u-boot/lib/lmb.c
Sughosh Ganu e0a7ea3725 lmb: handle scenario of encompassing overlap
The lmb_fix_over_lap_regions() function is called if the added region
overlaps with an existing region. The function then fixes the overlap
and removes the redundant region. However, it makes certain
assumptions. One assumption is that the overlap would not encompass
the existing region. Another assumption is that the overlap only
occurs between two regions -- the scenario of the added region
overlapping multiple existing regions is not being handled. Handle
these cases by instead calling lmb_resize_regions(). Also remove the
now superfluous lmb_fix_over_lap_regions().

Signed-off-by: Sughosh Ganu <sughosh.ganu@linaro.org>
Reviewed-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
2025-03-17 19:39:27 -06:00

876 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Procedures for maintaining information about logical memory blocks.
*
* Peter Bergner, IBM Corp. June 2001.
* Copyright (C) 2001 Peter Bergner.
*/
#include <alist.h>
#include <efi_loader.h>
#include <event.h>
#include <image.h>
#include <mapmem.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <spl.h>
#include <asm/global_data.h>
#include <asm/sections.h>
#include <linux/kernel.h>
#include <linux/sizes.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* The following low level LMB functions must not access the global LMB memory
* map since they are also used to manage IOVA memory maps in iommu drivers like
* apple_dart.
*/
static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2)
{
const phys_addr_t base1_end = base1 + size1 - 1;
const phys_addr_t base2_end = base2 + size2 - 1;
return ((base1 <= base2_end) && (base2 <= base1_end));
}
static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2)
{
if (base2 == base1 + size1)
return 1;
else if (base1 == base2 + size2)
return -1;
return 0;
}
static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1,
unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
phys_addr_t base1 = rgn[r1].base;
phys_size_t size1 = rgn[r1].size;
phys_addr_t base2 = rgn[r2].base;
phys_size_t size2 = rgn[r2].size;
return lmb_addrs_overlap(base1, size1, base2, size2);
}
static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1,
unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
phys_addr_t base1 = rgn[r1].base;
phys_size_t size1 = rgn[r1].size;
phys_addr_t base2 = rgn[r2].base;
phys_size_t size2 = rgn[r2].size;
return lmb_addrs_adjacent(base1, size1, base2, size2);
}
static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
{
unsigned long i;
struct lmb_region *rgn = lmb_rgn_lst->data;
for (i = r; i < lmb_rgn_lst->count - 1; i++) {
rgn[i].base = rgn[i + 1].base;
rgn[i].size = rgn[i + 1].size;
rgn[i].flags = rgn[i + 1].flags;
}
lmb_rgn_lst->count--;
}
/* Assumption: base addr of region 1 < base addr of region 2 */
static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
rgn[r1].size += rgn[r2].size;
lmb_remove_region(lmb_rgn_lst, r2);
}
static long lmb_resize_regions(struct alist *lmb_rgn_lst,
unsigned long idx_start,
phys_addr_t base, phys_size_t size)
{
phys_size_t rgnsize;
unsigned long rgn_cnt, idx, idx_end;
phys_addr_t rgnbase, rgnend;
phys_addr_t mergebase, mergeend;
struct lmb_region *rgn = lmb_rgn_lst->data;
rgn_cnt = 0;
idx = idx_start;
idx_end = idx_start;
/*
* First thing to do is to identify how many regions
* the requested region overlaps.
* If the flags match, combine all these overlapping
* regions into a single region, and remove the merged
* regions.
*/
while (idx <= lmb_rgn_lst->count - 1) {
rgnbase = rgn[idx].base;
rgnsize = rgn[idx].size;
if (lmb_addrs_overlap(base, size, rgnbase,
rgnsize)) {
if (rgn[idx].flags != LMB_NONE)
return -1;
rgn_cnt++;
idx_end = idx;
}
idx++;
}
/* The merged region's base and size */
rgnbase = rgn[idx_start].base;
mergebase = min(base, rgnbase);
rgnend = rgn[idx_end].base + rgn[idx_end].size;
mergeend = max(rgnend, (base + size));
rgn[idx_start].base = mergebase;
rgn[idx_start].size = mergeend - mergebase;
/* Now remove the merged regions */
while (--rgn_cnt)
lmb_remove_region(lmb_rgn_lst, idx_start + 1);
return 0;
}
/**
* lmb_add_region_flags() - Add an lmb region to the given list
* @lmb_rgn_lst: LMB list to which region is to be added(free/used)
* @base: Start address of the region
* @size: Size of the region to be added
* @flags: Attributes of the LMB region
*
* Add a region of memory to the list. If the region does not exist, add
* it to the list. Depending on the attributes of the region to be added,
* the function might resize an already existing region or coalesce two
* adjacent regions.
*
* Return:
* * %0 - Added successfully, or it's already added (only if LMB_NONE)
* * %-EEXIST - The region is already added, and flags != LMB_NONE
* * %-1 - Failure
*/
static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size, u32 flags)
{
unsigned long coalesced = 0;
long ret, i;
struct lmb_region *rgn = lmb_rgn_lst->data;
if (alist_err(lmb_rgn_lst))
return -1;
/* First try and coalesce this LMB with another. */
for (i = 0; i < lmb_rgn_lst->count; i++) {
phys_addr_t rgnbase = rgn[i].base;
phys_size_t rgnsize = rgn[i].size;
u32 rgnflags = rgn[i].flags;
ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
if (ret > 0) {
if (flags != rgnflags)
break;
rgn[i].base -= size;
rgn[i].size += size;
coalesced++;
break;
} else if (ret < 0) {
if (flags != rgnflags)
break;
rgn[i].size += size;
coalesced++;
break;
} else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
if (flags != LMB_NONE)
return -EEXIST;
ret = lmb_resize_regions(lmb_rgn_lst, i, base, size);
if (ret < 0)
return -1;
coalesced++;
break;
return -1;
}
}
if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
rgn = lmb_rgn_lst->data;
if (rgn[i].flags == rgn[i + 1].flags) {
if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) {
lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
coalesced++;
} else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) {
/* fix overlapping areas */
phys_addr_t rgnbase = rgn[i].base;
phys_size_t rgnsize = rgn[i].size;
ret = lmb_resize_regions(lmb_rgn_lst, i,
rgnbase, rgnsize);
if (ret < 0)
return -1;
coalesced++;
}
}
}
if (coalesced)
return 0;
if (alist_full(lmb_rgn_lst) &&
!alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
return -1;
rgn = lmb_rgn_lst->data;
/* Couldn't coalesce the LMB, so add it to the sorted table. */
for (i = lmb_rgn_lst->count; i >= 0; i--) {
if (i && base < rgn[i - 1].base) {
rgn[i] = rgn[i - 1];
} else {
rgn[i].base = base;
rgn[i].size = size;
rgn[i].flags = flags;
break;
}
}
lmb_rgn_lst->count++;
return 0;
}
static long _lmb_free(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size)
{
struct lmb_region *rgn;
phys_addr_t rgnbegin, rgnend;
phys_addr_t end = base + size - 1;
int i;
/* Suppress GCC warnings */
rgnbegin = 0;
rgnend = 0;
rgn = lmb_rgn_lst->data;
/* Find the region where (base, size) belongs to */
for (i = 0; i < lmb_rgn_lst->count; i++) {
rgnbegin = rgn[i].base;
rgnend = rgnbegin + rgn[i].size - 1;
if (rgnbegin <= base && end <= rgnend)
break;
}
/* Didn't find the region */
if (i == lmb_rgn_lst->count)
return -1;
/* Check to see if we are removing entire region */
if (rgnbegin == base && rgnend == end) {
lmb_remove_region(lmb_rgn_lst, i);
return 0;
}
/* Check to see if region is matching at the front */
if (rgnbegin == base) {
rgn[i].base = end + 1;
rgn[i].size -= size;
return 0;
}
/* Check to see if the region is matching at the end */
if (rgnend == end) {
rgn[i].size -= size;
return 0;
}
/*
* We need to split the entry - adjust the current one to the
* beginging of the hole and add the region after hole.
*/
rgn[i].size = base - rgn[i].base;
return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
rgn[i].flags);
}
static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size)
{
unsigned long i;
struct lmb_region *rgn = lmb_rgn_lst->data;
for (i = 0; i < lmb_rgn_lst->count; i++) {
phys_addr_t rgnbase = rgn[i].base;
phys_size_t rgnsize = rgn[i].size;
if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
break;
}
return (i < lmb_rgn_lst->count) ? i : -1;
}
/*
* IOVA LMB memory maps using lmb pointers instead of the global LMB memory map.
*/
int io_lmb_setup(struct lmb *io_lmb)
{
int ret;
ret = alist_init(&io_lmb->available_mem, sizeof(struct lmb_region),
(uint)LMB_ALIST_INITIAL_SIZE);
if (!ret) {
log_debug("Unable to initialise the list for LMB free IOVA\n");
return -ENOMEM;
}
ret = alist_init(&io_lmb->used_mem, sizeof(struct lmb_region),
(uint)LMB_ALIST_INITIAL_SIZE);
if (!ret) {
log_debug("Unable to initialise the list for LMB used IOVA\n");
return -ENOMEM;
}
io_lmb->test = false;
return 0;
}
void io_lmb_teardown(struct lmb *io_lmb)
{
alist_uninit(&io_lmb->available_mem);
alist_uninit(&io_lmb->used_mem);
}
long io_lmb_add(struct lmb *io_lmb, phys_addr_t base, phys_size_t size)
{
return lmb_add_region_flags(&io_lmb->available_mem, base, size, LMB_NONE);
}
/* derived and simplified from _lmb_alloc_base() */
phys_addr_t io_lmb_alloc(struct lmb *io_lmb, phys_size_t size, ulong align)
{
long i, rgn;
phys_addr_t base = 0;
phys_addr_t res_base;
struct lmb_region *lmb_used = io_lmb->used_mem.data;
struct lmb_region *lmb_memory = io_lmb->available_mem.data;
for (i = io_lmb->available_mem.count - 1; i >= 0; i--) {
phys_addr_t lmbbase = lmb_memory[i].base;
phys_size_t lmbsize = lmb_memory[i].size;
if (lmbsize < size)
continue;
base = ALIGN_DOWN(lmbbase + lmbsize - size, align);
while (base && lmbbase <= base) {
rgn = lmb_overlaps_region(&io_lmb->used_mem, base, size);
if (rgn < 0) {
/* This area isn't reserved, take it */
if (lmb_add_region_flags(&io_lmb->used_mem, base,
size, LMB_NONE) < 0)
return 0;
return base;
}
res_base = lmb_used[rgn].base;
if (res_base < size)
break;
base = ALIGN_DOWN(res_base - size, align);
}
}
return 0;
}
long io_lmb_free(struct lmb *io_lmb, phys_addr_t base, phys_size_t size)
{
return _lmb_free(&io_lmb->used_mem, base, size);
}
/*
* Low level LMB functions are used to manage IOVA memory maps for the Apple
* dart iommu. They must not access the global LMB memory map.
* So keep the global LMB variable declaration unreachable from them.
*/
static struct lmb lmb;
static int lmb_map_update_notify(phys_addr_t addr, phys_size_t size,
enum lmb_map_op op, u32 flags)
{
if (CONFIG_IS_ENABLED(EFI_LOADER) &&
!lmb.test && !(flags & LMB_NONOTIFY))
return efi_map_update_notify(addr, size, op);
return 0;
}
static void lmb_print_region_flags(u32 flags)
{
const char * const flag_str[] = { "none", "no-map", "no-overwrite",
"no-notify" };
unsigned int pflags = flags &
(LMB_NOMAP | LMB_NOOVERWRITE | LMB_NONOTIFY);
if (flags != pflags) {
printf("invalid %#x\n", flags);
return;
}
do {
int bitpos = pflags ? fls(pflags) - 1 : 0;
printf("%s", flag_str[bitpos]);
pflags &= ~(1u << bitpos);
puts(pflags ? ", " : "\n");
} while (pflags);
}
static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
unsigned long long base, size, end;
u32 flags;
int i;
printf(" %s.count = %#x\n", name, lmb_rgn_lst->count);
for (i = 0; i < lmb_rgn_lst->count; i++) {
base = rgn[i].base;
size = rgn[i].size;
end = base + size - 1;
flags = rgn[i].flags;
printf(" %s[%d]\t[%#llx-%#llx], %#llx bytes, flags: ",
name, i, base, end, size);
lmb_print_region_flags(flags);
}
}
void lmb_dump_all_force(void)
{
printf("lmb_dump_all:\n");
lmb_dump_region(&lmb.available_mem, "memory");
lmb_dump_region(&lmb.used_mem, "reserved");
}
void lmb_dump_all(void)
{
#ifdef DEBUG
lmb_dump_all_force();
#endif
}
static void lmb_reserve_uboot_region(void)
{
int bank;
ulong end, bank_end;
phys_addr_t rsv_start;
rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE;
end = gd->ram_top;
/*
* Reserve memory from aligned address below the bottom of U-Boot stack
* until end of RAM area to prevent LMB from overwriting that memory.
*/
debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start);
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
if (!gd->bd->bi_dram[bank].size ||
rsv_start < gd->bd->bi_dram[bank].start)
continue;
/* Watch out for RAM at end of address space! */
bank_end = gd->bd->bi_dram[bank].start +
gd->bd->bi_dram[bank].size - 1;
if (rsv_start > bank_end)
continue;
if (bank_end > end)
bank_end = end - 1;
lmb_reserve(rsv_start, bank_end - rsv_start + 1, LMB_NOOVERWRITE);
if (gd->flags & GD_FLG_SKIP_RELOC)
lmb_reserve((phys_addr_t)(uintptr_t)_start,
gd->mon_len, LMB_NOOVERWRITE);
break;
}
}
static void lmb_reserve_common(void *fdt_blob)
{
lmb_reserve_uboot_region();
if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
boot_fdt_add_mem_rsv_regions(fdt_blob);
}
static __maybe_unused void lmb_reserve_common_spl(void)
{
phys_addr_t rsv_start;
phys_size_t rsv_size;
/*
* Assume a SPL stack of 16KB. This must be
* more than enough for the SPL stage.
*/
if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
rsv_start = gd->start_addr_sp - 16384;
rsv_size = 16384;
lmb_reserve(rsv_start, rsv_size, LMB_NOOVERWRITE);
}
if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
/* Reserve the bss region */
rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
(phys_addr_t)(uintptr_t)__bss_start;
lmb_reserve(rsv_start, rsv_size, LMB_NOOVERWRITE);
}
}
/**
* lmb_can_reserve_region() - check if the region can be reserved
* @base: base address of region to be reserved
* @size: size of region to be reserved
* @flags: flag of the region to be reserved
*
* Go through all the reserved regions and ensure that the requested
* region does not overlap with any existing regions. An overlap is
* allowed only when the flag of the request region and the existing
* region is LMB_NONE.
*
* Return: true if region can be reserved, false otherwise
*/
static bool lmb_can_reserve_region(phys_addr_t base, phys_size_t size,
u32 flags)
{
uint i;
struct lmb_region *lmb_reserved = lmb.used_mem.data;
for (i = 0; i < lmb.used_mem.count; i++) {
u32 rgnflags = lmb_reserved[i].flags;
phys_addr_t rgnbase = lmb_reserved[i].base;
phys_size_t rgnsize = lmb_reserved[i].size;
if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
if (flags != LMB_NONE || flags != rgnflags)
return false;
}
}
return true;
}
void lmb_add_memory(void)
{
int i;
phys_addr_t bank_end;
phys_size_t size;
u64 ram_top = gd->ram_top;
struct bd_info *bd = gd->bd;
if (CONFIG_IS_ENABLED(LMB_ARCH_MEM_MAP))
return lmb_arch_add_memory();
/* Assume a 4GB ram_top if not defined */
if (!ram_top)
ram_top = 0x100000000ULL;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
size = bd->bi_dram[i].size;
bank_end = bd->bi_dram[i].start + size;
if (size) {
lmb_add(bd->bi_dram[i].start, size);
/*
* Reserve memory above ram_top as
* no-overwrite so that it cannot be
* allocated
*/
if (bd->bi_dram[i].start >= ram_top)
lmb_reserve(bd->bi_dram[i].start, size,
LMB_NOOVERWRITE);
else if (bank_end > ram_top)
lmb_reserve(ram_top, bank_end - ram_top,
LMB_NOOVERWRITE);
}
}
}
/* This routine may be called with relocation disabled. */
long lmb_add(phys_addr_t base, phys_size_t size)
{
long ret;
struct alist *lmb_rgn_lst = &lmb.available_mem;
ret = lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
if (ret)
return ret;
return lmb_map_update_notify(base, size, LMB_MAP_OP_ADD, LMB_NONE);
}
long lmb_free_flags(phys_addr_t base, phys_size_t size,
uint flags)
{
long ret;
ret = _lmb_free(&lmb.used_mem, base, size);
if (ret < 0)
return ret;
return lmb_map_update_notify(base, size, LMB_MAP_OP_FREE, flags);
}
long lmb_free(phys_addr_t base, phys_size_t size)
{
return lmb_free_flags(base, size, LMB_NONE);
}
long lmb_reserve(phys_addr_t base, phys_size_t size, u32 flags)
{
long ret = 0;
struct alist *lmb_rgn_lst = &lmb.used_mem;
if (!lmb_can_reserve_region(base, size, flags))
return -EEXIST;
ret = lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
if (ret)
return ret;
return lmb_map_update_notify(base, size, LMB_MAP_OP_RESERVE, flags);
}
static phys_addr_t _lmb_alloc_base(phys_size_t size, ulong align,
phys_addr_t max_addr, u32 flags)
{
int ret;
long i, rgn;
phys_addr_t base = 0;
phys_addr_t res_base;
struct lmb_region *lmb_used = lmb.used_mem.data;
struct lmb_region *lmb_memory = lmb.available_mem.data;
for (i = lmb.available_mem.count - 1; i >= 0; i--) {
phys_addr_t lmbbase = lmb_memory[i].base;
phys_size_t lmbsize = lmb_memory[i].size;
if (lmbsize < size)
continue;
if (max_addr == LMB_ALLOC_ANYWHERE) {
base = ALIGN_DOWN(lmbbase + lmbsize - size, align);
} else if (lmbbase < max_addr) {
base = lmbbase + lmbsize;
if (base < lmbbase)
base = -1;
base = min(base, max_addr);
base = ALIGN_DOWN(base - size, align);
} else {
continue;
}
while (base && lmbbase <= base) {
rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
if (rgn < 0) {
/* This area isn't reserved, take it */
if (lmb_add_region_flags(&lmb.used_mem, base,
size, flags))
return 0;
ret = lmb_map_update_notify(base, size,
LMB_MAP_OP_RESERVE,
flags);
if (ret)
return ret;
return base;
}
res_base = lmb_used[rgn].base;
if (res_base < size)
break;
base = ALIGN_DOWN(res_base - size, align);
}
}
return 0;
}
phys_addr_t lmb_alloc(phys_size_t size, ulong align)
{
return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE, LMB_NONE);
}
phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr,
uint flags)
{
phys_addr_t alloc;
alloc = _lmb_alloc_base(size, align, max_addr, flags);
if (alloc == 0)
printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
(ulong)size, (ulong)max_addr);
return alloc;
}
phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size, u32 flags)
{
long rgn;
struct lmb_region *lmb_memory = lmb.available_mem.data;
/* Check if the requested address is in one of the memory regions */
rgn = lmb_overlaps_region(&lmb.available_mem, base, size);
if (rgn >= 0) {
/*
* Check if the requested end address is in the same memory
* region we found.
*/
if (lmb_addrs_overlap(lmb_memory[rgn].base,
lmb_memory[rgn].size,
base + size - 1, 1)) {
/* ok, reserve the memory */
if (!lmb_reserve(base, size, flags))
return base;
}
}
return 0;
}
/* Return number of bytes from a given address that are free */
phys_size_t lmb_get_free_size(phys_addr_t addr)
{
int i;
long rgn;
struct lmb_region *lmb_used = lmb.used_mem.data;
struct lmb_region *lmb_memory = lmb.available_mem.data;
/* check if the requested address is in the memory regions */
rgn = lmb_overlaps_region(&lmb.available_mem, addr, 1);
if (rgn >= 0) {
for (i = 0; i < lmb.used_mem.count; i++) {
if (addr < lmb_used[i].base) {
/* first reserved range > requested address */
return lmb_used[i].base - addr;
}
if (lmb_used[i].base +
lmb_used[i].size > addr) {
/* requested addr is in this reserved range */
return 0;
}
}
/* if we come here: no reserved ranges above requested addr */
return lmb_memory[lmb.available_mem.count - 1].base +
lmb_memory[lmb.available_mem.count - 1].size - addr;
}
return 0;
}
int lmb_is_reserved_flags(phys_addr_t addr, int flags)
{
int i;
struct lmb_region *lmb_used = lmb.used_mem.data;
for (i = 0; i < lmb.used_mem.count; i++) {
phys_addr_t upper = lmb_used[i].base +
lmb_used[i].size - 1;
if (addr >= lmb_used[i].base && addr <= upper)
return (lmb_used[i].flags & flags) == flags;
}
return 0;
}
static int lmb_setup(bool test)
{
bool ret;
ret = alist_init(&lmb.available_mem, sizeof(struct lmb_region),
(uint)LMB_ALIST_INITIAL_SIZE);
if (!ret) {
log_debug("Unable to initialise the list for LMB free memory\n");
return -ENOMEM;
}
ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
(uint)LMB_ALIST_INITIAL_SIZE);
if (!ret) {
log_debug("Unable to initialise the list for LMB used memory\n");
return -ENOMEM;
}
lmb.test = test;
return 0;
}
int lmb_init(void)
{
int ret;
ret = lmb_setup(false);
if (ret) {
log_info("Unable to init LMB\n");
return ret;
}
lmb_add_memory();
/* Reserve the U-Boot image region once U-Boot has relocated */
if (xpl_phase() == PHASE_SPL)
lmb_reserve_common_spl();
else if (xpl_phase() == PHASE_BOARD_R)
lmb_reserve_common((void *)gd->fdt_blob);
return 0;
}
struct lmb *lmb_get(void)
{
return &lmb;
}
#if CONFIG_IS_ENABLED(UNIT_TEST)
int lmb_push(struct lmb *store)
{
int ret;
*store = lmb;
ret = lmb_setup(true);
if (ret)
return ret;
return 0;
}
void lmb_pop(struct lmb *store)
{
alist_uninit(&lmb.available_mem);
alist_uninit(&lmb.used_mem);
lmb = *store;
}
#endif /* UNIT_TEST */