo = false;
|
|
|
|
i += 2;
|
|
|
|
last = path.elementAt(i);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
Q_ASSERT(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (path.elementCount() > 0 && lastMoveTo != last)
|
|
|
|
lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo, false);
|
|
|
|
|
|
|
|
result.setFillRule(path.fillRule());
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix)
|
|
|
|
\since 4.3
|
|
|
|
\relates QTransform
|
|
|
|
|
|
|
|
This is the same as \a{matrix}.map(\a{path}).
|
|
|
|
|
|
|
|
\sa QTransform::map()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Creates and returns a QPainterPath object that is a copy of the
|
|
|
|
given \a path, mapped into the coordinate system defined by this
|
|
|
|
matrix.
|
|
|
|
*/
|
|
|
|
QPainterPath QTransform::map(const QPainterPath &path) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
|
|
|
if (t == TxNone || path.elementCount() == 0)
|
2015-12-10 05:06:13 +02:00
|
|
|
return path;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
if (t >= TxProject)
|
2015-12-10 05:06:13 +02:00
|
|
|
return mapProjective(*this, path);
|
|
|
|
|
|
|
|
QPainterPath copy = path;
|
|
|
|
|
2019-05-27 20:12:31 +00:00
|
|
|
if (t == TxTranslate) {
|
2015-12-10 05:06:13 +02:00
|
|
|
copy.translate(affine._dx, affine._dy);
|
|
|
|
} else {
|
|
|
|
copy.detach();
|
|
|
|
// Full xform
|
|
|
|
for (int i=0; i<path.elementCount(); ++i) {
|
|
|
|
QPainterPath::Element &e = copy.d_ptr->elements[i];
|
|
|
|
MAP(e.x, e.y, e.x, e.y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return copy;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const
|
|
|
|
|
|
|
|
Creates and returns a QPolygon representation of the given \a
|
|
|
|
rectangle, mapped into the coordinate system defined by this
|
|
|
|
matrix.
|
|
|
|
|
|
|
|
The rectangle's coordinates are transformed using the following
|
|
|
|
formulas:
|
|
|
|
|
|
|
|
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 1
|
|
|
|
|
|
|
|
Polygons and rectangles behave slightly differently when
|
|
|
|
transformed (due to integer rounding), so
|
|
|
|
\c{matrix.map(QPolygon(rectangle))} is not always the same as
|
|
|
|
\c{matrix.mapToPolygon(rectangle)}.
|
|
|
|
|
|
|
|
\sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
QPolygon QTransform::mapToPolygon(const QRect &rect) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
2015-12-10 05:06:13 +02:00
|
|
|
|
|
|
|
QPolygon a(4);
|
|
|
|
qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 };
|
|
|
|
if (t <= TxScale) {
|
|
|
|
x[0] = affine._m11*rect.x() + affine._dx;
|
|
|
|
y[0] = affine._m22*rect.y() + affine._dy;
|
|
|
|
qreal w = affine._m11*rect.width();
|
|
|
|
qreal h = affine._m22*rect.height();
|
|
|
|
if (w < 0) {
|
|
|
|
w = -w;
|
|
|
|
x[0] -= w;
|
|
|
|
}
|
|
|
|
if (h < 0) {
|
|
|
|
h = -h;
|
|
|
|
y[0] -= h;
|
|
|
|
}
|
|
|
|
x[1] = x[0]+w;
|
|
|
|
x[2] = x[1];
|
|
|
|
x[3] = x[0];
|
|
|
|
y[1] = y[0];
|
|
|
|
y[2] = y[0]+h;
|
|
|
|
y[3] = y[2];
|
|
|
|
} else {
|
|
|
|
qreal right = rect.x() + rect.width();
|
|
|
|
qreal bottom = rect.y() + rect.height();
|
|
|
|
MAP(rect.x(), rect.y(), x[0], y[0]);
|
|
|
|
MAP(right, rect.y(), x[1], y[1]);
|
|
|
|
MAP(right, bottom, x[2], y[2]);
|
|
|
|
MAP(rect.x(), bottom, x[3], y[3]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// all coordinates are correctly, tranform to a pointarray
|
|
|
|
// (rounding to the next integer)
|
|
|
|
a.setPoints(4, qRound(x[0]), qRound(y[0]),
|
|
|
|
qRound(x[1]), qRound(y[1]),
|
|
|
|
qRound(x[2]), qRound(y[2]),
|
|
|
|
qRound(x[3]), qRound(y[3]));
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Creates a transformation matrix, \a trans, that maps a unit square
|
|
|
|
to a four-sided polygon, \a quad. Returns true if the transformation
|
|
|
|
is constructed or false if such a transformation does not exist.
|
|
|
|
|
|
|
|
\sa quadToSquare(), quadToQuad()
|
|
|
|
*/
|
|
|
|
bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans)
|
|
|
|
{
|
|
|
|
if (quad.count() != 4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
qreal dx0 = quad[0].x();
|
|
|
|
qreal dx1 = quad[1].x();
|
|
|
|
qreal dx2 = quad[2].x();
|
|
|
|
qreal dx3 = quad[3].x();
|
|
|
|
|
|
|
|
qreal dy0 = quad[0].y();
|
|
|
|
qreal dy1 = quad[1].y();
|
|
|
|
qreal dy2 = quad[2].y();
|
|
|
|
qreal dy3 = quad[3].y();
|
|
|
|
|
|
|
|
double ax = dx0 - dx1 + dx2 - dx3;
|
|
|
|
double ay = dy0 - dy1 + dy2 - dy3;
|
|
|
|
|
|
|
|
if (!ax && !ay) { //afine transform
|
|
|
|
trans.setMatrix(dx1 - dx0, dy1 - dy0, 0,
|
|
|
|
dx2 - dx1, dy2 - dy1, 0,
|
|
|
|
dx0, dy0, 1);
|
|
|
|
} else {
|
|
|
|
double ax1 = dx1 - dx2;
|
|
|
|
double ax2 = dx3 - dx2;
|
|
|
|
double ay1 = dy1 - dy2;
|
|
|
|
double ay2 = dy3 - dy2;
|
|
|
|
|
|
|
|
/*determinants */
|
|
|
|
double gtop = ax * ay2 - ax2 * ay;
|
|
|
|
double htop = ax1 * ay - ax * ay1;
|
|
|
|
double bottom = ax1 * ay2 - ax2 * ay1;
|
|
|
|
|
|
|
|
double a, b, c, d, e, f, g, h; /*i is always 1*/
|
|
|
|
|
|
|
|
if (!bottom)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
g = gtop/bottom;
|
|
|
|
h = htop/bottom;
|
|
|
|
|
|
|
|
a = dx1 - dx0 + g * dx1;
|
|
|
|
b = dx3 - dx0 + h * dx3;
|
|
|
|
c = dx0;
|
|
|
|
d = dy1 - dy0 + g * dy1;
|
|
|
|
e = dy3 - dy0 + h * dy3;
|
|
|
|
f = dy0;
|
|
|
|
|
|
|
|
trans.setMatrix(a, d, g,
|
|
|
|
b, e, h,
|
|
|
|
c, f, 1.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans)
|
|
|
|
|
|
|
|
Creates a transformation matrix, \a trans, that maps a four-sided polygon,
|
|
|
|
\a quad, to a unit square. Returns true if the transformation is constructed
|
|
|
|
or false if such a transformation does not exist.
|
|
|
|
|
|
|
|
\sa squareToQuad(), quadToQuad()
|
|
|
|
*/
|
|
|
|
bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans)
|
|
|
|
{
|
|
|
|
if (!squareToQuad(quad, trans))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
bool invertible = false;
|
|
|
|
trans = trans.inverted(&invertible);
|
|
|
|
|
|
|
|
return invertible;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Creates a transformation matrix, \a trans, that maps a four-sided
|
|
|
|
polygon, \a one, to another four-sided polygon, \a two.
|
|
|
|
Returns true if the transformation is possible; otherwise returns
|
|
|
|
false.
|
|
|
|
|
|
|
|
This is a convenience method combining quadToSquare() and
|
|
|
|
squareToQuad() methods. It allows the input quad to be
|
|
|
|
transformed into any other quad.
|
|
|
|
|
|
|
|
\sa squareToQuad(), quadToSquare()
|
|
|
|
*/
|
|
|
|
bool QTransform::quadToQuad(const QPolygonF &one,
|
|
|
|
const QPolygonF &two,
|
|
|
|
QTransform &trans)
|
|
|
|
{
|
|
|
|
QTransform stq;
|
|
|
|
if (!quadToSquare(one, trans))
|
|
|
|
return false;
|
|
|
|
if (!squareToQuad(two, stq))
|
|
|
|
return false;
|
|
|
|
trans *= stq;
|
|
|
|
//qDebug()<<"Final = "<<trans;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Sets the matrix elements to the specified values, \a m11,
|
|
|
|
\a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and
|
|
|
|
\a m33. Note that this function replaces the previous values.
|
|
|
|
QTransform provides the translate(), rotate(), scale() and shear()
|
|
|
|
convenience functions to manipulate the various matrix elements
|
|
|
|
based on the currently defined coordinate system.
|
|
|
|
|
|
|
|
\sa QTransform()
|
|
|
|
*/
|
|
|
|
|
|
|
|
void QTransform::setMatrix(qreal m11, qreal m12, qreal m13,
|
|
|
|
qreal m21, qreal m22, qreal m23,
|
|
|
|
qreal m31, qreal m32, qreal m33)
|
|
|
|
{
|
|
|
|
affine._m11 = m11; affine._m12 = m12; m_13 = m13;
|
|
|
|
affine._m21 = m21; affine._m22 = m22; m_23 = m23;
|
|
|
|
affine._dx = m31; affine._dy = m32; m_33 = m33;
|
2019-05-27 20:12:31 +00:00
|
|
|
m_type = TxNone;
|
|
|
|
m_dirty = TxProject;
|
2015-12-10 05:06:13 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool needsPerspectiveClipping(const QRectF &rect, const QTransform &transform)
|
|
|
|
{
|
|
|
|
const qreal wx = qMin(transform.m13() * rect.left(), transform.m13() * rect.right());
|
|
|
|
const qreal wy = qMin(transform.m23() * rect.top(), transform.m23() * rect.bottom());
|
|
|
|
|
|
|
|
return wx + wy + transform.m33() < Q_NEAR_CLIP;
|
|
|
|
}
|
|
|
|
|
|
|
|
QRect QTransform::mapRect(const QRect &rect) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
2015-12-10 05:06:13 +02:00
|
|
|
if (t <= TxTranslate)
|
|
|
|
return rect.translated(qRound(affine._dx), qRound(affine._dy));
|
|
|
|
|
|
|
|
if (t <= TxScale) {
|
|
|
|
int x = qRound(affine._m11*rect.x() + affine._dx);
|
|
|
|
int y = qRound(affine._m22*rect.y() + affine._dy);
|
|
|
|
int w = qRound(affine._m11*rect.width());
|
|
|
|
int h = qRound(affine._m22*rect.height());
|
|
|
|
if (w < 0) {
|
|
|
|
w = -w;
|
|
|
|
x -= w;
|
|
|
|
}
|
|
|
|
if (h < 0) {
|
|
|
|
h = -h;
|
|
|
|
y -= h;
|
|
|
|
}
|
|
|
|
return QRect(x, y, w, h);
|
|
|
|
} else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) {
|
|
|
|
// see mapToPolygon for explanations of the algorithm.
|
|
|
|
qreal x = 0, y = 0;
|
|
|
|
MAP(rect.left(), rect.top(), x, y);
|
|
|
|
qreal xmin = x;
|
|
|
|
qreal ymin = y;
|
|
|
|
qreal xmax = x;
|
|
|
|
qreal ymax = y;
|
|
|
|
MAP(rect.right() + 1, rect.top(), x, y);
|
|
|
|
xmin = qMin(xmin, x);
|
|
|
|
ymin = qMin(ymin, y);
|
|
|
|
xmax = qMax(xmax, x);
|
|
|
|
ymax = qMax(ymax, y);
|
|
|
|
MAP(rect.right() + 1, rect.bottom() + 1, x, y);
|
|
|
|
xmin = qMin(xmin, x);
|
|
|
|
ymin = qMin(ymin, y);
|
|
|
|
xmax = qMax(xmax, x);
|
|
|
|
ymax = qMax(ymax, y);
|
|
|
|
MAP(rect.left(), rect.bottom() + 1, x, y);
|
|
|
|
xmin = qMin(xmin, x);
|
|
|
|
ymin = qMin(ymin, y);
|
|
|
|
xmax = qMax(xmax, x);
|
|
|
|
ymax = qMax(ymax, y);
|
|
|
|
return QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin));
|
|
|
|
} else {
|
|
|
|
QPainterPath path;
|
|
|
|
path.addRect(rect);
|
|
|
|
return map(path).boundingRect().toRect();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QRectF QTransform::mapRect(const QRectF &rectangle) const
|
|
|
|
|
|
|
|
Creates and returns a QRectF object that is a copy of the given \a
|
|
|
|
rectangle, mapped into the coordinate system defined by this
|
|
|
|
matrix.
|
|
|
|
|
|
|
|
The rectangle's coordinates are transformed using the following
|
|
|
|
formulas:
|
|
|
|
|
|
|
|
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 2
|
|
|
|
|
|
|
|
If rotation or shearing has been specified, this function returns
|
|
|
|
the \e bounding rectangle. To retrieve the exact region the given
|
|
|
|
\a rectangle maps to, use the mapToPolygon() function instead.
|
|
|
|
|
|
|
|
\sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
QRectF QTransform::mapRect(const QRectF &rect) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
2015-12-10 05:06:13 +02:00
|
|
|
if (t <= TxTranslate)
|
|
|
|
return rect.translated(affine._dx, affine._dy);
|
|
|
|
|
|
|
|
if (t <= TxScale) {
|
|
|
|
qreal x = affine._m11*rect.x() + affine._dx;
|
|
|
|
qreal y = affine._m22*rect.y() + affine._dy;
|
|
|
|
qreal w = affine._m11*rect.width();
|
|
|
|
qreal h = affine._m22*rect.height();
|
|
|
|
if (w < 0) {
|
|
|
|
w = -w;
|
|
|
|
x -= w;
|
|
|
|
}
|
|
|
|
if (h < 0) {
|
|
|
|
h = -h;
|
|
|
|
y -= h;
|
|
|
|
}
|
|
|
|
return QRectF(x, y, w, h);
|
|
|
|
} else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) {
|
|
|
|
qreal x = 0, y = 0;
|
|
|
|
MAP(rect.x(), rect.y(), x, y);
|
|
|
|
qreal xmin = x;
|
|
|
|
qreal ymin = y;
|
|
|
|
qreal xmax = x;
|
|
|
|
qreal ymax = y;
|
|
|
|
MAP(rect.x() + rect.width(), rect.y(), x, y);
|
|
|
|
xmin = qMin(xmin, x);
|
|
|
|
ymin = qMin(ymin, y);
|
|
|
|
xmax = qMax(xmax, x);
|
|
|
|
ymax = qMax(ymax, y);
|
|
|
|
MAP(rect.x() + rect.width(), rect.y() + rect.height(), x, y);
|
|
|
|
xmin = qMin(xmin, x);
|
|
|
|
ymin = qMin(ymin, y);
|
|
|
|
xmax = qMax(xmax, x);
|
|
|
|
ymax = qMax(ymax, y);
|
|
|
|
MAP(rect.x(), rect.y() + rect.height(), x, y);
|
|
|
|
xmin = qMin(xmin, x);
|
|
|
|
ymin = qMin(ymin, y);
|
|
|
|
xmax = qMax(xmax, x);
|
|
|
|
ymax = qMax(ymax, y);
|
|
|
|
return QRectF(xmin, ymin, xmax-xmin, ymax - ymin);
|
|
|
|
} else {
|
|
|
|
QPainterPath path;
|
|
|
|
path.addRect(rect);
|
|
|
|
return map(path).boundingRect();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn QRect QTransform::mapRect(const QRect &rectangle) const
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Creates and returns a QRect object that is a copy of the given \a
|
|
|
|
rectangle, mapped into the coordinate system defined by this
|
|
|
|
matrix. Note that the transformed coordinates are rounded to the
|
|
|
|
nearest integer.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Maps the given coordinates \a x and \a y into the coordinate
|
|
|
|
system defined by this matrix. The resulting values are put in *\a
|
|
|
|
tx and *\a ty, respectively.
|
|
|
|
|
|
|
|
The coordinates are transformed using the following formulas:
|
|
|
|
|
|
|
|
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 3
|
|
|
|
|
|
|
|
The point (x, y) is the original point, and (x', y') is the
|
|
|
|
transformed point.
|
|
|
|
|
|
|
|
\sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations}
|
|
|
|
*/
|
|
|
|
void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
2015-12-10 05:06:13 +02:00
|
|
|
MAP(x, y, *tx, *ty);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\overload
|
|
|
|
|
|
|
|
Maps the given coordinates \a x and \a y into the coordinate
|
|
|
|
system defined by this matrix. The resulting values are put in *\a
|
|
|
|
tx and *\a ty, respectively. Note that the transformed coordinates
|
|
|
|
are rounded to the nearest integer.
|
|
|
|
*/
|
|
|
|
void QTransform::map(int x, int y, int *tx, int *ty) const
|
|
|
|
{
|
2019-05-27 20:12:31 +00:00
|
|
|
TransformationType t = inline_type();
|
2015-12-10 05:06:13 +02:00
|
|
|
qreal fx = 0, fy = 0;
|
|
|
|
MAP(x, y, fx, fy);
|
|
|
|
*tx = qRound(fx);
|
|
|
|
*ty = qRound(fy);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the QTransform as an affine matrix.
|
|
|
|
|
|
|
|
\warning If a perspective transformation has been specified,
|
|
|
|
then the conversion will cause loss of data.
|
|
|
|
*/
|
|
|
|
const QMatrix &QTransform::toAffine() const
|
|
|
|
{
|
|
|
|
return affine;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Returns the transformation type of this matrix.
|
|
|
|
|
|
|
|
The transformation type is the highest enumeration value
|
|
|
|
capturing all of the matrix's transformations. For example,
|
|
|
|
if the matrix both scales and shears, the type would be \c TxShear,
|
|
|
|
because \c TxShear has a higher enumeration value than \c TxScale.
|
|
|
|
|
|
|
|
Knowing the transformation type of a matrix is useful for optimization:
|
|
|
|
you can often handle specific types more optimally than handling
|
|
|
|
the generic case.
|
2019-05-27 20:12:31 +00:00
|
|
|
*/
|
|
|
|
QTransform::TransformationType QTransform::type() const
|
|
|
|
{
|
|
|
|
if(m_dirty == TxNone || m_dirty < m_type)
|
|
|
|
return static_cast<TransformationType>(m_type);
|
|
|
|
|
|
|
|
switch (static_cast<TransformationType>(m_dirty)) {
|
|
|
|
case TxProject:
|
|
|
|
if (!qFuzzyIsNull(m_13) || !qFuzzyIsNull(m_23) || !qFuzzyIsNull(m_33 - 1)) {
|
|
|
|
m_type = TxProject;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxShear:
|
|
|
|
case TxRotate:
|
|
|
|
if (!qFuzzyIsNull(affine._m12) || !qFuzzyIsNull(affine._m21)) {
|
|
|
|
const qreal dot = affine._m11 * affine._m12 + affine._m21 * affine._m22;
|
|
|
|
if (qFuzzyIsNull(dot))
|
|
|
|
m_type = TxRotate;
|
|
|
|
else
|
|
|
|
m_type = TxShear;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxScale:
|
|
|
|
if (!qFuzzyIsNull(affine._m11 - 1) || !qFuzzyIsNull(affine._m22 - 1)) {
|
|
|
|
m_type = TxScale;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxTranslate:
|
|
|
|
if (!qFuzzyIsNull(affine._dx) || !qFuzzyIsNull(affine._dy)) {
|
|
|
|
m_type = TxTranslate;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TxNone:
|
|
|
|
m_type = TxNone;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
m_dirty = TxNone;
|
|
|
|
return static_cast<TransformationType>(m_type);
|
|
|
|
}
|
2015-12-10 05:06:13 +02:00
|
|
|
|
|
|
|
/*!
|
|
|
|
|
|
|
|
Returns the transform as a QVariant.
|
|
|
|
*/
|
|
|
|
QTransform::operator QVariant() const
|
|
|
|
{
|
|
|
|
return QVariant(QVariant::Transform, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool QTransform::isInvertible() const
|
|
|
|
|
|
|
|
Returns true if the matrix is invertible, otherwise returns false.
|
|
|
|
|
|
|
|
\sa inverted()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::det() const
|
|
|
|
\obsolete
|
|
|
|
|
|
|
|
Returns the matrix's determinant. Use determinant() instead.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::m11() const
|
|
|
|
|
|
|
|
Returns the horizontal scaling factor.
|
|
|
|
|
|
|
|
\sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::m12() const
|
|
|
|
|
|
|
|
Returns the vertical shearing factor.
|
|
|
|
|
|
|
|
\sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::m21() const
|
|
|
|
|
|
|
|
Returns the horizontal shearing factor.
|
|
|
|
|
|
|
|
\sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::m22() const
|
|
|
|
|
|
|
|
Returns the vertical scaling factor.
|
|
|
|
|
|
|
|
\sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::dx() const
|
|
|
|
|
|
|
|
Returns the horizontal translation factor.
|
|
|
|
|
|
|
|
\sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::dy() const
|
|
|
|
|
|
|
|
Returns the vertical translation factor.
|
|
|
|
|
|
|
|
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::m13() const
|
|
|
|
|
|
|
|
Returns the horizontal projection factor.
|
|
|
|
|
|
|
|
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::m23() const
|
|
|
|
|
|
|
|
Returns the vertical projection factor.
|
|
|
|
|
|
|
|
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::m31() const
|
|
|
|
|
|
|
|
Returns the horizontal translation factor.
|
|
|
|
|
|
|
|
\sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::m32() const
|
|
|
|
|
|
|
|
Returns the vertical translation factor.
|
|
|
|
|
|
|
|
\sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::m33() const
|
|
|
|
|
|
|
|
Returns the division factor.
|
|
|
|
|
|
|
|
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
|
|
Operations}
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn qreal QTransform::determinant() const
|
|
|
|
|
|
|
|
Returns the matrix's determinant.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool QTransform::isIdentity() const
|
|
|
|
|
|
|
|
Returns true if the matrix is the identity matrix, otherwise
|
|
|
|
returns false.
|
|
|
|
|
|
|
|
\sa reset()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool QTransform::isAffine() const
|
|
|
|
|
|
|
|
Returns true if the matrix represent an affine transformation,
|
|
|
|
otherwise returns false.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool QTransform::isScaling() const
|
|
|
|
|
|
|
|
Returns true if the matrix represents a scaling
|
|
|
|
transformation, otherwise returns false.
|
|
|
|
|
|
|
|
\sa reset()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool QTransform::isRotating() const
|
|
|
|
|
|
|
|
Returns true if the matrix represents some kind of a
|
|
|
|
rotating transformation, otherwise returns false.
|
|
|
|
|
|
|
|
\sa reset()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool QTransform::isTranslating() const
|
|
|
|
|
|
|
|
Returns true if the matrix represents a translating
|
|
|
|
transformation, otherwise returns false.
|
|
|
|
|
|
|
|
\sa reset()
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
\fn bool qFuzzyCompare(const QTransform& t1, const QTransform& t2)
|
|
|
|
|
|
|
|
\relates QTransform
|
|
|
|
\since 4.6
|
|
|
|
|
|
|
|
Returns true if \a t1 and \a t2 are equal, allowing for a small
|
|
|
|
fuzziness factor for floating-point comparisons; false otherwise.
|
|
|
|
*/
|
|
|
|
|
|
|
|
QT_END_NAMESPACE
|
2019-05-27 20:12:31 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|