mirror of
https://github.com/u-boot/u-boot.git
synced 2025-04-16 09:54:35 +00:00

There are platforms which set the value of ram_top based on certain restrictions that the platform might have in accessing memory above ram_top, even when the memory region is in the same DRAM bank. So, even though the LMB allocator works as expected, when trying to allocate memory above ram_top, prohibit this by marking all memory above ram_top as reserved, even if the said memory region is from the same bank. Signed-off-by: Sughosh Ganu <sughosh.ganu@linaro.org> Tested-by: Andreas Schwab <schwab@suse.de>
979 lines
24 KiB
C
979 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Procedures for maintaining information about logical memory blocks.
|
|
*
|
|
* Peter Bergner, IBM Corp. June 2001.
|
|
* Copyright (C) 2001 Peter Bergner.
|
|
*/
|
|
|
|
#include <alist.h>
|
|
#include <efi_loader.h>
|
|
#include <event.h>
|
|
#include <image.h>
|
|
#include <mapmem.h>
|
|
#include <lmb.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <spl.h>
|
|
|
|
#include <asm/global_data.h>
|
|
#include <asm/sections.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sizes.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
#define MAP_OP_RESERVE (u8)0x1
|
|
#define MAP_OP_FREE (u8)0x2
|
|
#define MAP_OP_ADD (u8)0x3
|
|
|
|
/*
|
|
* The following low level LMB functions must not access the global LMB memory
|
|
* map since they are also used to manage IOVA memory maps in iommu drivers like
|
|
* apple_dart.
|
|
*/
|
|
|
|
static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
|
|
phys_addr_t base2, phys_size_t size2)
|
|
{
|
|
const phys_addr_t base1_end = base1 + size1 - 1;
|
|
const phys_addr_t base2_end = base2 + size2 - 1;
|
|
|
|
return ((base1 <= base2_end) && (base2 <= base1_end));
|
|
}
|
|
|
|
static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
|
|
phys_addr_t base2, phys_size_t size2)
|
|
{
|
|
if (base2 == base1 + size1)
|
|
return 1;
|
|
else if (base1 == base2 + size2)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1,
|
|
unsigned long r2)
|
|
{
|
|
struct lmb_region *rgn = lmb_rgn_lst->data;
|
|
|
|
phys_addr_t base1 = rgn[r1].base;
|
|
phys_size_t size1 = rgn[r1].size;
|
|
phys_addr_t base2 = rgn[r2].base;
|
|
phys_size_t size2 = rgn[r2].size;
|
|
|
|
return lmb_addrs_overlap(base1, size1, base2, size2);
|
|
}
|
|
|
|
static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1,
|
|
unsigned long r2)
|
|
{
|
|
struct lmb_region *rgn = lmb_rgn_lst->data;
|
|
|
|
phys_addr_t base1 = rgn[r1].base;
|
|
phys_size_t size1 = rgn[r1].size;
|
|
phys_addr_t base2 = rgn[r2].base;
|
|
phys_size_t size2 = rgn[r2].size;
|
|
return lmb_addrs_adjacent(base1, size1, base2, size2);
|
|
}
|
|
|
|
static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
|
|
{
|
|
unsigned long i;
|
|
struct lmb_region *rgn = lmb_rgn_lst->data;
|
|
|
|
for (i = r; i < lmb_rgn_lst->count - 1; i++) {
|
|
rgn[i].base = rgn[i + 1].base;
|
|
rgn[i].size = rgn[i + 1].size;
|
|
rgn[i].flags = rgn[i + 1].flags;
|
|
}
|
|
lmb_rgn_lst->count--;
|
|
}
|
|
|
|
/* Assumption: base addr of region 1 < base addr of region 2 */
|
|
static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
|
|
unsigned long r2)
|
|
{
|
|
struct lmb_region *rgn = lmb_rgn_lst->data;
|
|
|
|
rgn[r1].size += rgn[r2].size;
|
|
lmb_remove_region(lmb_rgn_lst, r2);
|
|
}
|
|
|
|
/*Assumption : base addr of region 1 < base addr of region 2*/
|
|
static void lmb_fix_over_lap_regions(struct alist *lmb_rgn_lst,
|
|
unsigned long r1, unsigned long r2)
|
|
{
|
|
struct lmb_region *rgn = lmb_rgn_lst->data;
|
|
|
|
phys_addr_t base1 = rgn[r1].base;
|
|
phys_size_t size1 = rgn[r1].size;
|
|
phys_addr_t base2 = rgn[r2].base;
|
|
phys_size_t size2 = rgn[r2].size;
|
|
|
|
if (base1 + size1 > base2 + size2) {
|
|
printf("This will not be a case any time\n");
|
|
return;
|
|
}
|
|
rgn[r1].size = base2 + size2 - base1;
|
|
lmb_remove_region(lmb_rgn_lst, r2);
|
|
}
|
|
|
|
static long lmb_resize_regions(struct alist *lmb_rgn_lst,
|
|
unsigned long idx_start,
|
|
phys_addr_t base, phys_size_t size)
|
|
{
|
|
phys_size_t rgnsize;
|
|
unsigned long rgn_cnt, idx, idx_end;
|
|
phys_addr_t rgnbase, rgnend;
|
|
phys_addr_t mergebase, mergeend;
|
|
struct lmb_region *rgn = lmb_rgn_lst->data;
|
|
|
|
rgn_cnt = 0;
|
|
idx = idx_start;
|
|
idx_end = idx_start;
|
|
|
|
/*
|
|
* First thing to do is to identify how many regions
|
|
* the requested region overlaps.
|
|
* If the flags match, combine all these overlapping
|
|
* regions into a single region, and remove the merged
|
|
* regions.
|
|
*/
|
|
while (idx <= lmb_rgn_lst->count - 1) {
|
|
rgnbase = rgn[idx].base;
|
|
rgnsize = rgn[idx].size;
|
|
|
|
if (lmb_addrs_overlap(base, size, rgnbase,
|
|
rgnsize)) {
|
|
if (rgn[idx].flags != LMB_NONE)
|
|
return -1;
|
|
rgn_cnt++;
|
|
idx_end = idx;
|
|
}
|
|
idx++;
|
|
}
|
|
|
|
/* The merged region's base and size */
|
|
rgnbase = rgn[idx_start].base;
|
|
mergebase = min(base, rgnbase);
|
|
rgnend = rgn[idx_end].base + rgn[idx_end].size;
|
|
mergeend = max(rgnend, (base + size));
|
|
|
|
rgn[idx_start].base = mergebase;
|
|
rgn[idx_start].size = mergeend - mergebase;
|
|
|
|
/* Now remove the merged regions */
|
|
while (--rgn_cnt)
|
|
lmb_remove_region(lmb_rgn_lst, idx_start + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* lmb_add_region_flags() - Add an lmb region to the given list
|
|
* @lmb_rgn_lst: LMB list to which region is to be added(free/used)
|
|
* @base: Start address of the region
|
|
* @size: Size of the region to be added
|
|
* @flags: Attributes of the LMB region
|
|
*
|
|
* Add a region of memory to the list. If the region does not exist, add
|
|
* it to the list. Depending on the attributes of the region to be added,
|
|
* the function might resize an already existing region or coalesce two
|
|
* adjacent regions.
|
|
*
|
|
*
|
|
* Returns: 0 if the region addition successful, -1 on failure
|
|
*/
|
|
static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
|
|
phys_size_t size, enum lmb_flags flags)
|
|
{
|
|
unsigned long coalesced = 0;
|
|
long ret, i;
|
|
struct lmb_region *rgn = lmb_rgn_lst->data;
|
|
|
|
if (alist_err(lmb_rgn_lst))
|
|
return -1;
|
|
|
|
/* First try and coalesce this LMB with another. */
|
|
for (i = 0; i < lmb_rgn_lst->count; i++) {
|
|
phys_addr_t rgnbase = rgn[i].base;
|
|
phys_size_t rgnsize = rgn[i].size;
|
|
phys_size_t rgnflags = rgn[i].flags;
|
|
|
|
ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
|
|
if (ret > 0) {
|
|
if (flags != rgnflags)
|
|
break;
|
|
rgn[i].base -= size;
|
|
rgn[i].size += size;
|
|
coalesced++;
|
|
break;
|
|
} else if (ret < 0) {
|
|
if (flags != rgnflags)
|
|
break;
|
|
rgn[i].size += size;
|
|
coalesced++;
|
|
break;
|
|
} else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
|
|
if (flags == LMB_NONE) {
|
|
ret = lmb_resize_regions(lmb_rgn_lst, i, base,
|
|
size);
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
coalesced++;
|
|
break;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
|
|
rgn = lmb_rgn_lst->data;
|
|
if (rgn[i].flags == rgn[i + 1].flags) {
|
|
if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) {
|
|
lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
|
|
coalesced++;
|
|
} else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) {
|
|
/* fix overlapping area */
|
|
lmb_fix_over_lap_regions(lmb_rgn_lst, i, i + 1);
|
|
coalesced++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (coalesced)
|
|
return 0;
|
|
|
|
if (alist_full(lmb_rgn_lst) &&
|
|
!alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
|
|
return -1;
|
|
rgn = lmb_rgn_lst->data;
|
|
|
|
/* Couldn't coalesce the LMB, so add it to the sorted table. */
|
|
for (i = lmb_rgn_lst->count; i >= 0; i--) {
|
|
if (i && base < rgn[i - 1].base) {
|
|
rgn[i] = rgn[i - 1];
|
|
} else {
|
|
rgn[i].base = base;
|
|
rgn[i].size = size;
|
|
rgn[i].flags = flags;
|
|
break;
|
|
}
|
|
}
|
|
|
|
lmb_rgn_lst->count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long _lmb_free(struct alist *lmb_rgn_lst, phys_addr_t base,
|
|
phys_size_t size)
|
|
{
|
|
struct lmb_region *rgn;
|
|
phys_addr_t rgnbegin, rgnend;
|
|
phys_addr_t end = base + size - 1;
|
|
int i;
|
|
|
|
rgnbegin = rgnend = 0; /* supress gcc warnings */
|
|
rgn = lmb_rgn_lst->data;
|
|
/* Find the region where (base, size) belongs to */
|
|
for (i = 0; i < lmb_rgn_lst->count; i++) {
|
|
rgnbegin = rgn[i].base;
|
|
rgnend = rgnbegin + rgn[i].size - 1;
|
|
|
|
if ((rgnbegin <= base) && (end <= rgnend))
|
|
break;
|
|
}
|
|
|
|
/* Didn't find the region */
|
|
if (i == lmb_rgn_lst->count)
|
|
return -1;
|
|
|
|
/* Check to see if we are removing entire region */
|
|
if ((rgnbegin == base) && (rgnend == end)) {
|
|
lmb_remove_region(lmb_rgn_lst, i);
|
|
return 0;
|
|
}
|
|
|
|
/* Check to see if region is matching at the front */
|
|
if (rgnbegin == base) {
|
|
rgn[i].base = end + 1;
|
|
rgn[i].size -= size;
|
|
return 0;
|
|
}
|
|
|
|
/* Check to see if the region is matching at the end */
|
|
if (rgnend == end) {
|
|
rgn[i].size -= size;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We need to split the entry - adjust the current one to the
|
|
* beginging of the hole and add the region after hole.
|
|
*/
|
|
rgn[i].size = base - rgn[i].base;
|
|
return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
|
|
rgn[i].flags);
|
|
}
|
|
|
|
static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
|
|
phys_size_t size)
|
|
{
|
|
unsigned long i;
|
|
struct lmb_region *rgn = lmb_rgn_lst->data;
|
|
|
|
for (i = 0; i < lmb_rgn_lst->count; i++) {
|
|
phys_addr_t rgnbase = rgn[i].base;
|
|
phys_size_t rgnsize = rgn[i].size;
|
|
if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
|
|
break;
|
|
}
|
|
|
|
return (i < lmb_rgn_lst->count) ? i : -1;
|
|
}
|
|
|
|
static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
|
|
{
|
|
return addr & ~(size - 1);
|
|
}
|
|
|
|
/*
|
|
* IOVA LMB memory maps using lmb pointers instead of the global LMB memory map.
|
|
*/
|
|
|
|
int io_lmb_setup(struct lmb *io_lmb)
|
|
{
|
|
int ret;
|
|
|
|
ret = alist_init(&io_lmb->free_mem, sizeof(struct lmb_region),
|
|
(uint)LMB_ALIST_INITIAL_SIZE);
|
|
if (!ret) {
|
|
log_debug("Unable to initialise the list for LMB free IOVA\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = alist_init(&io_lmb->used_mem, sizeof(struct lmb_region),
|
|
(uint)LMB_ALIST_INITIAL_SIZE);
|
|
if (!ret) {
|
|
log_debug("Unable to initialise the list for LMB used IOVA\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
io_lmb->test = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void io_lmb_teardown(struct lmb *io_lmb)
|
|
{
|
|
alist_uninit(&io_lmb->free_mem);
|
|
alist_uninit(&io_lmb->used_mem);
|
|
}
|
|
|
|
long io_lmb_add(struct lmb *io_lmb, phys_addr_t base, phys_size_t size)
|
|
{
|
|
return lmb_add_region_flags(&io_lmb->free_mem, base, size, LMB_NONE);
|
|
}
|
|
|
|
/* derived and simplified from _lmb_alloc_base() */
|
|
phys_addr_t io_lmb_alloc(struct lmb *io_lmb, phys_size_t size, ulong align)
|
|
{
|
|
long i, rgn;
|
|
phys_addr_t base = 0;
|
|
phys_addr_t res_base;
|
|
struct lmb_region *lmb_used = io_lmb->used_mem.data;
|
|
struct lmb_region *lmb_memory = io_lmb->free_mem.data;
|
|
|
|
for (i = io_lmb->free_mem.count - 1; i >= 0; i--) {
|
|
phys_addr_t lmbbase = lmb_memory[i].base;
|
|
phys_size_t lmbsize = lmb_memory[i].size;
|
|
|
|
if (lmbsize < size)
|
|
continue;
|
|
base = lmb_align_down(lmbbase + lmbsize - size, align);
|
|
|
|
while (base && lmbbase <= base) {
|
|
rgn = lmb_overlaps_region(&io_lmb->used_mem, base, size);
|
|
if (rgn < 0) {
|
|
/* This area isn't reserved, take it */
|
|
if (lmb_add_region_flags(&io_lmb->used_mem, base,
|
|
size, LMB_NONE) < 0)
|
|
return 0;
|
|
|
|
return base;
|
|
}
|
|
|
|
res_base = lmb_used[rgn].base;
|
|
if (res_base < size)
|
|
break;
|
|
base = lmb_align_down(res_base - size, align);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
long io_lmb_free(struct lmb *io_lmb, phys_addr_t base, phys_size_t size)
|
|
{
|
|
return _lmb_free(&io_lmb->used_mem, base, size);
|
|
}
|
|
|
|
/*
|
|
* Low level LMB functions are used to manage IOVA memory maps for the Apple
|
|
* dart iommu. They must not access the global LMB memory map.
|
|
* So keep the global LMB variable declaration unreachable from them.
|
|
*/
|
|
|
|
static struct lmb lmb;
|
|
|
|
static bool lmb_should_notify(enum lmb_flags flags)
|
|
{
|
|
return !lmb.test && !(flags & LMB_NONOTIFY) &&
|
|
CONFIG_IS_ENABLED(EFI_LOADER);
|
|
}
|
|
|
|
static int lmb_map_update_notify(phys_addr_t addr, phys_size_t size, u8 op,
|
|
enum lmb_flags flags)
|
|
{
|
|
u64 efi_addr;
|
|
u64 pages;
|
|
efi_status_t status;
|
|
|
|
if (op != MAP_OP_RESERVE && op != MAP_OP_FREE && op != MAP_OP_ADD) {
|
|
log_err("Invalid map update op received (%d)\n", op);
|
|
return -1;
|
|
}
|
|
|
|
if (!lmb_should_notify(flags))
|
|
return 0;
|
|
|
|
efi_addr = (uintptr_t)map_sysmem(addr, 0);
|
|
pages = efi_size_in_pages(size + (efi_addr & EFI_PAGE_MASK));
|
|
efi_addr &= ~EFI_PAGE_MASK;
|
|
|
|
status = efi_add_memory_map_pg(efi_addr, pages,
|
|
op == MAP_OP_RESERVE ?
|
|
EFI_BOOT_SERVICES_DATA :
|
|
EFI_CONVENTIONAL_MEMORY,
|
|
false);
|
|
if (status != EFI_SUCCESS) {
|
|
log_err("%s: LMB Map notify failure %lu\n", __func__,
|
|
status & ~EFI_ERROR_MASK);
|
|
return -1;
|
|
}
|
|
unmap_sysmem((void *)(uintptr_t)efi_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void lmb_print_region_flags(enum lmb_flags flags)
|
|
{
|
|
const char *flag_str[] = { "none", "no-map", "no-overwrite", "no-notify" };
|
|
unsigned int pflags = flags &
|
|
(LMB_NOMAP | LMB_NOOVERWRITE | LMB_NONOTIFY);
|
|
|
|
if (flags != pflags) {
|
|
printf("invalid %#x\n", flags);
|
|
return;
|
|
}
|
|
|
|
do {
|
|
int bitpos = pflags ? fls(pflags) - 1 : 0;
|
|
|
|
printf("%s", flag_str[bitpos]);
|
|
pflags &= ~(1u << bitpos);
|
|
puts(pflags ? ", " : "\n");
|
|
} while (pflags);
|
|
}
|
|
|
|
static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
|
|
{
|
|
struct lmb_region *rgn = lmb_rgn_lst->data;
|
|
unsigned long long base, size, end;
|
|
enum lmb_flags flags;
|
|
int i;
|
|
|
|
printf(" %s.count = %#x\n", name, lmb_rgn_lst->count);
|
|
|
|
for (i = 0; i < lmb_rgn_lst->count; i++) {
|
|
base = rgn[i].base;
|
|
size = rgn[i].size;
|
|
end = base + size - 1;
|
|
flags = rgn[i].flags;
|
|
|
|
printf(" %s[%d]\t[%#llx-%#llx], %#llx bytes, flags: ",
|
|
name, i, base, end, size);
|
|
lmb_print_region_flags(flags);
|
|
}
|
|
}
|
|
|
|
void lmb_dump_all_force(void)
|
|
{
|
|
printf("lmb_dump_all:\n");
|
|
lmb_dump_region(&lmb.free_mem, "memory");
|
|
lmb_dump_region(&lmb.used_mem, "reserved");
|
|
}
|
|
|
|
void lmb_dump_all(void)
|
|
{
|
|
#ifdef DEBUG
|
|
lmb_dump_all_force();
|
|
#endif
|
|
}
|
|
|
|
static void lmb_reserve_uboot_region(void)
|
|
{
|
|
int bank;
|
|
ulong end, bank_end;
|
|
phys_addr_t rsv_start;
|
|
|
|
rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE;
|
|
end = gd->ram_top;
|
|
|
|
/*
|
|
* Reserve memory from aligned address below the bottom of U-Boot stack
|
|
* until end of RAM area to prevent LMB from overwriting that memory.
|
|
*/
|
|
debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start);
|
|
|
|
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
|
|
if (!gd->bd->bi_dram[bank].size ||
|
|
rsv_start < gd->bd->bi_dram[bank].start)
|
|
continue;
|
|
/* Watch out for RAM at end of address space! */
|
|
bank_end = gd->bd->bi_dram[bank].start +
|
|
gd->bd->bi_dram[bank].size - 1;
|
|
if (rsv_start > bank_end)
|
|
continue;
|
|
if (bank_end > end)
|
|
bank_end = end - 1;
|
|
|
|
lmb_reserve_flags(rsv_start, bank_end - rsv_start + 1,
|
|
LMB_NOOVERWRITE);
|
|
|
|
if (gd->flags & GD_FLG_SKIP_RELOC)
|
|
lmb_reserve_flags((phys_addr_t)(uintptr_t)_start,
|
|
gd->mon_len, LMB_NOOVERWRITE);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void lmb_reserve_common(void *fdt_blob)
|
|
{
|
|
lmb_reserve_uboot_region();
|
|
|
|
if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
|
|
boot_fdt_add_mem_rsv_regions(fdt_blob);
|
|
}
|
|
|
|
static __maybe_unused void lmb_reserve_common_spl(void)
|
|
{
|
|
phys_addr_t rsv_start;
|
|
phys_size_t rsv_size;
|
|
|
|
/*
|
|
* Assume a SPL stack of 16KB. This must be
|
|
* more than enough for the SPL stage.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
|
|
rsv_start = gd->start_addr_sp - 16384;
|
|
rsv_size = 16384;
|
|
lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
|
|
/* Reserve the bss region */
|
|
rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
|
|
rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
|
|
(phys_addr_t)(uintptr_t)__bss_start;
|
|
lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* lmb_add_memory() - Add memory range for LMB allocations
|
|
*
|
|
* Add the entire available memory range to the pool of memory that
|
|
* can be used by the LMB module for allocations.
|
|
*
|
|
* Return: None
|
|
*/
|
|
void lmb_add_memory(void)
|
|
{
|
|
int i;
|
|
phys_addr_t bank_end;
|
|
phys_size_t size;
|
|
u64 ram_top = gd->ram_top;
|
|
struct bd_info *bd = gd->bd;
|
|
|
|
if (CONFIG_IS_ENABLED(LMB_ARCH_MEM_MAP))
|
|
return lmb_arch_add_memory();
|
|
|
|
/* Assume a 4GB ram_top if not defined */
|
|
if (!ram_top)
|
|
ram_top = 0x100000000ULL;
|
|
|
|
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
|
|
size = bd->bi_dram[i].size;
|
|
bank_end = bd->bi_dram[i].start + size;
|
|
|
|
if (size) {
|
|
lmb_add(bd->bi_dram[i].start, size);
|
|
|
|
/*
|
|
* Reserve memory above ram_top as
|
|
* no-overwrite so that it cannot be
|
|
* allocated
|
|
*/
|
|
if (bd->bi_dram[i].start >= ram_top)
|
|
lmb_reserve_flags(bd->bi_dram[i].start, size,
|
|
LMB_NOOVERWRITE);
|
|
else if (bank_end > ram_top)
|
|
lmb_reserve_flags(ram_top, bank_end - ram_top,
|
|
LMB_NOOVERWRITE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static long lmb_add_region(struct alist *lmb_rgn_lst, phys_addr_t base,
|
|
phys_size_t size)
|
|
{
|
|
return lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
|
|
}
|
|
|
|
/* This routine may be called with relocation disabled. */
|
|
long lmb_add(phys_addr_t base, phys_size_t size)
|
|
{
|
|
long ret;
|
|
struct alist *lmb_rgn_lst = &lmb.free_mem;
|
|
|
|
ret = lmb_add_region(lmb_rgn_lst, base, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return lmb_map_update_notify(base, size, MAP_OP_ADD, LMB_NONE);
|
|
}
|
|
|
|
/**
|
|
* lmb_free_flags() - Free up a region of memory
|
|
* @base: Base Address of region to be freed
|
|
* @size: Size of the region to be freed
|
|
* @flags: Memory region attributes
|
|
*
|
|
* Free up a region of memory.
|
|
*
|
|
* Return: 0 if successful, -1 on failure
|
|
*/
|
|
long lmb_free_flags(phys_addr_t base, phys_size_t size,
|
|
uint flags)
|
|
{
|
|
long ret;
|
|
|
|
ret = _lmb_free(&lmb.used_mem, base, size);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return lmb_map_update_notify(base, size, MAP_OP_FREE, flags);
|
|
}
|
|
|
|
long lmb_free(phys_addr_t base, phys_size_t size)
|
|
{
|
|
return lmb_free_flags(base, size, LMB_NONE);
|
|
}
|
|
|
|
long lmb_reserve_flags(phys_addr_t base, phys_size_t size, enum lmb_flags flags)
|
|
{
|
|
long ret = 0;
|
|
struct alist *lmb_rgn_lst = &lmb.used_mem;
|
|
|
|
ret = lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return lmb_map_update_notify(base, size, MAP_OP_RESERVE, flags);
|
|
}
|
|
|
|
long lmb_reserve(phys_addr_t base, phys_size_t size)
|
|
{
|
|
return lmb_reserve_flags(base, size, LMB_NONE);
|
|
}
|
|
|
|
static phys_addr_t _lmb_alloc_base(phys_size_t size, ulong align,
|
|
phys_addr_t max_addr, enum lmb_flags flags)
|
|
{
|
|
int ret;
|
|
long i, rgn;
|
|
phys_addr_t base = 0;
|
|
phys_addr_t res_base;
|
|
struct lmb_region *lmb_used = lmb.used_mem.data;
|
|
struct lmb_region *lmb_memory = lmb.free_mem.data;
|
|
|
|
for (i = lmb.free_mem.count - 1; i >= 0; i--) {
|
|
phys_addr_t lmbbase = lmb_memory[i].base;
|
|
phys_size_t lmbsize = lmb_memory[i].size;
|
|
|
|
if (lmbsize < size)
|
|
continue;
|
|
if (max_addr == LMB_ALLOC_ANYWHERE)
|
|
base = lmb_align_down(lmbbase + lmbsize - size, align);
|
|
else if (lmbbase < max_addr) {
|
|
base = lmbbase + lmbsize;
|
|
if (base < lmbbase)
|
|
base = -1;
|
|
base = min(base, max_addr);
|
|
base = lmb_align_down(base - size, align);
|
|
} else
|
|
continue;
|
|
|
|
while (base && lmbbase <= base) {
|
|
rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
|
|
if (rgn < 0) {
|
|
/* This area isn't reserved, take it */
|
|
if (lmb_add_region_flags(&lmb.used_mem, base,
|
|
size, flags))
|
|
return 0;
|
|
|
|
ret = lmb_map_update_notify(base, size,
|
|
MAP_OP_RESERVE,
|
|
flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return base;
|
|
}
|
|
|
|
res_base = lmb_used[rgn].base;
|
|
if (res_base < size)
|
|
break;
|
|
base = lmb_align_down(res_base - size, align);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
phys_addr_t lmb_alloc(phys_size_t size, ulong align)
|
|
{
|
|
return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
|
|
}
|
|
|
|
phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr)
|
|
{
|
|
phys_addr_t alloc;
|
|
|
|
alloc = _lmb_alloc_base(size, align, max_addr, LMB_NONE);
|
|
|
|
if (alloc == 0)
|
|
printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
|
|
(ulong)size, (ulong)max_addr);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
/**
|
|
* lmb_alloc_base_flags() - Allocate specified memory region with specified attributes
|
|
* @size: Size of the region requested
|
|
* @align: Alignment of the memory region requested
|
|
* @max_addr: Maximum address of the requested region
|
|
* @flags: Memory region attributes to be set
|
|
*
|
|
* Allocate a region of memory with the attributes specified through the
|
|
* parameter. The max_addr parameter is used to specify the maximum address
|
|
* below which the requested region should be allocated.
|
|
*
|
|
* Return: base address on success, 0 on error
|
|
*/
|
|
phys_addr_t lmb_alloc_base_flags(phys_size_t size, ulong align,
|
|
phys_addr_t max_addr, uint flags)
|
|
{
|
|
phys_addr_t alloc;
|
|
|
|
alloc = _lmb_alloc_base(size, align, max_addr, flags);
|
|
|
|
if (alloc == 0)
|
|
printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
|
|
(ulong)size, (ulong)max_addr);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
static phys_addr_t _lmb_alloc_addr(phys_addr_t base, phys_size_t size,
|
|
enum lmb_flags flags)
|
|
{
|
|
long rgn;
|
|
struct lmb_region *lmb_memory = lmb.free_mem.data;
|
|
|
|
/* Check if the requested address is in one of the memory regions */
|
|
rgn = lmb_overlaps_region(&lmb.free_mem, base, size);
|
|
if (rgn >= 0) {
|
|
/*
|
|
* Check if the requested end address is in the same memory
|
|
* region we found.
|
|
*/
|
|
if (lmb_addrs_overlap(lmb_memory[rgn].base,
|
|
lmb_memory[rgn].size,
|
|
base + size - 1, 1)) {
|
|
/* ok, reserve the memory */
|
|
if (lmb_reserve_flags(base, size, flags) >= 0)
|
|
return base;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try to allocate a specific address range: must be in defined memory but not
|
|
* reserved
|
|
*/
|
|
phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size)
|
|
{
|
|
return _lmb_alloc_addr(base, size, LMB_NONE);
|
|
}
|
|
|
|
/**
|
|
* lmb_alloc_addr_flags() - Allocate specified memory address with specified attributes
|
|
* @base: Base Address requested
|
|
* @size: Size of the region requested
|
|
* @flags: Memory region attributes to be set
|
|
*
|
|
* Allocate a region of memory with the attributes specified through the
|
|
* parameter. The base parameter is used to specify the base address
|
|
* of the requested region.
|
|
*
|
|
* Return: base address on success, 0 on error
|
|
*/
|
|
phys_addr_t lmb_alloc_addr_flags(phys_addr_t base, phys_size_t size,
|
|
uint flags)
|
|
{
|
|
return _lmb_alloc_addr(base, size, flags);
|
|
}
|
|
|
|
/* Return number of bytes from a given address that are free */
|
|
phys_size_t lmb_get_free_size(phys_addr_t addr)
|
|
{
|
|
int i;
|
|
long rgn;
|
|
struct lmb_region *lmb_used = lmb.used_mem.data;
|
|
struct lmb_region *lmb_memory = lmb.free_mem.data;
|
|
|
|
/* check if the requested address is in the memory regions */
|
|
rgn = lmb_overlaps_region(&lmb.free_mem, addr, 1);
|
|
if (rgn >= 0) {
|
|
for (i = 0; i < lmb.used_mem.count; i++) {
|
|
if (addr < lmb_used[i].base) {
|
|
/* first reserved range > requested address */
|
|
return lmb_used[i].base - addr;
|
|
}
|
|
if (lmb_used[i].base +
|
|
lmb_used[i].size > addr) {
|
|
/* requested addr is in this reserved range */
|
|
return 0;
|
|
}
|
|
}
|
|
/* if we come here: no reserved ranges above requested addr */
|
|
return lmb_memory[lmb.free_mem.count - 1].base +
|
|
lmb_memory[lmb.free_mem.count - 1].size - addr;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int lmb_is_reserved_flags(phys_addr_t addr, int flags)
|
|
{
|
|
int i;
|
|
struct lmb_region *lmb_used = lmb.used_mem.data;
|
|
|
|
for (i = 0; i < lmb.used_mem.count; i++) {
|
|
phys_addr_t upper = lmb_used[i].base +
|
|
lmb_used[i].size - 1;
|
|
if (addr >= lmb_used[i].base && addr <= upper)
|
|
return (lmb_used[i].flags & flags) == flags;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int lmb_setup(bool test)
|
|
{
|
|
bool ret;
|
|
|
|
ret = alist_init(&lmb.free_mem, sizeof(struct lmb_region),
|
|
(uint)LMB_ALIST_INITIAL_SIZE);
|
|
if (!ret) {
|
|
log_debug("Unable to initialise the list for LMB free memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
|
|
(uint)LMB_ALIST_INITIAL_SIZE);
|
|
if (!ret) {
|
|
log_debug("Unable to initialise the list for LMB used memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
lmb.test = test;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* lmb_init() - Initialise the LMB module
|
|
*
|
|
* Initialise the LMB lists needed for keeping the memory map. There
|
|
* are two lists, in form of alloced list data structure. One for the
|
|
* available memory, and one for the used memory. Initialise the two
|
|
* lists as part of board init. Add memory to the available memory
|
|
* list and reserve common areas by adding them to the used memory
|
|
* list.
|
|
*
|
|
* Return: 0 on success, -ve on error
|
|
*/
|
|
int lmb_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = lmb_setup(false);
|
|
if (ret) {
|
|
log_info("Unable to init LMB\n");
|
|
return ret;
|
|
}
|
|
|
|
lmb_add_memory();
|
|
|
|
/* Reserve the U-Boot image region once U-Boot has relocated */
|
|
if (xpl_phase() == PHASE_SPL)
|
|
lmb_reserve_common_spl();
|
|
else if (xpl_phase() == PHASE_BOARD_R)
|
|
lmb_reserve_common((void *)gd->fdt_blob);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct lmb *lmb_get(void)
|
|
{
|
|
return &lmb;
|
|
}
|
|
|
|
#if CONFIG_IS_ENABLED(UNIT_TEST)
|
|
int lmb_push(struct lmb *store)
|
|
{
|
|
int ret;
|
|
|
|
*store = lmb;
|
|
ret = lmb_setup(true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void lmb_pop(struct lmb *store)
|
|
{
|
|
alist_uninit(&lmb.free_mem);
|
|
alist_uninit(&lmb.used_mem);
|
|
lmb = *store;
|
|
}
|
|
#endif /* UNIT_TEST */
|