u-boot/drivers/ddr/imx/imx9/ddr_init.c
Tom Rini d678a59d2d Revert "Merge patch series "arm: dts: am62-beagleplay: Fix Beagleplay Ethernet""
When bringing in the series 'arm: dts: am62-beagleplay: Fix Beagleplay
Ethernet"' I failed to notice that b4 noticed it was based on next and
so took that as the base commit and merged that part of next to master.

This reverts commit c8ffd1356d, reversing
changes made to 2ee6f3a5f7.

Reported-by: Jonas Karlman <jonas@kwiboo.se>
Signed-off-by: Tom Rini <trini@konsulko.com>
2024-05-19 08:16:36 -06:00

772 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2022 NXP
*/
#include <common.h>
#include <errno.h>
#include <log.h>
#include <asm/io.h>
#include <asm/arch/ddr.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <linux/delay.h>
static unsigned int g_cdd_rr_max[4];
static unsigned int g_cdd_rw_max[4];
static unsigned int g_cdd_wr_max[4];
static unsigned int g_cdd_ww_max[4];
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
void ddrphy_coldreset(void)
{
/* dramphy_apb_n default 1 , assert -> 0, de_assert -> 1 */
/* dramphy_reset_n default 0 , assert -> 0, de_assert -> 1 */
/* dramphy_PwrOKIn default 0 , assert -> 1, de_assert -> 0 */
/* src_gen_dphy_apb_sw_rst_de_assert */
clrbits_le32(REG_SRC_DPHY_SW_CTRL, BIT(0));
/* src_gen_dphy_sw_rst_de_assert */
clrbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(2));
/* src_gen_dphy_PwrOKIn_sw_rst_de_assert() */
setbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(0));
mdelay(10);
/* src_gen_dphy_apb_sw_rst_assert */
setbits_le32(REG_SRC_DPHY_SW_CTRL, BIT(0));
/* src_gen_dphy_sw_rst_assert */
setbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(2));
mdelay(10);
/* src_gen_dphy_PwrOKIn_sw_rst_assert */
clrbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(0));
mdelay(10);
/* src_gen_dphy_apb_sw_rst_de_assert */
clrbits_le32(REG_SRC_DPHY_SW_CTRL, BIT(0));
/* src_gen_dphy_sw_rst_de_assert() */
clrbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(2));
}
void check_ddrc_idle(void)
{
u32 regval;
do {
regval = readl(REG_DDRDSR_2);
if (regval & BIT(31))
break;
} while (1);
}
void check_dfi_init_complete(void)
{
u32 regval;
do {
regval = readl(REG_DDRDSR_2);
if (regval & BIT(2))
break;
} while (1);
setbits_le32(REG_DDRDSR_2, BIT(2));
}
void ddrc_config(struct dram_timing_info *dram_timing)
{
u32 num = dram_timing->ddrc_cfg_num;
struct dram_cfg_param *ddrc_config;
int i = 0;
ddrc_config = dram_timing->ddrc_cfg;
for (i = 0; i < num; i++) {
writel(ddrc_config->val, (ulong)ddrc_config->reg);
ddrc_config++;
}
if (dram_timing->fsp_cfg) {
ddrc_config = dram_timing->fsp_cfg[0].ddrc_cfg;
while (ddrc_config->reg != 0) {
writel(ddrc_config->val, (ulong)ddrc_config->reg);
ddrc_config++;
}
}
}
static unsigned int look_for_max(unsigned int data[], unsigned int addr_start,
unsigned int addr_end)
{
unsigned int i, imax = 0;
for (i = addr_start; i <= addr_end; i++) {
if (((data[i] >> 7) == 0) && data[i] > imax)
imax = data[i];
}
return imax;
}
void get_trained_CDD(u32 fsp)
{
unsigned int i, tmp;
unsigned int cdd_cha[12], cdd_chb[12];
unsigned int cdd_cha_rr_max, cdd_cha_rw_max, cdd_cha_wr_max, cdd_cha_ww_max;
unsigned int cdd_chb_rr_max, cdd_chb_rw_max, cdd_chb_wr_max, cdd_chb_ww_max;
for (i = 0; i < 6; i++) {
tmp = dwc_ddrphy_apb_rd(0x54013 + i);
cdd_cha[i * 2] = tmp & 0xff;
cdd_cha[i * 2 + 1] = (tmp >> 8) & 0xff;
}
for (i = 0; i < 7; i++) {
tmp = dwc_ddrphy_apb_rd(0x5402c + i);
if (i == 0) {
cdd_chb[0] = (tmp >> 8) & 0xff;
} else if (i == 6) {
cdd_chb[11] = tmp & 0xff;
} else {
cdd_chb[i * 2 - 1] = tmp & 0xff;
cdd_chb[i * 2] = (tmp >> 8) & 0xff;
}
}
cdd_cha_rr_max = look_for_max(cdd_cha, 0, 1);
cdd_cha_rw_max = look_for_max(cdd_cha, 2, 5);
cdd_cha_wr_max = look_for_max(cdd_cha, 6, 9);
cdd_cha_ww_max = look_for_max(cdd_cha, 10, 11);
cdd_chb_rr_max = look_for_max(cdd_chb, 0, 1);
cdd_chb_rw_max = look_for_max(cdd_chb, 2, 5);
cdd_chb_wr_max = look_for_max(cdd_chb, 6, 9);
cdd_chb_ww_max = look_for_max(cdd_chb, 10, 11);
g_cdd_rr_max[fsp] = cdd_cha_rr_max > cdd_chb_rr_max ? cdd_cha_rr_max : cdd_chb_rr_max;
g_cdd_rw_max[fsp] = cdd_cha_rw_max > cdd_chb_rw_max ? cdd_cha_rw_max : cdd_chb_rw_max;
g_cdd_wr_max[fsp] = cdd_cha_wr_max > cdd_chb_wr_max ? cdd_cha_wr_max : cdd_chb_wr_max;
g_cdd_ww_max[fsp] = cdd_cha_ww_max > cdd_chb_ww_max ? cdd_cha_ww_max : cdd_chb_ww_max;
}
static u32 ddrc_get_fsp_reg_setting(struct dram_cfg_param *ddrc_cfg, unsigned int cfg_num, u32 reg)
{
unsigned int i;
for (i = 0; i < cfg_num; i++) {
if (reg == ddrc_cfg[i].reg)
return ddrc_cfg[i].val;
}
return 0;
}
static void ddrc_update_fsp_reg_setting(struct dram_cfg_param *ddrc_cfg, int cfg_num,
u32 reg, u32 val)
{
unsigned int i;
for (i = 0; i < cfg_num; i++) {
if (reg == ddrc_cfg[i].reg) {
ddrc_cfg[i].val = val;
return;
}
}
}
void update_umctl2_rank_space_setting(struct dram_timing_info *dram_timing, unsigned int pstat_num)
{
u32 tmp, tmp_t;
u32 wwt, rrt, wrt, rwt;
u32 ext_wwt, ext_rrt, ext_wrt, ext_rwt;
u32 max_wwt, max_rrt, max_wrt, max_rwt;
u32 i;
for (i = 0; i < pstat_num; i++) {
/* read wwt, rrt, wrt, rwt fields from timing_cfg_0 */
if (!dram_timing->fsp_cfg_num) {
tmp = ddrc_get_fsp_reg_setting(dram_timing->ddrc_cfg,
dram_timing->ddrc_cfg_num,
REG_DDR_TIMING_CFG_0);
} else {
tmp = ddrc_get_fsp_reg_setting(dram_timing->fsp_cfg[i].ddrc_cfg,
ARRAY_SIZE(dram_timing->fsp_cfg[i].ddrc_cfg),
REG_DDR_TIMING_CFG_0);
}
wwt = (tmp >> 24) & 0x3;
rrt = (tmp >> 26) & 0x3;
wrt = (tmp >> 28) & 0x3;
rwt = (tmp >> 30) & 0x3;
/* read rxt_wwt, ext_rrt, ext_wrt, ext_rwt fields from timing_cfg_4 */
if (!dram_timing->fsp_cfg_num) {
tmp_t = ddrc_get_fsp_reg_setting(dram_timing->ddrc_cfg,
dram_timing->ddrc_cfg_num,
REG_DDR_TIMING_CFG_4);
} else {
tmp_t = ddrc_get_fsp_reg_setting(dram_timing->fsp_cfg[i].ddrc_cfg,
ARRAY_SIZE(dram_timing->fsp_cfg[i].ddrc_cfg),
REG_DDR_TIMING_CFG_4);
}
ext_wwt = (tmp_t >> 8) & 0x3;
ext_rrt = (tmp_t >> 10) & 0x3;
ext_wrt = (tmp_t >> 12) & 0x3;
ext_rwt = (tmp_t >> 14) & 0x3;
wwt = (ext_wwt << 2) | wwt;
rrt = (ext_rrt << 2) | rrt;
wrt = (ext_wrt << 2) | wrt;
rwt = (ext_rwt << 2) | rwt;
max_wwt = MAX(g_cdd_ww_max[0], wwt);
max_rrt = MAX(g_cdd_rr_max[0], rrt);
max_wrt = MAX(g_cdd_wr_max[0], wrt);
max_rwt = MAX(g_cdd_rw_max[0], rwt);
/* verify values to see if are bigger then 15 (4 bits) */
if (max_wwt > 15)
max_wwt = 15;
if (max_rrt > 15)
max_rrt = 15;
if (max_wrt > 15)
max_wrt = 15;
if (max_rwt > 15)
max_rwt = 15;
/* recalculate timings for controller registers */
wwt = max_wwt & 0x3;
rrt = max_rrt & 0x3;
wrt = max_wrt & 0x3;
rwt = max_rwt & 0x3;
ext_wwt = (max_wwt & 0xC) >> 2;
ext_rrt = (max_rrt & 0xC) >> 2;
ext_wrt = (max_wrt & 0xC) >> 2;
ext_rwt = (max_rwt & 0xC) >> 2;
/* update timing_cfg_0 and timing_cfg_4 */
tmp = (tmp & 0x00ffffff) | (rwt << 30) | (wrt << 28) |
(rrt << 26) | (wwt << 24);
tmp_t = (tmp_t & 0xFFFF00FF) | (ext_rwt << 14) |
(ext_wrt << 12) | (ext_rrt << 10) | (ext_wwt << 8);
if (!dram_timing->fsp_cfg_num) {
ddrc_update_fsp_reg_setting(dram_timing->ddrc_cfg,
dram_timing->ddrc_cfg_num,
REG_DDR_TIMING_CFG_0, tmp);
ddrc_update_fsp_reg_setting(dram_timing->ddrc_cfg,
dram_timing->ddrc_cfg_num,
REG_DDR_TIMING_CFG_4, tmp_t);
} else {
ddrc_update_fsp_reg_setting(dram_timing->fsp_cfg[i].ddrc_cfg,
ARRAY_SIZE(dram_timing->fsp_cfg[i].ddrc_cfg),
REG_DDR_TIMING_CFG_0, tmp);
ddrc_update_fsp_reg_setting(dram_timing->fsp_cfg[i].ddrc_cfg,
ARRAY_SIZE(dram_timing->fsp_cfg[i].ddrc_cfg),
REG_DDR_TIMING_CFG_4, tmp_t);
}
}
}
u32 ddrc_mrr(u32 chip_select, u32 mode_reg_num, u32 *mode_reg_val)
{
u32 temp;
writel(0x80000000, REG_DDR_SDRAM_MD_CNTL_2);
temp = 0x80000000 | (chip_select << 28) | (mode_reg_num << 0);
writel(temp, REG_DDR_SDRAM_MD_CNTL);
while ((readl(REG_DDR_SDRAM_MD_CNTL) & 0x80000000) == 0x80000000)
;
while (!(readl(REG_DDR_SDRAM_MPR5)))
;
*mode_reg_val = (readl(REG_DDR_SDRAM_MPR4) & 0xFF0000) >> 16;
writel(0x0, REG_DDR_SDRAM_MPR5);
while ((readl(REG_DDR_SDRAM_MPR5)))
;
writel(0x0, REG_DDR_SDRAM_MPR4);
writel(0x0, REG_DDR_SDRAM_MD_CNTL_2);
return 0;
}
void ddrc_mrs(u32 cs_sel, u32 opcode, u32 mr)
{
u32 regval;
regval = (cs_sel << 28) | (opcode << 6) | (mr);
writel(regval, REG_DDR_SDRAM_MD_CNTL);
setbits_le32(REG_DDR_SDRAM_MD_CNTL, BIT(31));
check_ddrc_idle();
}
u32 lpddr4_mr_read(u32 mr_rank, u32 mr_addr)
{
u32 chip_select, regval;
if (mr_rank == 1)
chip_select = 0; /* CS0 */
else if (mr_rank == 2)
chip_select = 1; /* CS1 */
else
chip_select = 4; /* CS0 & CS1 */
ddrc_mrr(chip_select, mr_addr, &regval);
return regval;
}
void update_mr_fsp_op0(struct dram_cfg_param *cfg, unsigned int num)
{
int i;
ddrc_mrs(0x4, 0x88, 13); /* FSP-OP->1, FSP-WR->0, VRCG=1, DMD=0 */
for (i = 0; i < num; i++) {
if (cfg[i].reg)
ddrc_mrs(0x4, cfg[i].val, cfg[i].reg);
}
ddrc_mrs(0x4, 0xc0, 13); /* FSP-OP->1, FSP-WR->1, VRCG=0, DMD=0 */
}
void save_trained_mr12_14(struct dram_cfg_param *cfg, u32 cfg_num, u32 mr12, u32 mr14)
{
int i;
for (i = 0; i < cfg_num; i++) {
if (cfg->reg == 12)
cfg->val = mr12;
else if (cfg->reg == 14)
cfg->val = mr14;
cfg++;
}
}
int ddr_init(struct dram_timing_info *dram_timing)
{
unsigned int initial_drate;
struct dram_timing_info *saved_timing;
void *fsp;
int ret;
u32 mr12, mr14;
u32 regval;
debug("DDRINFO: start DRAM init\n");
/* reset ddrphy */
ddrphy_coldreset();
debug("DDRINFO: cfg clk\n");
initial_drate = dram_timing->fsp_msg[0].drate;
/* default to the frequency point 0 clock */
ddrphy_init_set_dfi_clk(initial_drate);
/*
* Start PHY initialization and training by
* accessing relevant PUB registers
*/
debug("DDRINFO:ddrphy config start\n");
ret = ddr_cfg_phy(dram_timing);
if (ret)
return ret;
debug("DDRINFO: ddrphy config done\n");
update_umctl2_rank_space_setting(dram_timing, dram_timing->fsp_msg_num - 1);
/* rogram the ddrc registers */
debug("DDRINFO: ddrc config start\n");
ddrc_config(dram_timing);
debug("DDRINFO: ddrc config done\n");
#ifdef CONFIG_IMX9_DRAM_PM_COUNTER
writel(0x200000, REG_DDR_DEBUG_19);
#endif
check_dfi_init_complete();
regval = readl(REG_DDR_SDRAM_CFG);
writel((regval | 0x80000000), REG_DDR_SDRAM_CFG);
check_ddrc_idle();
mr12 = lpddr4_mr_read(1, 12);
mr14 = lpddr4_mr_read(1, 14);
/* save the dram timing config into memory */
fsp = dram_config_save(dram_timing, CONFIG_SAVED_DRAM_TIMING_BASE);
saved_timing = (struct dram_timing_info *)CONFIG_SAVED_DRAM_TIMING_BASE;
saved_timing->fsp_cfg = fsp;
saved_timing->fsp_cfg_num = dram_timing->fsp_cfg_num;
if (saved_timing->fsp_cfg_num) {
memcpy(saved_timing->fsp_cfg, dram_timing->fsp_cfg,
dram_timing->fsp_cfg_num * sizeof(struct dram_fsp_cfg));
save_trained_mr12_14(saved_timing->fsp_cfg[0].mr_cfg,
ARRAY_SIZE(saved_timing->fsp_cfg[0].mr_cfg), mr12, mr14);
/*
* Configure mode registers in fsp1 to mode register 0 because DDRC
* doesn't automatically set.
*/
if (saved_timing->fsp_cfg_num > 1)
update_mr_fsp_op0(saved_timing->fsp_cfg[1].mr_cfg,
ARRAY_SIZE(saved_timing->fsp_cfg[1].mr_cfg));
}
return 0;
}
ulong ddrphy_addr_remap(u32 paddr_apb_from_ctlr)
{
u32 paddr_apb_qual;
u32 paddr_apb_unqual_dec_22_13;
u32 paddr_apb_unqual_dec_19_13;
u32 paddr_apb_unqual_dec_12_1;
u32 paddr_apb_unqual;
u32 paddr_apb_phy;
paddr_apb_qual = (paddr_apb_from_ctlr << 1);
paddr_apb_unqual_dec_22_13 = ((paddr_apb_qual & 0x7fe000) >> 13);
paddr_apb_unqual_dec_12_1 = ((paddr_apb_qual & 0x1ffe) >> 1);
switch (paddr_apb_unqual_dec_22_13) {
case 0x000:
paddr_apb_unqual_dec_19_13 = 0x00;
break;
case 0x001:
paddr_apb_unqual_dec_19_13 = 0x01;
break;
case 0x002:
paddr_apb_unqual_dec_19_13 = 0x02;
break;
case 0x003:
paddr_apb_unqual_dec_19_13 = 0x03;
break;
case 0x004:
paddr_apb_unqual_dec_19_13 = 0x04;
break;
case 0x005:
paddr_apb_unqual_dec_19_13 = 0x05;
break;
case 0x006:
paddr_apb_unqual_dec_19_13 = 0x06;
break;
case 0x007:
paddr_apb_unqual_dec_19_13 = 0x07;
break;
case 0x008:
paddr_apb_unqual_dec_19_13 = 0x08;
break;
case 0x009:
paddr_apb_unqual_dec_19_13 = 0x09;
break;
case 0x00a:
paddr_apb_unqual_dec_19_13 = 0x0a;
break;
case 0x00b:
paddr_apb_unqual_dec_19_13 = 0x0b;
break;
case 0x100:
paddr_apb_unqual_dec_19_13 = 0x0c;
break;
case 0x101:
paddr_apb_unqual_dec_19_13 = 0x0d;
break;
case 0x102:
paddr_apb_unqual_dec_19_13 = 0x0e;
break;
case 0x103:
paddr_apb_unqual_dec_19_13 = 0x0f;
break;
case 0x104:
paddr_apb_unqual_dec_19_13 = 0x10;
break;
case 0x105:
paddr_apb_unqual_dec_19_13 = 0x11;
break;
case 0x106:
paddr_apb_unqual_dec_19_13 = 0x12;
break;
case 0x107:
paddr_apb_unqual_dec_19_13 = 0x13;
break;
case 0x108:
paddr_apb_unqual_dec_19_13 = 0x14;
break;
case 0x109:
paddr_apb_unqual_dec_19_13 = 0x15;
break;
case 0x10a:
paddr_apb_unqual_dec_19_13 = 0x16;
break;
case 0x10b:
paddr_apb_unqual_dec_19_13 = 0x17;
break;
case 0x200:
paddr_apb_unqual_dec_19_13 = 0x18;
break;
case 0x201:
paddr_apb_unqual_dec_19_13 = 0x19;
break;
case 0x202:
paddr_apb_unqual_dec_19_13 = 0x1a;
break;
case 0x203:
paddr_apb_unqual_dec_19_13 = 0x1b;
break;
case 0x204:
paddr_apb_unqual_dec_19_13 = 0x1c;
break;
case 0x205:
paddr_apb_unqual_dec_19_13 = 0x1d;
break;
case 0x206:
paddr_apb_unqual_dec_19_13 = 0x1e;
break;
case 0x207:
paddr_apb_unqual_dec_19_13 = 0x1f;
break;
case 0x208:
paddr_apb_unqual_dec_19_13 = 0x20;
break;
case 0x209:
paddr_apb_unqual_dec_19_13 = 0x21;
break;
case 0x20a:
paddr_apb_unqual_dec_19_13 = 0x22;
break;
case 0x20b:
paddr_apb_unqual_dec_19_13 = 0x23;
break;
case 0x300:
paddr_apb_unqual_dec_19_13 = 0x24;
break;
case 0x301:
paddr_apb_unqual_dec_19_13 = 0x25;
break;
case 0x302:
paddr_apb_unqual_dec_19_13 = 0x26;
break;
case 0x303:
paddr_apb_unqual_dec_19_13 = 0x27;
break;
case 0x304:
paddr_apb_unqual_dec_19_13 = 0x28;
break;
case 0x305:
paddr_apb_unqual_dec_19_13 = 0x29;
break;
case 0x306:
paddr_apb_unqual_dec_19_13 = 0x2a;
break;
case 0x307:
paddr_apb_unqual_dec_19_13 = 0x2b;
break;
case 0x308:
paddr_apb_unqual_dec_19_13 = 0x2c;
break;
case 0x309:
paddr_apb_unqual_dec_19_13 = 0x2d;
break;
case 0x30a:
paddr_apb_unqual_dec_19_13 = 0x2e;
break;
case 0x30b:
paddr_apb_unqual_dec_19_13 = 0x2f;
break;
case 0x010:
paddr_apb_unqual_dec_19_13 = 0x30;
break;
case 0x011:
paddr_apb_unqual_dec_19_13 = 0x31;
break;
case 0x012:
paddr_apb_unqual_dec_19_13 = 0x32;
break;
case 0x013:
paddr_apb_unqual_dec_19_13 = 0x33;
break;
case 0x014:
paddr_apb_unqual_dec_19_13 = 0x34;
break;
case 0x015:
paddr_apb_unqual_dec_19_13 = 0x35;
break;
case 0x016:
paddr_apb_unqual_dec_19_13 = 0x36;
break;
case 0x017:
paddr_apb_unqual_dec_19_13 = 0x37;
break;
case 0x018:
paddr_apb_unqual_dec_19_13 = 0x38;
break;
case 0x019:
paddr_apb_unqual_dec_19_13 = 0x39;
break;
case 0x110:
paddr_apb_unqual_dec_19_13 = 0x3a;
break;
case 0x111:
paddr_apb_unqual_dec_19_13 = 0x3b;
break;
case 0x112:
paddr_apb_unqual_dec_19_13 = 0x3c;
break;
case 0x113:
paddr_apb_unqual_dec_19_13 = 0x3d;
break;
case 0x114:
paddr_apb_unqual_dec_19_13 = 0x3e;
break;
case 0x115:
paddr_apb_unqual_dec_19_13 = 0x3f;
break;
case 0x116:
paddr_apb_unqual_dec_19_13 = 0x40;
break;
case 0x117:
paddr_apb_unqual_dec_19_13 = 0x41;
break;
case 0x118:
paddr_apb_unqual_dec_19_13 = 0x42;
break;
case 0x119:
paddr_apb_unqual_dec_19_13 = 0x43;
break;
case 0x210:
paddr_apb_unqual_dec_19_13 = 0x44;
break;
case 0x211:
paddr_apb_unqual_dec_19_13 = 0x45;
break;
case 0x212:
paddr_apb_unqual_dec_19_13 = 0x46;
break;
case 0x213:
paddr_apb_unqual_dec_19_13 = 0x47;
break;
case 0x214:
paddr_apb_unqual_dec_19_13 = 0x48;
break;
case 0x215:
paddr_apb_unqual_dec_19_13 = 0x49;
break;
case 0x216:
paddr_apb_unqual_dec_19_13 = 0x4a;
break;
case 0x217:
paddr_apb_unqual_dec_19_13 = 0x4b;
break;
case 0x218:
paddr_apb_unqual_dec_19_13 = 0x4c;
break;
case 0x219:
paddr_apb_unqual_dec_19_13 = 0x4d;
break;
case 0x310:
paddr_apb_unqual_dec_19_13 = 0x4e;
break;
case 0x311:
paddr_apb_unqual_dec_19_13 = 0x4f;
break;
case 0x312:
paddr_apb_unqual_dec_19_13 = 0x50;
break;
case 0x313:
paddr_apb_unqual_dec_19_13 = 0x51;
break;
case 0x314:
paddr_apb_unqual_dec_19_13 = 0x52;
break;
case 0x315:
paddr_apb_unqual_dec_19_13 = 0x53;
break;
case 0x316:
paddr_apb_unqual_dec_19_13 = 0x54;
break;
case 0x317:
paddr_apb_unqual_dec_19_13 = 0x55;
break;
case 0x318:
paddr_apb_unqual_dec_19_13 = 0x56;
break;
case 0x319:
paddr_apb_unqual_dec_19_13 = 0x57;
break;
case 0x020:
paddr_apb_unqual_dec_19_13 = 0x58;
break;
case 0x120:
paddr_apb_unqual_dec_19_13 = 0x59;
break;
case 0x220:
paddr_apb_unqual_dec_19_13 = 0x5a;
break;
case 0x320:
paddr_apb_unqual_dec_19_13 = 0x5b;
break;
case 0x040:
paddr_apb_unqual_dec_19_13 = 0x5c;
break;
case 0x140:
paddr_apb_unqual_dec_19_13 = 0x5d;
break;
case 0x240:
paddr_apb_unqual_dec_19_13 = 0x5e;
break;
case 0x340:
paddr_apb_unqual_dec_19_13 = 0x5f;
break;
case 0x050:
paddr_apb_unqual_dec_19_13 = 0x60;
break;
case 0x051:
paddr_apb_unqual_dec_19_13 = 0x61;
break;
case 0x052:
paddr_apb_unqual_dec_19_13 = 0x62;
break;
case 0x053:
paddr_apb_unqual_dec_19_13 = 0x63;
break;
case 0x054:
paddr_apb_unqual_dec_19_13 = 0x64;
break;
case 0x055:
paddr_apb_unqual_dec_19_13 = 0x65;
break;
case 0x056:
paddr_apb_unqual_dec_19_13 = 0x66;
break;
case 0x057:
paddr_apb_unqual_dec_19_13 = 0x67;
break;
case 0x070:
paddr_apb_unqual_dec_19_13 = 0x68;
break;
case 0x090:
paddr_apb_unqual_dec_19_13 = 0x69;
break;
case 0x190:
paddr_apb_unqual_dec_19_13 = 0x6a;
break;
case 0x290:
paddr_apb_unqual_dec_19_13 = 0x6b;
break;
case 0x390:
paddr_apb_unqual_dec_19_13 = 0x6c;
break;
case 0x0c0:
paddr_apb_unqual_dec_19_13 = 0x6d;
break;
case 0x0d0:
paddr_apb_unqual_dec_19_13 = 0x6e;
break;
default:
paddr_apb_unqual_dec_19_13 = 0x00;
break;
}
paddr_apb_unqual = ((paddr_apb_unqual_dec_19_13 << 13) | (paddr_apb_unqual_dec_12_1 << 1));
paddr_apb_phy = (paddr_apb_unqual << 1);
return paddr_apb_phy;
}