u-boot/board/raspberrypi/rpi/rpi.c
Simon Glass 2f3b679298 board: raspberrypi: Add ASL files from tianocore
Add the necessary DSDT files copied from tianocore to boot the RPi4.
In addition generate a board specific SSDT to dynamically enable/disable
ACPI devices based on FDT. This is required to support the various variants
and boot options. It also allows to test the code on QEMU 9.0 without
modifications, since it doesn't emulate PCIe yet.

Signed-off-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Patrick Rudolph <patrick.rudolph@9elements.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Cc: Simon Glass <sjg@chromium.org>
Cc: Matthias Brugger <mbrugger@suse.com>
Cc: Peter Robinson <pbrobinson@gmail.com>
2024-10-27 17:24:13 -06:00

768 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* (C) Copyright 2012-2016 Stephen Warren
*/
#include <config.h>
#include <dm.h>
#include <env.h>
#include <efi_loader.h>
#include <fdt_support.h>
#include <fdt_simplefb.h>
#include <init.h>
#include <memalign.h>
#include <mmc.h>
#include <asm/gpio.h>
#include <asm/arch/mbox.h>
#include <asm/arch/msg.h>
#include <asm/arch/sdhci.h>
#include <asm/global_data.h>
#include <dm/platform_data/serial_bcm283x_mu.h>
#ifdef CONFIG_ARM64
#include <asm/armv8/mmu.h>
#endif
#include <watchdog.h>
#include <dm/pinctrl.h>
#include <dm/ofnode.h>
#include <acpi/acpi_table.h>
#include <acpi/acpigen.h>
#include <dm/lists.h>
#include <tables_csum.h>
DECLARE_GLOBAL_DATA_PTR;
/* Assigned in lowlevel_init.S
* Push the variable into the .data section so that it
* does not get cleared later.
*/
unsigned long __section(".data") fw_dtb_pointer;
/* TODO(sjg@chromium.org): Move these to the msg.c file */
struct msg_get_arm_mem {
struct bcm2835_mbox_hdr hdr;
struct bcm2835_mbox_tag_get_arm_mem get_arm_mem;
u32 end_tag;
};
struct msg_get_board_rev {
struct bcm2835_mbox_hdr hdr;
struct bcm2835_mbox_tag_get_board_rev get_board_rev;
u32 end_tag;
};
struct msg_get_board_serial {
struct bcm2835_mbox_hdr hdr;
struct bcm2835_mbox_tag_get_board_serial get_board_serial;
u32 end_tag;
};
struct msg_get_mac_address {
struct bcm2835_mbox_hdr hdr;
struct bcm2835_mbox_tag_get_mac_address get_mac_address;
u32 end_tag;
};
struct msg_get_clock_rate {
struct bcm2835_mbox_hdr hdr;
struct bcm2835_mbox_tag_get_clock_rate get_clock_rate;
u32 end_tag;
};
#ifdef CONFIG_ARM64
#define DTB_DIR "broadcom/"
#else
#define DTB_DIR ""
#endif
/*
* https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-revision-codes
*/
struct rpi_model {
const char *name;
const char *fdtfile;
bool has_onboard_eth;
};
static const struct rpi_model rpi_model_unknown = {
"Unknown model",
DTB_DIR "bcm283x-rpi-other.dtb",
false,
};
static const struct rpi_model rpi_models_new_scheme[] = {
[0x0] = {
"Model A",
DTB_DIR "bcm2835-rpi-a.dtb",
false,
},
[0x1] = {
"Model B",
DTB_DIR "bcm2835-rpi-b.dtb",
true,
},
[0x2] = {
"Model A+",
DTB_DIR "bcm2835-rpi-a-plus.dtb",
false,
},
[0x3] = {
"Model B+",
DTB_DIR "bcm2835-rpi-b-plus.dtb",
true,
},
[0x4] = {
"2 Model B",
DTB_DIR "bcm2836-rpi-2-b.dtb",
true,
},
[0x6] = {
"Compute Module",
DTB_DIR "bcm2835-rpi-cm.dtb",
false,
},
[0x8] = {
"3 Model B",
DTB_DIR "bcm2837-rpi-3-b.dtb",
true,
},
[0x9] = {
"Zero",
DTB_DIR "bcm2835-rpi-zero.dtb",
false,
},
[0xA] = {
"Compute Module 3",
DTB_DIR "bcm2837-rpi-cm3.dtb",
false,
},
[0xC] = {
"Zero W",
DTB_DIR "bcm2835-rpi-zero-w.dtb",
false,
},
[0xD] = {
"3 Model B+",
DTB_DIR "bcm2837-rpi-3-b-plus.dtb",
true,
},
[0xE] = {
"3 Model A+",
DTB_DIR "bcm2837-rpi-3-a-plus.dtb",
false,
},
[0x10] = {
"Compute Module 3+",
DTB_DIR "bcm2837-rpi-cm3.dtb",
false,
},
[0x11] = {
"4 Model B",
DTB_DIR "bcm2711-rpi-4-b.dtb",
true,
},
[0x12] = {
"Zero 2 W",
DTB_DIR "bcm2837-rpi-zero-2-w.dtb",
false,
},
[0x13] = {
"400",
DTB_DIR "bcm2711-rpi-400.dtb",
true,
},
[0x14] = {
"Compute Module 4",
DTB_DIR "bcm2711-rpi-cm4.dtb",
true,
},
[0x17] = {
"5 Model B",
DTB_DIR "bcm2712-rpi-5-b.dtb",
true,
},
};
static const struct rpi_model rpi_models_old_scheme[] = {
[0x2] = {
"Model B",
DTB_DIR "bcm2835-rpi-b.dtb",
true,
},
[0x3] = {
"Model B",
DTB_DIR "bcm2835-rpi-b.dtb",
true,
},
[0x4] = {
"Model B rev2",
DTB_DIR "bcm2835-rpi-b-rev2.dtb",
true,
},
[0x5] = {
"Model B rev2",
DTB_DIR "bcm2835-rpi-b-rev2.dtb",
true,
},
[0x6] = {
"Model B rev2",
DTB_DIR "bcm2835-rpi-b-rev2.dtb",
true,
},
[0x7] = {
"Model A",
DTB_DIR "bcm2835-rpi-a.dtb",
false,
},
[0x8] = {
"Model A",
DTB_DIR "bcm2835-rpi-a.dtb",
false,
},
[0x9] = {
"Model A",
DTB_DIR "bcm2835-rpi-a.dtb",
false,
},
[0xd] = {
"Model B rev2",
DTB_DIR "bcm2835-rpi-b-rev2.dtb",
true,
},
[0xe] = {
"Model B rev2",
DTB_DIR "bcm2835-rpi-b-rev2.dtb",
true,
},
[0xf] = {
"Model B rev2",
DTB_DIR "bcm2835-rpi-b-rev2.dtb",
true,
},
[0x10] = {
"Model B+",
DTB_DIR "bcm2835-rpi-b-plus.dtb",
true,
},
[0x11] = {
"Compute Module",
DTB_DIR "bcm2835-rpi-cm.dtb",
false,
},
[0x12] = {
"Model A+",
DTB_DIR "bcm2835-rpi-a-plus.dtb",
false,
},
[0x13] = {
"Model B+",
DTB_DIR "bcm2835-rpi-b-plus.dtb",
true,
},
[0x14] = {
"Compute Module",
DTB_DIR "bcm2835-rpi-cm.dtb",
false,
},
[0x15] = {
"Model A+",
DTB_DIR "bcm2835-rpi-a-plus.dtb",
false,
},
};
static uint32_t revision;
static uint32_t rev_scheme;
static uint32_t rev_type;
static const struct rpi_model *model;
int dram_init(void)
{
ALLOC_CACHE_ALIGN_BUFFER(struct msg_get_arm_mem, msg, 1);
int ret;
BCM2835_MBOX_INIT_HDR(msg);
BCM2835_MBOX_INIT_TAG(&msg->get_arm_mem, GET_ARM_MEMORY);
ret = bcm2835_mbox_call_prop(BCM2835_MBOX_PROP_CHAN, &msg->hdr);
if (ret) {
printf("bcm2835: Could not query ARM memory size\n");
return -1;
}
gd->ram_size = msg->get_arm_mem.body.resp.mem_size;
/*
* In some configurations the memory size returned by VideoCore
* is not aligned to the section size, what is mandatory for
* the u-boot's memory setup.
*/
gd->ram_size &= ~MMU_SECTION_SIZE;
return 0;
}
#ifdef CONFIG_OF_BOARD
int dram_init_banksize(void)
{
int ret;
ret = fdtdec_setup_memory_banksize();
if (ret)
return ret;
return fdtdec_setup_mem_size_base();
}
#endif
static void set_fdtfile(void)
{
const char *fdtfile;
if (env_get("fdtfile"))
return;
fdtfile = model->fdtfile;
env_set("fdtfile", fdtfile);
}
/*
* If the firmware provided a valid FDT at boot time, let's expose it in
* ${fdt_addr} so it may be passed unmodified to the kernel.
*/
static void set_fdt_addr(void)
{
if (env_get("fdt_addr"))
return;
if (fdt_magic(fw_dtb_pointer) != FDT_MAGIC)
return;
env_set_hex("fdt_addr", fw_dtb_pointer);
}
/*
* Prevent relocation from stomping on a firmware provided FDT blob.
*/
phys_addr_t board_get_usable_ram_top(phys_size_t total_size)
{
if ((gd->ram_top - fw_dtb_pointer) > SZ_64M)
return gd->ram_top;
return fw_dtb_pointer & ~0xffff;
}
static void set_usbethaddr(void)
{
ALLOC_CACHE_ALIGN_BUFFER(struct msg_get_mac_address, msg, 1);
int ret;
if (!model->has_onboard_eth)
return;
if (env_get("usbethaddr"))
return;
BCM2835_MBOX_INIT_HDR(msg);
BCM2835_MBOX_INIT_TAG(&msg->get_mac_address, GET_MAC_ADDRESS);
ret = bcm2835_mbox_call_prop(BCM2835_MBOX_PROP_CHAN, &msg->hdr);
if (ret) {
printf("bcm2835: Could not query MAC address\n");
/* Ignore error; not critical */
return;
}
eth_env_set_enetaddr("usbethaddr", msg->get_mac_address.body.resp.mac);
if (!env_get("ethaddr"))
env_set("ethaddr", env_get("usbethaddr"));
return;
}
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
static void set_board_info(void)
{
char s[11];
snprintf(s, sizeof(s), "0x%X", revision);
env_set("board_revision", s);
snprintf(s, sizeof(s), "%u", rev_scheme);
env_set("board_rev_scheme", s);
/* Can't rename this to board_rev_type since it's an ABI for scripts */
snprintf(s, sizeof(s), "0x%X", rev_type);
env_set("board_rev", s);
env_set("board_name", model->name);
}
#endif /* CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG */
static void set_serial_number(void)
{
ALLOC_CACHE_ALIGN_BUFFER(struct msg_get_board_serial, msg, 1);
int ret;
char serial_string[17] = { 0 };
if (env_get("serial#"))
return;
BCM2835_MBOX_INIT_HDR(msg);
BCM2835_MBOX_INIT_TAG_NO_REQ(&msg->get_board_serial, GET_BOARD_SERIAL);
ret = bcm2835_mbox_call_prop(BCM2835_MBOX_PROP_CHAN, &msg->hdr);
if (ret) {
printf("bcm2835: Could not query board serial\n");
/* Ignore error; not critical */
return;
}
snprintf(serial_string, sizeof(serial_string), "%016llx",
msg->get_board_serial.body.resp.serial);
env_set("serial#", serial_string);
}
int misc_init_r(void)
{
set_fdt_addr();
set_fdtfile();
set_usbethaddr();
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
set_board_info();
#endif
set_serial_number();
return 0;
}
static void get_board_revision(void)
{
ALLOC_CACHE_ALIGN_BUFFER(struct msg_get_board_rev, msg, 1);
int ret;
const struct rpi_model *models;
uint32_t models_count;
ofnode node;
BCM2835_MBOX_INIT_HDR(msg);
BCM2835_MBOX_INIT_TAG(&msg->get_board_rev, GET_BOARD_REV);
ret = bcm2835_mbox_call_prop(BCM2835_MBOX_PROP_CHAN, &msg->hdr);
if (ret) {
/* Ignore error; not critical */
node = ofnode_path("/system");
if (!ofnode_valid(node)) {
printf("bcm2835: Could not find /system node\n");
return;
}
ret = ofnode_read_u32(node, "linux,revision", &revision);
if (ret) {
printf("bcm2835: Could not find linux,revision\n");
return;
}
} else {
revision = msg->get_board_rev.body.resp.rev;
}
/*
* For details of old-vs-new scheme, see:
* https://github.com/pimoroni/RPi.version/blob/master/RPi/version.py
* http://www.raspberrypi.org/forums/viewtopic.php?f=63&t=99293&p=690282
* (a few posts down)
*
* For the RPi 1, bit 24 is the "warranty bit", so we mask off just the
* lower byte to use as the board rev:
* http://www.raspberrypi.org/forums/viewtopic.php?f=63&t=98367&start=250
* http://www.raspberrypi.org/forums/viewtopic.php?f=31&t=20594
*/
if (revision & 0x800000) {
rev_scheme = 1;
rev_type = (revision >> 4) & 0xff;
models = rpi_models_new_scheme;
models_count = ARRAY_SIZE(rpi_models_new_scheme);
} else {
rev_scheme = 0;
rev_type = revision & 0xff;
models = rpi_models_old_scheme;
models_count = ARRAY_SIZE(rpi_models_old_scheme);
}
if (rev_type >= models_count) {
printf("RPI: Board rev 0x%x outside known range\n", rev_type);
model = &rpi_model_unknown;
} else if (!models[rev_type].name) {
printf("RPI: Board rev 0x%x unknown\n", rev_type);
model = &rpi_model_unknown;
} else {
model = &models[rev_type];
}
printf("RPI %s (0x%x)\n", model->name, revision);
}
int board_init(void)
{
get_board_revision();
gd->bd->bi_boot_params = 0x100;
return bcm2835_power_on_module(BCM2835_MBOX_POWER_DEVID_USB_HCD);
}
/*
* If the firmware passed a device tree use it for U-Boot.
*/
void *board_fdt_blob_setup(int *err)
{
*err = 0;
if (fdt_magic(fw_dtb_pointer) != FDT_MAGIC) {
*err = -ENXIO;
return NULL;
}
return (void *)fw_dtb_pointer;
}
int copy_property(void *dst, void *src, char *path, char *property)
{
int dst_offset, src_offset;
const fdt32_t *prop;
int len;
src_offset = fdt_path_offset(src, path);
dst_offset = fdt_path_offset(dst, path);
if (src_offset < 0 || dst_offset < 0)
return -1;
prop = fdt_getprop(src, src_offset, property, &len);
if (!prop)
return -1;
return fdt_setprop(dst, dst_offset, property, prop, len);
}
/* Copy tweaks from the firmware dtb to the loaded dtb */
void update_fdt_from_fw(void *fdt, void *fw_fdt)
{
/* Using dtb from firmware directly; leave it alone */
if (fdt == fw_fdt)
return;
/* The firmware provides a more precie model; so copy that */
copy_property(fdt, fw_fdt, "/", "model");
/* memory reserve as suggested by the firmware */
copy_property(fdt, fw_fdt, "/", "memreserve");
/* Adjust dma-ranges for the SD card and PCI bus as they can depend on
* the SoC revision
*/
copy_property(fdt, fw_fdt, "emmc2bus", "dma-ranges");
copy_property(fdt, fw_fdt, "pcie0", "dma-ranges");
/* Bootloader configuration template exposes as nvmem */
if (copy_property(fdt, fw_fdt, "blconfig", "reg") == 0)
copy_property(fdt, fw_fdt, "blconfig", "status");
/* kernel address randomisation seed as provided by the firmware */
copy_property(fdt, fw_fdt, "/chosen", "kaslr-seed");
/* address of the PHY device as provided by the firmware */
copy_property(fdt, fw_fdt, "ethernet0/mdio@e14/ethernet-phy@1", "reg");
}
int ft_board_setup(void *blob, struct bd_info *bd)
{
int node;
update_fdt_from_fw(blob, (void *)fw_dtb_pointer);
node = fdt_node_offset_by_compatible(blob, -1, "simple-framebuffer");
if (node < 0)
fdt_simplefb_add_node(blob);
else
fdt_simplefb_enable_and_mem_rsv(blob);
#ifdef CONFIG_EFI_LOADER
/* Reserve the spin table */
efi_add_memory_map(0, CONFIG_RPI_EFI_NR_SPIN_PAGES << EFI_PAGE_SHIFT,
EFI_RESERVED_MEMORY_TYPE);
#endif
return 0;
}
#if CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE)
static bool is_rpi4(void)
{
return of_machine_is_compatible("brcm,bcm2711") ||
of_machine_is_compatible("brcm,bcm2712");
}
static bool is_rpi3(void)
{
return of_machine_is_compatible("brcm,bcm2837");
}
static int acpi_rpi_board_fill_ssdt(struct acpi_ctx *ctx)
{
int node, ret, uart_in_use, mini_clock_rate;
bool enabled;
struct udevice *dev;
struct {
const char *fdt_compatible;
const char *acpi_scope;
bool on_rpi4;
bool on_rpi3;
u32 mmio_address;
} map[] = {
{"brcm,bcm2711-pcie", "\\_SB.PCI0", true, false},
{"brcm,bcm2711-emmc2", "\\_SB.GDV1.SDC3", true, false},
{"brcm,bcm2835-pwm", "\\_SB.GDV0.PWM0", true, true},
{"brcm,bcm2711-genet-v5", "\\_SB.ETH0", true, false},
{"brcm,bcm2711-thermal", "\\_SB.EC00", true, true},
{"brcm,bcm2835-sdhci", "\\_SB.SDC1", true, true},
{"brcm,bcm2835-sdhost", "\\_SB.SDC2", false, true},
{"brcm,bcm2835-mbox", "\\_SB.GDV0.RPIQ", true, true},
{"brcm,bcm2835-i2c", "\\_SB.GDV0.I2C1", true, true, 0xfe205000},
{"brcm,bcm2835-i2c", "\\_SB.GDV0.I2C2", true, true, 0xfe804000},
{"brcm,bcm2835-spi", "\\_SB.GDV0.SPI0", true, true},
{"brcm,bcm2835-aux-spi", "\\_SB.GDV0.SPI1", true, true, 0xfe215080},
{"arm,pl011", "\\_SB.URT0", true, true},
{"brcm,bcm2835-aux-uart", "\\_SB.URTM", true, true},
{ /* Sentinel */ }
};
/* Device enable */
for (int i = 0; map[i].fdt_compatible; i++) {
if ((is_rpi4() && !map[i].on_rpi4) ||
(is_rpi3() && !map[i].on_rpi3)) {
enabled = false;
} else {
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1,
map[i].fdt_compatible);
while (node != -FDT_ERR_NOTFOUND && map[i].mmio_address) {
struct fdt_resource r;
ret = fdt_get_resource(gd->fdt_blob, node, "reg", 0, &r);
if (ret) {
node = -FDT_ERR_NOTFOUND;
break;
}
if (r.start == map[i].mmio_address)
break;
node = fdt_node_offset_by_compatible(gd->fdt_blob, node,
map[i].fdt_compatible);
}
enabled = (node > 0) ? fdtdec_get_is_enabled(gd->fdt_blob, node) : 0;
}
acpigen_write_scope(ctx, map[i].acpi_scope);
acpigen_write_name_integer(ctx, "_STA", enabled ? 0xf : 0);
acpigen_pop_len(ctx);
}
/* GPIO quirks */
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "brcm,bcm2835-gpio");
if (node <= 0)
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "brcm,bcm2711-gpio");
acpigen_write_scope(ctx, "\\_SB.GDV0.GPI0");
enabled = (node > 0) ? fdtdec_get_is_enabled(gd->fdt_blob, node) : 0;
acpigen_write_name_integer(ctx, "_STA", enabled ? 0xf : 0);
acpigen_pop_len(ctx);
if (is_rpi4()) {
/* eMMC quirks */
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "brcm,bcm2711-emmc2");
if (node) {
phys_addr_t cpu;
dma_addr_t bus;
u64 size;
ret = fdt_get_dma_range(gd->fdt_blob, node, &cpu, &bus, &size);
acpigen_write_scope(ctx, "\\_SB.GDV1");
acpigen_write_method_serialized(ctx, "_DMA", 0);
acpigen_emit_byte(ctx, RETURN_OP);
if (!ret && bus != cpu) /* Translated DMA range */
acpigen_emit_namestring(ctx, "\\_SB.GDV1.DMTR");
else if (!ret && bus == cpu) /* Non translated DMA */
acpigen_emit_namestring(ctx, "\\_SB.GDV1.DMNT");
else /* Silicon revisions older than C0: Translated DMA range */
acpigen_emit_namestring(ctx, "\\_SB.GDV1.DMTR");
acpigen_pop_len(ctx);
}
}
/* Serial */
uart_in_use = ~0;
mini_clock_rate = 0x1000000;
ret = uclass_get_device_by_driver(UCLASS_SERIAL,
DM_DRIVER_GET(bcm283x_pl011_uart),
&dev);
if (!ret)
uart_in_use = 0;
ret = uclass_get_device_by_driver(UCLASS_SERIAL,
DM_DRIVER_GET(serial_bcm283x_mu),
&dev);
if (!ret) {
if (uart_in_use == 0)
log_err("Invalid config: PL011 and MiniUART are both enabled.");
else
uart_in_use = 1;
mini_clock_rate = dev_read_u32_default(dev, "clock", 0x1000000);
}
if (uart_in_use > 1)
log_err("No working serial: PL011 and MiniUART are both disabled.");
acpigen_write_scope(ctx, "\\_SB.BTH0");
acpigen_write_name_integer(ctx, "URIU", uart_in_use);
acpigen_pop_len(ctx);
acpigen_write_scope(ctx, "\\_SB.URTM");
acpigen_write_name_integer(ctx, "MUCR", mini_clock_rate);
acpigen_pop_len(ctx);
return 0;
}
static int rpi_acpi_write_ssdt(struct acpi_ctx *ctx, const struct acpi_writer *entry)
{
struct acpi_table_header *ssdt;
int ret;
ssdt = ctx->current;
memset(ssdt, '\0', sizeof(struct acpi_table_header));
acpi_fill_header(ssdt, "SSDT");
ssdt->revision = acpi_get_table_revision(ACPITAB_SSDT);
ssdt->creator_revision = 1;
ssdt->length = sizeof(struct acpi_table_header);
acpi_inc(ctx, sizeof(struct acpi_table_header));
ret = acpi_rpi_board_fill_ssdt(ctx);
if (ret) {
ctx->current = ssdt;
return log_msg_ret("fill", ret);
}
/* (Re)calculate length and checksum */
ssdt->length = ctx->current - (void *)ssdt;
ssdt->checksum = table_compute_checksum((void *)ssdt, ssdt->length);
log_debug("SSDT at %p, length %x\n", ssdt, ssdt->length);
/* Drop the table if it is empty */
if (ssdt->length == sizeof(struct acpi_table_header))
return log_msg_ret("fill", -ENOENT);
acpi_add_table(ctx, ssdt);
return 0;
}
ACPI_WRITER(5ssdt, "SSDT", rpi_acpi_write_ssdt, 0);
#endif