u-boot/drivers/ram/renesas/dbsc5/dram.c
Marek Vasut 9a106f15fa ram: renesas: dbsc5: Fix JS1 index calculation
The JS1 index is calculated correctly, but the limiter cannot
be the max() function because the index should be lower than
JS1_USABLEC_SPEC_HI and the max() function would unconditionally
override the JS1 index to JS1_USABLEC_SPEC_HI. Use clamp() to
limit the JS1 index instead.

Signed-off-by: Marek Vasut <marek.vasut+renesas@mailbox.org>
2025-03-16 14:56:16 +01:00

4532 lines
159 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2024 Renesas Electronics Corp.
*/
#include <asm/io.h>
#include <dm.h>
#include <errno.h>
#include <hang.h>
#include <ram.h>
#include <linux/iopoll.h>
#include <linux/sizes.h>
#include "dbsc5.h"
/* The number of channels V4H has */
#define DRAM_CH_CNT 4
/* The number of slices V4H has */
#define SLICE_CNT 2
/* The number of chip select V4H has */
#define CS_CNT 2
/* Number of array elements in Data Slice */
#define DDR_PHY_SLICE_REGSET_SIZE_V4H 0x100
/* Number of array elements in Data Slice */
#define DDR_PHY_SLICE_REGSET_NUM_V4H 153
/* Number of array elements in Address Slice */
#define DDR_PHY_ADR_V_REGSET_NUM_V4H 61
/* Number of array elements in Address Control Slice */
#define DDR_PHY_ADR_G_REGSET_NUM_V4H 97
/* Number of array elements in PI Register */
#define DDR_PI_REGSET_NUM_V4H 1381
/* Minimum value table for JS1 configuration table that can be taken */
#define JS1_USABLEC_SPEC_LO 5
/* Maximum value table for JS1 configuration table that can be taken */
#define JS1_USABLEC_SPEC_HI 11
/* The number of JS1 setting table */
#define JS1_FREQ_TBL_NUM 12
/* Macro to set the value of MR1 */
#define JS1_MR1(f) (((f) << 4) | 0x00) /* CK mode = 0B */
/* Macro to set the value of MR2 */
#define JS1_MR2(f) (((f) << 4) | (f))
#define JS2_tSR 0 /* Element for self refresh */
#define JS2_tXP 1 /* Exit power-down mode to first valid command */
#define JS2_tRCD 2 /* Active to read or write delay */
#define JS2_tRPpb 3 /* Minimum Row Precharge Delay Time */
#define JS2_tRPab 4 /* Minimum Row Precharge Delay Time */
#define JS2_tRAS 5 /* ACTIVE-to-PRECHARGE command */
#define JS2_tWTR_S 6 /* Internal WRITE-to-READ command delay */
#define JS2_tWTR_L 7 /* Internal WRITE-to-READ command delay */
#define JS2_tRRD 8 /* Active bank a to active bank b command */
#define JS2_tPPD 9 /* Precharge Power Down */
#define JS2_tFAW 10 /* Four bank ACT window */
#define JS2_tMRR 11 /* Mode Register Read */
#define JS2_tMRW 12 /* Mode Register Write */
#define JS2_tMRD 13 /* LOAD MODE REGISTER command cycle time */
#define JS2_tZQCALns 14 /* ZQ Calibration */
#define JS2_tZQLAT 15 /* ZQ Latency */
#define JS2_tODTon_min 16 /* Minimum time on die termination */
#define JS2_tPDN_DSM 17 /* Recommended minimum time for Deep Sleep Mode duration */
#define JS2_tXSR_DSM 18 /* Required time to be fully re-powered up from Deep Sleep Mode */
#define JS2_tXDSM_XP 19 /* Delay from Deep Sleep Mode Exit to Power-Down Exit */
#define JS2_tWCK2DQI_HF 20 /* Setting value of DQ to WCK input offset */
#define JS2_tWCK2DQO_HF 21 /* Setting value of WCK to DQ output offset */
#define JS2_tWCK2DQI_LF 22 /* Setting value of DQ to WCK input offset */
#define JS2_tWCK2DQO_LF 23 /* Setting value of WCK to DQ output offset */
#define JS2_tOSCODQI 24 /* Delay time from Stop WCK2DQI Interval Oscillator command to Mode Register Readout */
#define JS2_tDQ72DQns 25 /* Reception time to change the value fof REF(CA) for Command Bus Training Mode2 */
#define JS2_tCAENTns 26 /* Reception time to change the value fof REF(CA) for Command Bus Training Mode1 */
#define JS2_tCSCAL 27 /* Minimum CA Low Duration time */
#define JS2_TBLCNT 28 /* The number of table */
#define JS2_tRCpb JS2_TBLCNT /* ACTIVATE-to-ACTIVATE command period with per bank precharge */
#define JS2_tRCab (JS2_TBLCNT + 1) /* ACTIVATE-to-ACTIVATE command period with all bank precharge */
#define JS2_tRFCab (JS2_TBLCNT + 2) /* Refresh Cycle Time with All Banks */
#define JS2_tRBTP (JS2_TBLCNT + 3) /* READ Burst end to PRECHARGE command delay */
#define JS2_tXSR (JS2_TBLCNT + 4) /* Exit Self Refresh to Valid commands */
#define JS2_tPDN (JS2_TBLCNT + 5)
#define JS2_tWLWCKOFF (JS2_TBLCNT + 6)
#define JS2_CNT (JS2_TBLCNT + 7)
struct jedec_spec1 {
u32 fx3; /* Frequency */
u8 RLset1; /* setting value of Read Latency */
u8 RLset2; /* setting value of Read Latency */
u8 WLsetA; /* setting value of Write Latency */
u8 WLsetB; /* setting value of Write Latency */
u32 nWR; /* Write-Recovery for Auto-Precharge commands */
u32 nRBTP; /* the minimum interval from a READ command to a PRE command */
u32 ODTLon; /* On Die Termination */
u8 MR1; /* Mode Register 1 */
u8 MR2; /* Mode Register 2 */
u32 WCKENLR; /* The setting time from CAS command to the Start-up of WCK in READ operation */
u32 WCKENLW; /* The setting time from CAS command to the Start-up of WCK in WRITE operation */
u32 WCKENLF; /* The setting time from CAS command to the Start-up of WCK in FAST-sync operation */
u32 WCKPRESTA; /* The setting time from the Start-up of WCK to WCK Clocling Start */
u32 WCKPRETGLR; /* The setting time from WCK Clocling Start to Reflecting frequency of WCK */
};
static const struct jedec_spec1 js1[JS1_FREQ_TBL_NUM] = {
/* fx3, RL1, RL2, WLA.WLB.nWR.nRBTP, ODTLon */
{ 800, 3, 3, 2, 2, 3, 0, 1, JS1_MR1(0), JS1_MR2(0), 0, 0, 0, 1, 3 }, /* 533.333Mbps*/
{ 1600, 4, 4, 2, 3, 5, 0, 1, JS1_MR1(1), JS1_MR2(1), 0, 0, 0, 1, 4 }, /* 1066.666Mbps*/
{ 2400, 5, 6, 3, 4, 7, 0, 2, JS1_MR1(2), JS1_MR2(2), 1, 1, 1, 1, 4 }, /* 1600.000Mbps*/
{ 3200, 7, 7, 4, 5, 10, 0, 2, JS1_MR1(3), JS1_MR2(3), 2, 1, 1, 2, 4 }, /* 2133.333Mbps*/
{ 4000, 8, 9, 4, 7, 12, 1, 2, JS1_MR1(4), JS1_MR2(4), 2, 1, 1, 2, 5 }, /* 2666.666Mbps*/
{ 4800, 10, 10, 5, 8, 14, 1, 3, JS1_MR1(5), JS1_MR2(5), 4, 2, 1, 2, 5 }, /* 3200.000Mbps*/
{ 5600, 11, 12, 6, 9, 16, 2, 4, JS1_MR1(6), JS1_MR2(6), 4, 2, 1, 3, 5 }, /* 3733.333Mbps*/
{ 6400, 13, 14, 6, 11, 19, 2, 3, JS1_MR1(7), JS1_MR2(7), 5, 2, 1, 3, 6 }, /* 4266.666Mbps*/
{ 7200, 14, 15, 7, 12, 21, 3, 4, JS1_MR1(8), JS1_MR2(8), 6, 3, 2, 3, 6 }, /* 4800.000Mbps*/
{ 8250, 16, 17, 8, 14, 24, 4, 5, JS1_MR1(9), JS1_MR2(9), 7, 3, 2, 4, 6 }, /* 5500.000Mbps*/
{ 9000, 17, 19, 9, 15, 26, 4, 6, JS1_MR1(10), JS1_MR2(10), 7, 4, 2, 4, 7 }, /* 6000.000Mbps*/
{ 9600, 18, 20, 9, 16, 28, 4, 6, JS1_MR1(11), JS1_MR2(11), 8, 4, 2, 4, 7 } /* 6400.000Mbps*/
};
struct jedec_spec2 {
u16 ps; /* Value in pico seconds */
u16 cyc; /* Value in cycle count */
};
static const struct jedec_spec2 jedec_spec2[2][JS2_TBLCNT] = {
{
{ 15000, 2 }, /* tSR */
{ 7000, 3 }, /* tXP */
{ 18000, 2 }, /* tRCD */
{ 18000, 2 }, /* tRPpb */
{ 21000, 2 }, /* tRPab */
{ 42000, 3 }, /* tRAS */
{ 6250, 4 }, /* tWTR_S */
{ 12000, 4 }, /* tWTR_L */
{ 5000, 2 }, /* tRRD */
{ 0, 2 }, /* tPPD */
{ 20000, 0 }, /* tFAW */
{ 0, 4 }, /* tMRR */
{ 10000, 5 }, /* tMRW */
{ 14000, 5 }, /* tMRD */
{ 1500, 0 }, /* tZQCALns */
{ 30000, 4 }, /* tZQLAT */
{ 1500, 0 }, /* tODTon_min */
{ 4000, 0 }, /* tPDN_DSMus */
{ 200, 0 }, /* tXSR_DSMus */
{ 190, 0 }, /* tXDSM_XPus */
{ 700, 0 }, /* tWCK2DQI_HF */
{ 1600, 0 }, /* tWCK2DQO_HF */
{ 900, 0 }, /* tWCK2DQI_LF */
{ 1900, 0 }, /* tWCK2DQO_LF */
{ 40000, 8 }, /* tOSCODQI */
{ 125, 0 }, /* tDQ72DQns */
{ 250, 0 }, /* tCAENTns */
{ 1750, 0 } /* tCSCAL */
}, {
{ 15000, 2 }, /* tSR */
{ 7000, 3 }, /* tXP */
{ 19875, 2 }, /* tRCD */
{ 19875, 2 }, /* tRPpb */
{ 22875, 2 }, /* tRPab */
{ 43875, 3 }, /* tRAS */
{ 6250, 4 }, /* tWTR_S */
{ 12000, 4 }, /* tWTR_L */
{ 5000, 2 }, /* tRRD */
{ 0, 2 }, /* tPPD */
{ 20000, 0 }, /* tFAW */
{ 0, 4 }, /* tMRR */
{ 10000, 5 }, /* tMRW */
{ 14000, 5 }, /* tMRD */
{ 1500, 0 }, /* tZQCALns */
{ 30000, 4 }, /* tZQLAT */
{ 1500, 0 }, /* tODTon_min */
{ 4000, 0 }, /* tPDN_DSMus */
{ 200, 0 }, /* tXSR_DSMus */
{ 190, 0 }, /* tXDSM_XPus */
{ 715, 0 }, /* tWCK2DQI_HF */
{ 1635, 0 }, /* tWCK2DQO_HF */
{ 920, 0 }, /* tWCK2DQI_LF */
{ 1940, 0 }, /* tWCK2DQO_LF */
{ 40000, 8 }, /* tOSCODQI */
{ 125, 0 }, /* tDQ72DQns */
{ 250, 0 }, /* tCAENTns */
{ 1750, 0 } /* tCSCAL */
}
};
static const u16 jedec_spec2_tRFC_ab[] = {
/* 2Gb, 3Gb, 4Gb, 6Gb, 8Gb, 12Gb, 16Gb, 24Gb, 32Gb */
130, 180, 180, 210, 210, 280, 280, 380, 380
};
/* The address offsets of PI Register */
#define DDR_PI_REGSET_OFS_V4H 0x0800
/* The address offsets of Data Slice */
#define DDR_PHY_SLICE_REGSET_OFS_V4H 0x1000
/* The address offsets of Address Slice */
#define DDR_PHY_ADR_V_REGSET_OFS_V4H 0x1200
/* The address offsets of Address Control Slice */
#define DDR_PHY_ADR_G_REGSET_OFS_V4H 0x1300
#define DDR_REGDEF_ADR(regdef) ((regdef) & 0xFFFF)
#define DDR_REGDEF_LEN(regdef) (((regdef) >> 16) & 0xFF)
#define DDR_REGDEF_LSB(regdef) (((regdef) >> 24) & 0xFF)
#define DDR_REGDEF(lsb, len, adr) \
(((lsb) << 24) | ((len) << 16) | (adr))
#define PHY_LP4_BOOT_RX_PCLK_CLK_SEL DDR_REGDEF(0x10, 0x03, 0x1000)
#define PHY_PER_CS_TRAINING_MULTICAST_EN DDR_REGDEF(0x10, 0x01, 0x1006)
#define PHY_PER_CS_TRAINING_INDEX DDR_REGDEF(0x18, 0x01, 0x1006)
#define PHY_VREF_INITIAL_STEPSIZE DDR_REGDEF(0x18, 0x08, 0x100D)
#define PHY_RDLVL_BEST_THRSHLD DDR_REGDEF(0x00, 0x04, 0x100E)
#define PHY_RDLVL_VREF_OUTLIER DDR_REGDEF(0x10, 0x03, 0x100E)
#define SC_PHY_WCK_CALC DDR_REGDEF(0x18, 0x01, 0x101A)
#define PHY_RDLVL_RDDQS_DQ_OBS_SELECT DDR_REGDEF(0x10, 0x05, 0x102C)
#define PHY_CALVL_VREF_DRIVING_SLICE DDR_REGDEF(0x18, 0x01, 0x1030)
#define PHY_WRLVL_HARD0_DELAY_OBS DDR_REGDEF(0x00, 0x0A, 0x1038)
#define PHY_WRLVL_HARD1_DELAY_OBS DDR_REGDEF(0x10, 0x0A, 0x1038)
#define PHY_WRLVL_STATUS_OBS DDR_REGDEF(0x00, 0x1C, 0x1039)
#define PHY_WRLVL_ERROR_OBS DDR_REGDEF(0x00, 0x10, 0x103B)
#define PHY_GTLVL_STATUS_OBS DDR_REGDEF(0x00, 0x12, 0x103D)
#define PHY_RDLVL_RDDQS_DQ_LE_DLY_OBS DDR_REGDEF(0x10, 0x09, 0x103E)
#define PHY_RDLVL_RDDQS_DQ_TE_DLY_OBS DDR_REGDEF(0x00, 0x09, 0x103F)
#define PHY_WDQLVL_STATUS_OBS DDR_REGDEF(0x00, 0x20, 0x1043)
#define PHY_DATA_DC_CAL_START DDR_REGDEF(0x18, 0x01, 0x104D)
#define PHY_REGULATOR_EN_CNT DDR_REGDEF(0x18, 0x06, 0x1050)
#define PHY_VREF_INITIAL_START_POINT DDR_REGDEF(0x00, 0x09, 0x1055)
#define PHY_VREF_INITIAL_STOP_POINT DDR_REGDEF(0x10, 0x09, 0x1055)
#define PHY_VREF_TRAINING_CTRL DDR_REGDEF(0x00, 0x02, 0x1056)
#define PHY_RDDQ0_SLAVE_DELAY DDR_REGDEF(0x00, 0x09, 0x105D)
#define PHY_RDDQ1_SLAVE_DELAY DDR_REGDEF(0x10, 0x09, 0x105D)
#define PHY_RDDQ2_SLAVE_DELAY DDR_REGDEF(0x00, 0x09, 0x105E)
#define PHY_RDDQ3_SLAVE_DELAY DDR_REGDEF(0x10, 0x09, 0x105E)
#define PHY_RDDQ4_SLAVE_DELAY DDR_REGDEF(0x00, 0x09, 0x105F)
#define PHY_RDDQ5_SLAVE_DELAY DDR_REGDEF(0x10, 0x09, 0x105F)
#define PHY_RDDQ6_SLAVE_DELAY DDR_REGDEF(0x00, 0x09, 0x1060)
#define PHY_RDDQ7_SLAVE_DELAY DDR_REGDEF(0x10, 0x09, 0x1060)
#define PHY_RDDM_SLAVE_DELAY DDR_REGDEF(0x00, 0x09, 0x1061)
#define PHY_RX_CAL_ALL_DLY DDR_REGDEF(0x18, 0x06, 0x1061)
#define PHY_RX_PCLK_CLK_SEL DDR_REGDEF(0x00, 0x03, 0x1062)
#define PHY_DATA_DC_CAL_CLK_SEL DDR_REGDEF(0x18, 0x03, 0x1063)
#define PHY_PAD_VREF_CTRL_DQ DDR_REGDEF(0x00, 0x0E, 0x1067)
#define PHY_PER_CS_TRAINING_EN DDR_REGDEF(0x00, 0x01, 0x1068)
#define PHY_RDDATA_EN_TSEL_DLY DDR_REGDEF(0x18, 0x05, 0x1069)
#define PHY_RDDATA_EN_OE_DLY DDR_REGDEF(0x00, 0x05, 0x106A)
#define PHY_RPTR_UPDATE DDR_REGDEF(0x10, 0x04, 0x106C)
#define PHY_WRLVL_RESP_WAIT_CNT DDR_REGDEF(0x08, 0x06, 0x106D)
#define PHY_RDLVL_DLY_STEP DDR_REGDEF(0x08, 0x04, 0x1070)
#define PHY_RDLVL_MAX_EDGE DDR_REGDEF(0x00, 0x09, 0x1071)
#define PHY_DATA_DC_WDQLVL_ENABLE DDR_REGDEF(0x08, 0x02, 0x1075)
#define PHY_RDDATA_EN_DLY DDR_REGDEF(0x10, 0x05, 0x1076)
#define PHY_MEAS_DLY_STEP_ENABLE DDR_REGDEF(0x08, 0x06, 0x1076)
#define PHY_DQ_DM_SWIZZLE0 DDR_REGDEF(0x00, 0x20, 0x1077)
#define PHY_DQ_DM_SWIZZLE1 DDR_REGDEF(0x00, 0x04, 0x1078)
#define PHY_CLK_WRDQS_SLAVE_DELAY DDR_REGDEF(0x00, 0x09, 0x107E)
#define PHY_WRITE_PATH_LAT_DEC DDR_REGDEF(0x10, 0x01, 0x107E)
#define PHY_RDDQS_GATE_SLAVE_DELAY DDR_REGDEF(0x00, 0x09, 0x1088)
#define PHY_RDDQS_LATENCY_ADJUST DDR_REGDEF(0x10, 0x05, 0x1088)
#define PHY_WRITE_PATH_LAT_ADD DDR_REGDEF(0x18, 0x03, 0x1088)
#define PHY_WRITE_PATH_LAT_FRAC DDR_REGDEF(0x00, 0x08, 0x1089)
#define PHY_GTLVL_LAT_ADJ_START DDR_REGDEF(0x00, 0x05, 0x108A)
#define PHY_DATA_DC_DQS_CLK_ADJUST DDR_REGDEF(0x00, 0x08, 0x108C)
#define PHY_ADR_CALVL_SWIZZLE0 DDR_REGDEF(0x00, 0x20, 0x1202)
#define PHY_ADR_MEAS_DLY_STEP_ENABLE DDR_REGDEF(0x10, 0x01, 0x1203)
#define PHY_ADR_CALVL_RANK_CTRL DDR_REGDEF(0x18, 0x02, 0x1205)
#define PHY_ADR_CALVL_OBS1 DDR_REGDEF(0x00, 0x20, 0x120A)
#define PHY_ADR_CALVL_OBS2 DDR_REGDEF(0x00, 0x20, 0x120B)
#define PHY_ADR_CALVL_DLY_STEP DDR_REGDEF(0x00, 0x04, 0x1210)
#define PHY_CS_ACS_ALLOCATION_BIT2_2 DDR_REGDEF(0x08, 0x02, 0x1215)
#define PHY_CS_ACS_ALLOCATION_BIT3_2 DDR_REGDEF(0x10, 0x02, 0x1215)
#define PHY_CSLVL_OBS1 DDR_REGDEF(0x00, 0x20, 0x1221)
#define PHY_CLK_DC_CAL_CLK_SEL DDR_REGDEF(0x08, 0x03, 0x123A)
#define PHY_FREQ_SEL_MULTICAST_EN DDR_REGDEF(0x08, 0x01, 0x1301)
#define PHY_FREQ_SEL_INDEX DDR_REGDEF(0x10, 0x02, 0x1301)
#define SC_PHY_MANUAL_UPDATE DDR_REGDEF(0x18, 0x01, 0x1304)
#define PHY_SET_DFI_INPUT_RST_PAD DDR_REGDEF(0x18, 0x01, 0x1311)
#define PHY_CAL_MODE_0 DDR_REGDEF(0x00, 0x0D, 0x132C)
#define PHY_CAL_INTERVAL_COUNT_0 DDR_REGDEF(0x00, 0x20, 0x132D)
#define PHY_DATA_BYTE_ORDER_SEL DDR_REGDEF(0x00, 0x20, 0x133E)
#define PHY_PAD_ACS_RX_PCLK_CLK_SEL DDR_REGDEF(0x10, 0x03, 0x1348)
#define PHY_PLL_CTRL DDR_REGDEF(0x00, 0x0E, 0x134B)
#define PHY_PLL_CTRL_8X DDR_REGDEF(0x10, 0x0E, 0x134B)
#define PHY_CAL_CLK_SELECT_0 DDR_REGDEF(0x00, 0x03, 0x1360)
#define PI_START DDR_REGDEF(0x00, 0x01, 0x0800)
#define PI_TRAIN_ALL_FREQ_REQ DDR_REGDEF(0x18, 0x01, 0x0802)
#define PI_CS_MAP DDR_REGDEF(0x08, 0x02, 0x0813)
#define PI_WRLVL_REQ DDR_REGDEF(0x10, 0x01, 0x081C)
#define PI_WRLVL_CS_SW DDR_REGDEF(0x18, 0x02, 0x081C)
#define PI_RDLVL_REQ DDR_REGDEF(0x18, 0x01, 0x0824)
#define PI_RDLVL_GATE_REQ DDR_REGDEF(0x00, 0x01, 0x0825)
#define PI_RDLVL_CS_SW DDR_REGDEF(0x08, 0x02, 0x0825)
#define PI_RDLVL_PERIODIC DDR_REGDEF(0x08, 0x01, 0x082E)
#define PI_RDLVL_INTERVAL DDR_REGDEF(0x08, 0x10, 0x0835)
#define PI_DRAMDCA_FLIP_MASK DDR_REGDEF(0x08, 0x02, 0x083B)
#define PI_DRAMDCA_LVL_REQ DDR_REGDEF(0x10, 0x01, 0x083D)
#define PI_DCMLVL_CS_SW DDR_REGDEF(0x18, 0x02, 0x083D)
#define PI_WRDCM_LVL_EN_F1 DDR_REGDEF(0x00, 0x02, 0x083F)
#define PI_DRAMDCA_LVL_EN_F1 DDR_REGDEF(0x08, 0x02, 0x083F)
#define PI_WRDCM_LVL_EN_F2 DDR_REGDEF(0x18, 0x02, 0x083F)
#define PI_DRAMDCA_LVL_EN_F2 DDR_REGDEF(0x00, 0x02, 0x0840)
#define PI_DRAMDCA_LVL_ACTIVE_SEQ_2 DDR_REGDEF(0x00, 0x1B, 0x0868)
#define PI_DRAMDCA_LVL_ACTIVE_SEQ_3 DDR_REGDEF(0x00, 0x1B, 0x0869)
#define PI_DRAMDCA_LVL_ACTIVE_SEQ_4 DDR_REGDEF(0x00, 0x1B, 0x086A)
#define PI_TCKCKEL_F2 DDR_REGDEF(0x18, 0x04, 0x089D)
#define PI_WDQLVL_VREF_EN DDR_REGDEF(0x08, 0x04, 0x089E)
#define PI_WDQLVL_PERIODIC DDR_REGDEF(0x00, 0x01, 0x08A0)
#define PI_WDQLVL_INTERVAL DDR_REGDEF(0x00, 0x10, 0x08A4)
#define PI_INT_STATUS DDR_REGDEF(0x00, 0x20, 0x0900)
#define PI_INT_ACK_0 DDR_REGDEF(0x00, 0x20, 0x0902)
#define PI_INT_ACK_1 DDR_REGDEF(0x00, 0x03, 0x0903)
#define PI_LONG_COUNT_MASK DDR_REGDEF(0x10, 0x05, 0x090F)
#define PI_ADDR_MUX_0 DDR_REGDEF(0x00, 0x03, 0x0910)
#define PI_ADDR_MUX_1 DDR_REGDEF(0x08, 0x03, 0x0910)
#define PI_ADDR_MUX_2 DDR_REGDEF(0x10, 0x03, 0x0910)
#define PI_ADDR_MUX_3 DDR_REGDEF(0x18, 0x03, 0x0910)
#define PI_ADDR_MUX_4 DDR_REGDEF(0x00, 0x03, 0x0911)
#define PI_ADDR_MUX_5 DDR_REGDEF(0x08, 0x03, 0x0911)
#define PI_ADDR_MUX_6 DDR_REGDEF(0x10, 0x03, 0x0911)
#define PI_DATA_BYTE_SWAP_EN DDR_REGDEF(0x18, 0x01, 0x0911)
#define PI_DATA_BYTE_SWAP_SLICE0 DDR_REGDEF(0x00, 0x01, 0x0912)
#define PI_DATA_BYTE_SWAP_SLICE1 DDR_REGDEF(0x08, 0x01, 0x0912)
#define PI_PWRUP_SREFRESH_EXIT DDR_REGDEF(0x18, 0x01, 0x093D)
#define PI_PWRUP_SREFRESH_EXIT DDR_REGDEF(0x18, 0x01, 0x093D)
#define PI_DLL_RST DDR_REGDEF(0x00, 0x01, 0x0941)
#define PI_TDELAY_RDWR_2_BUS_IDLE_F2 DDR_REGDEF(0x00, 0x08, 0x0964)
#define PI_WRLAT_F2 DDR_REGDEF(0x10, 0x07, 0x096A)
#define PI_TWCKENL_WR_ADJ_F2 DDR_REGDEF(0x18, 0x06, 0x096A)
#define PI_TWCKENL_RD_ADJ_F2 DDR_REGDEF(0x00, 0x06, 0x096B)
#define PI_TWCKPRE_STATIC_F2 DDR_REGDEF(0x08, 0x06, 0x096B)
#define PI_TWCKPRE_TOGGLE_RD_F2 DDR_REGDEF(0x18, 0x06, 0x096B)
#define PI_TWCKENL_FS_ADJ_F2 DDR_REGDEF(0x00, 0x06, 0x096C)
#define PI_CASLAT_F2 DDR_REGDEF(0x08, 0x07, 0x096C)
#define PI_TRFC_F2 DDR_REGDEF(0x00, 0x0A, 0x0971)
#define PI_TREF_F2 DDR_REGDEF(0x00, 0x14, 0x0972)
#define PI_TDFI_WRLVL_WW_F0 DDR_REGDEF(0x00, 0x0A, 0x0974)
#define PI_TDFI_WRLVL_WW_F1 DDR_REGDEF(0x00, 0x0A, 0x0975)
#define PI_WRLVL_EN_F2 DDR_REGDEF(0x18, 0x02, 0x0975)
#define PI_TDFI_WRLVL_WW_F2 DDR_REGDEF(0x00, 0x0A, 0x0976)
#define PI_WRLVL_WCKOFF_F2 DDR_REGDEF(0x10, 0x08, 0x0976)
#define PI_RDLVL_EN_F2 DDR_REGDEF(0x18, 0x02, 0x097A)
#define PI_RDLVL_GATE_EN_F2 DDR_REGDEF(0x00, 0x02, 0x097B)
#define PI_RDLVL_VREF_EN_F0 DDR_REGDEF(0x10, 0x04, 0x097B)
#define PI_RDLVL_VREF_EN_F1 DDR_REGDEF(0x00, 0x04, 0x097D)
#define PI_RDLVL_VREF_EN_F2 DDR_REGDEF(0x10, 0x04, 0x097E)
#define PI_RDLAT_ADJ_F2 DDR_REGDEF(0x00, 0x09, 0x0981)
#define PI_WRLAT_ADJ_F2 DDR_REGDEF(0x00, 0x07, 0x0982)
#define PI_TDFI_CALVL_CC_F2 DDR_REGDEF(0x00, 0x0A, 0x0985)
#define PI_TDFI_CALVL_CAPTURE_F2 DDR_REGDEF(0x10, 0x0A, 0x0985)
#define PI_CALVL_EN_F2 DDR_REGDEF(0x10, 0x02, 0x0986)
#define PI_TCAENT_F2 DDR_REGDEF(0x00, 0x0E, 0x0989)
#define PI_TVREF_SHORT_F2 DDR_REGDEF(0x00, 0x0A, 0x098F)
#define PI_TVREF_LONG_F2 DDR_REGDEF(0x10, 0x0A, 0x098F)
#define PI_TVRCG_ENABLE_F2 DDR_REGDEF(0x00, 0x0A, 0x0990)
#define PI_TVRCG_DISABLE_F2 DDR_REGDEF(0x10, 0x0A, 0x0990)
#define PI_CALVL_VREF_INITIAL_START_POINT_F0 DDR_REGDEF(0x00, 0x07, 0x0991)
#define PI_CALVL_VREF_INITIAL_STOP_POINT_F0 DDR_REGDEF(0x08, 0x07, 0x0991)
#define PI_CALVL_VREF_INITIAL_START_POINT_F1 DDR_REGDEF(0x18, 0x07, 0x0991)
#define PI_CALVL_VREF_INITIAL_STOP_POINT_F1 DDR_REGDEF(0x00, 0x07, 0x0992)
#define PI_CALVL_VREF_INITIAL_START_POINT_F2 DDR_REGDEF(0x10, 0x07, 0x0992)
#define PI_CALVL_VREF_INITIAL_STOP_POINT_F2 DDR_REGDEF(0x18, 0x07, 0x0992)
#define PI_TDFI_CALVL_STROBE_F2 DDR_REGDEF(0x08, 0x04, 0x0995)
#define PI_TXP_F2 DDR_REGDEF(0x10, 0x05, 0x0995)
#define PI_TMRWCKEL_F2 DDR_REGDEF(0x18, 0x08, 0x0995)
#define PI_TCKEHDQS_F2 DDR_REGDEF(0x10, 0x06, 0x099D)
#define PI_TFC_F2 DDR_REGDEF(0x00, 0x0A, 0x099E)
#define PI_WDQLVL_VREF_INITIAL_START_POINT_F0 DDR_REGDEF(0x10, 0x07, 0x09A0)
#define PI_WDQLVL_VREF_INITIAL_STOP_POINT_F0 DDR_REGDEF(0x18, 0x07, 0x09A0)
#define PI_WDQLVL_VREF_INITIAL_START_POINT_F1 DDR_REGDEF(0x00, 0x07, 0x09A4)
#define PI_WDQLVL_VREF_INITIAL_STOP_POINT_F1 DDR_REGDEF(0x08, 0x07, 0x09A4)
#define PI_TDFI_WDQLVL_WR_F2 DDR_REGDEF(0x00, 0x0A, 0x09A6)
#define PI_TDFI_WDQLVL_RW_F2 DDR_REGDEF(0x10, 0x0A, 0x09A6)
#define PI_WDQLVL_VREF_INITIAL_START_POINT_F2 DDR_REGDEF(0x00, 0x07, 0x09A7)
#define PI_WDQLVL_VREF_INITIAL_STOP_POINT_F2 DDR_REGDEF(0x08, 0x07, 0x09A7)
#define PI_WDQLVL_EN_F2 DDR_REGDEF(0x18, 0x02, 0x09A7)
#define PI_MBIST_RDLAT_ADJ_F2 DDR_REGDEF(0x08, 0x09, 0x09A8)
#define PI_MBIST_TWCKENL_RD_ADJ_F2 DDR_REGDEF(0x18, 0x06, 0x09A8)
#define PI_TRTP_F2 DDR_REGDEF(0x18, 0x08, 0x09B3)
#define PI_TRP_F2 DDR_REGDEF(0x00, 0x08, 0x09B4)
#define PI_TRCD_F2 DDR_REGDEF(0x08, 0x08, 0x09B4)
#define PI_TWTR_S_F2 DDR_REGDEF(0x18, 0x06, 0x09B4)
#define PI_TWTR_L_F2 DDR_REGDEF(0x00, 0x06, 0x09B5)
#define PI_TWTR_F2 DDR_REGDEF(0x10, 0x06, 0x09B5)
#define PI_TWR_F2 DDR_REGDEF(0x18, 0x08, 0x09B5)
#define PI_TRAS_MIN_F2 DDR_REGDEF(0x10, 0x09, 0x09B6)
#define PI_TDQSCK_MAX_F2 DDR_REGDEF(0x00, 0x04, 0x09B7)
#define PI_TSR_F2 DDR_REGDEF(0x10, 0x08, 0x09B7)
#define PI_TMRD_F2 DDR_REGDEF(0x18, 0x08, 0x09B7)
#define PI_TDFI_CTRLUPD_MAX_F2 DDR_REGDEF(0x00, 0x15, 0x09BC)
#define PI_TDFI_CTRLUPD_INTERVAL_F2 DDR_REGDEF(0x00, 0x20, 0x09BD)
#define PI_TINIT_F2 DDR_REGDEF(0x00, 0x18, 0x09CC)
#define PI_TINIT1_F2 DDR_REGDEF(0x00, 0x18, 0x09CD)
#define PI_TINIT3_F2 DDR_REGDEF(0x00, 0x18, 0x09CE)
#define PI_TINIT4_F2 DDR_REGDEF(0x00, 0x18, 0x09CF)
#define PI_TINIT5_F2 DDR_REGDEF(0x00, 0x18, 0x09D0)
#define PI_TXSNR_F2 DDR_REGDEF(0x00, 0x10, 0x09D1)
#define PI_TZQCAL_F2 DDR_REGDEF(0x10, 0x0C, 0x09D6)
#define PI_TZQLAT_F2 DDR_REGDEF(0x00, 0x07, 0x09D7)
#define PI_ZQRESET_F2 DDR_REGDEF(0x10, 0x0C, 0x09D8)
#define PI_TDQ72DQ_F2 DDR_REGDEF(0x10, 0x0A, 0x09DD)
#define PI_TCBTRTW_F2 DDR_REGDEF(0x00, 0x06, 0x09DE)
#define PI_MC_TRFC_F2 DDR_REGDEF(0x00, 0x0A, 0x09E1)
#define PI_CKE_MUX_0 DDR_REGDEF(0x00, 0x03, 0x09E6)
#define PI_CKE_MUX_1 DDR_REGDEF(0x08, 0x03, 0x09E6)
#define PI_SEQ_DEC_SW_CS DDR_REGDEF(0x00, 0x02, 0x0A4E)
#define PI_SW_SEQ_START DDR_REGDEF(0x10, 0x01, 0x0A4E)
#define PI_SW_SEQ_0 DDR_REGDEF(0x00, 0x1B, 0x0BF1)
#define PI_SW_SEQ_1 DDR_REGDEF(0x00, 0x1B, 0x0BF2)
#define PI_DFS_ENTRY_SEQ_0 DDR_REGDEF(0x00, 0x1D, 0x0BFB)
#define PI_DFS_INITIALIZATION_SEQ_1 DDR_REGDEF(0x00, 0x1D, 0x0C24)
#define PI_DFS_INITIALIZATION_SEQ_9 DDR_REGDEF(0x00, 0x1D, 0x0C2C)
#define PI_DFS_INITIALIZATION_SEQ_10 DDR_REGDEF(0x00, 0x1D, 0x0C2D)
#define PI_RDLVL_TRAIN_SEQ_1 DDR_REGDEF(0x00, 0x1B, 0x0C42)
#define PI_RDLVL_TRAIN_SEQ_2 DDR_REGDEF(0x00, 0x1B, 0x0C43)
#define PI_RDLVL_TRAIN_SEQ_3 DDR_REGDEF(0x00, 0x1B, 0x0C44)
#define PI_RDLVL_TRAIN_SEQ_4 DDR_REGDEF(0x00, 0x1B, 0x0C45)
#define PI_RDLVL_TRAIN_SEQ_5 DDR_REGDEF(0x00, 0x1B, 0x0C46)
#define PI_SEQ_WAIT_16_F2 DDR_REGDEF(0x00, 0x18, 0x0C77)
#define PI_SEQ_WAIT_17_F2 DDR_REGDEF(0x00, 0x18, 0x0C7A)
#define PI_SEQ_WAIT_18_F2 DDR_REGDEF(0x00, 0x18, 0x0C7D)
#define PI_SEQ_WAIT_19_F2 DDR_REGDEF(0x00, 0x18, 0x0C80)
#define PI_SEQ_WAIT_20_F2 DDR_REGDEF(0x00, 0x18, 0x0C83)
#define PI_SEQ_WAIT_21_F2 DDR_REGDEF(0x00, 0x18, 0x0C86)
#define PI_SEQ_WAIT_22_F2 DDR_REGDEF(0x00, 0x18, 0x0C89)
#define PI_SEQ_WAIT_23_F2 DDR_REGDEF(0x00, 0x18, 0x0C8C)
#define PI_SEQ_WAIT_24_F2 DDR_REGDEF(0x00, 0x18, 0x0C8F)
#define PI_SEQ_WAIT_25_F2 DDR_REGDEF(0x00, 0x18, 0x0C92)
#define PI_SEQ_WAIT_26_F2 DDR_REGDEF(0x00, 0x18, 0x0C95)
#define PI_SEQ_WAIT_30_F2 DDR_REGDEF(0x00, 0x18, 0x0CA1)
#define PI_DARRAY3_0_CS0_F0 DDR_REGDEF(0x00, 0x08, 0x0D0B)
#define PI_DARRAY3_1_CS0_F0 DDR_REGDEF(0x08, 0x08, 0x0D0B)
#define PI_DARRAY3_0_CS0_F1 DDR_REGDEF(0x00, 0x08, 0x0D15)
#define PI_DARRAY3_1_CS0_F1 DDR_REGDEF(0x08, 0x08, 0x0D15)
#define PI_DARRAY3_0_CS0_F2 DDR_REGDEF(0x00, 0x08, 0x0D1F)
#define PI_DARRAY3_1_CS0_F2 DDR_REGDEF(0x08, 0x08, 0x0D1F)
#define PI_DARRAY3_4_CS0_F2 DDR_REGDEF(0x00, 0x08, 0x0D20)
#define PI_DARRAY3_20_CS0_F2 DDR_REGDEF(0x00, 0x08, 0x0D24)
#define PI_DARRAY3_0_CS1_F0 DDR_REGDEF(0x00, 0x08, 0x0D29)
#define PI_DARRAY3_1_CS1_F0 DDR_REGDEF(0x08, 0x08, 0x0D29)
#define PI_DARRAY3_0_CS1_F1 DDR_REGDEF(0x00, 0x08, 0x0D33)
#define PI_DARRAY3_1_CS1_F1 DDR_REGDEF(0x08, 0x08, 0x0D33)
#define PI_DARRAY3_0_CS1_F2 DDR_REGDEF(0x00, 0x08, 0x0D3D)
#define PI_DARRAY3_1_CS1_F2 DDR_REGDEF(0x08, 0x08, 0x0D3D)
#define PI_DARRAY3_4_CS1_F2 DDR_REGDEF(0x00, 0x08, 0x0D3E)
#define PI_DARRAY3_20_CS1_F2 DDR_REGDEF(0x00, 0x08, 0x0D42)
/* The setting table of Data Slice for V4H */
static const u32 DDR_PHY_SLICE_REGSET_V4H[DDR_PHY_SLICE_REGSET_NUM_V4H] = {
0x30020370, 0x00000000, 0x01000002, 0x00000000,
0x00000000, 0x00000000, 0x00010300, 0x04000100,
0x00010000, 0x01000000, 0x00000000, 0x00000000,
0x00010000, 0x08010000, 0x00022003, 0x00000000,
0x040F0100, 0x1404034F, 0x04040102, 0x04040404,
0x00000100, 0x00000000, 0x00000000, 0x000800C0,
0x000F18FF, 0x00000000, 0x00000001, 0x00070000,
0x0000AAAA, 0x00005555, 0x0000B5B5, 0x00004A4A,
0x00005656, 0x0000A9A9, 0x0000A9A9, 0x0000B5B5,
0x00000000, 0xBFBF0000, 0xCCCCF7F7, 0x00000000,
0x00000000, 0x00000000, 0x00080815, 0x08040000,
0x00000004, 0x00103000, 0x000C0040, 0x00200200,
0x01010000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000020, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000004, 0x001F07FF, 0x08000303,
0x10200080, 0x00000006, 0x00000401, 0x00000000,
0x20CEC201, 0x00000001, 0x00017706, 0x01007706,
0x00000000, 0x008D006D, 0x00100001, 0x03FF0100,
0x00006E01, 0x00000301, 0x00000000, 0x00000000,
0x00000000, 0x00500050, 0x00500050, 0x00500050,
0x00500050, 0x0D000050, 0x10100004, 0x06102010,
0x61619041, 0x07097000, 0x00644180, 0x00803280,
0x00808001, 0x13010100, 0x02000016, 0x10001003,
0x06093E42, 0x0F063D01, 0x011700C8, 0x04100140,
0x00000100, 0x000001D1, 0x05000068, 0x00030402,
0x01400000, 0x80800300, 0x00160010, 0x76543210,
0x00000008, 0x03010301, 0x03010301, 0x03010301,
0x03010301, 0x03010301, 0x00000000, 0x00500050,
0x00500050, 0x00500050, 0x00500050, 0x00500050,
0x00500050, 0x00500050, 0x00500050, 0x00500050,
0x00070087, 0x00000000, 0x08010007, 0x00000000,
0x20202020, 0x20202020, 0x20202020, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000
};
/* The setting table of Address Slice for V4H */
static const u32 DDR_PHY_ADR_V_REGSET_V4H[DDR_PHY_ADR_V_REGSET_NUM_V4H] = {
0x00200030, 0x00200002, 0x76543210, 0x00010001,
0x06543210, 0x03070000, 0x00001000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x0000807F,
0x00000001, 0x00000003, 0x00000000, 0x000F0000,
0x030C000F, 0x00020103, 0x0000000F, 0x00000100,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x02000400, 0x0000002A, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00200101,
0x10002C03, 0x00000003, 0x00030240, 0x00008008,
0x00081020, 0x01200000, 0x00010001, 0x00000000,
0x00100302, 0x003E4208, 0x01400140, 0x01400140,
0x01400140, 0x01400140, 0x00000100, 0x00000100,
0x00000100, 0x00000100, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00020580, 0x03000040,
0x00000000
};
/* The setting table of Address Control Slice for V4H */
static const u32 DDR_PHY_ADR_G_REGSET_V4H[DDR_PHY_ADR_G_REGSET_NUM_V4H] = {
0x00000000, 0x00000100, 0x00000001, 0x23800000,
0x00000000, 0x01000101, 0x00000000, 0x00000001,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00040101, 0x00000000, 0x00000000, 0x00000064,
0x00000000, 0x00000000, 0x39421B42, 0x00010124,
0x00520052, 0x00000052, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x07030102,
0x01030307, 0x00000054, 0x00004096, 0x08200820,
0x08200820, 0x08200820, 0x08200820, 0x00000820,
0x004103B8, 0x0000003F, 0x000C0006, 0x00000000,
0x000004C0, 0x00007A12, 0x00000208, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x03000000, 0x00000000, 0x00000000, 0x04102002,
0x00041020, 0x01C98C98, 0x3F400000, 0x003F3F3F,
0x00000000, 0x00000000, 0x76543210, 0x00010198,
0x00000007, 0x00000000, 0x00000000, 0x00000000,
0x00000002, 0x00000000, 0x00000000, 0x00000000,
0x01032380, 0x00000100, 0x00000000, 0x31421342,
0x00308000, 0x00000080, 0x00063F77, 0x00000006,
0x0000033F, 0x00000000, 0x0000033F, 0x00000000,
0x0000033F, 0x00000000, 0x00033F00, 0x00CC0000,
0x00033F77, 0x00000000, 0x00033F00, 0x00EE0000,
0x00033F00, 0x00EE0000, 0x00033F00, 0x00EE0000,
0x00200106
};
/* The setting table of PI Register for V4H */
static const u32 DDR_PI_REGSET_V4H[DDR_PI_REGSET_NUM_V4H] = {
0x00000D00, 0x00010100, 0x00640004, 0x00000001,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0xFFFFFFFF, 0x02010000, 0x00000003, 0x00000005,
0x00000002, 0x00000000, 0x00000101, 0x0012080E,
0x00000000, 0x001E2C0E, 0x00000000, 0x00030300,
0x01010700, 0x00000001, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x01000000, 0x00002807, 0x00000000, 0x32000300,
0x00000000, 0x00000000, 0x04022004, 0x01040100,
0x00010000, 0x00000100, 0x000000AA, 0x00000055,
0x000000B5, 0x0000004A, 0x00000056, 0x000000A9,
0x000000A9, 0x000000B5, 0x00000000, 0x01000000,
0x00030300, 0x0000001A, 0x000007D0, 0x00000300,
0x00000000, 0x00000000, 0x01000000, 0x00000101,
0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x03030300, 0x01000000, 0x00000000, 0x00000100,
0x00000003, 0x001100EF, 0x01A1120B, 0x00051400,
0x001A0700, 0x001101FC, 0x00011A00, 0x00000000,
0x001F0000, 0x00000000, 0x00000000, 0x00051500,
0x001103FC, 0x00011A00, 0x00051500, 0x001102FC,
0x00011A00, 0x00001A00, 0x00000000, 0x001F0000,
0x001100FC, 0x00011A00, 0x01A1120B, 0x001A0701,
0x00000000, 0x001F0000, 0x00000000, 0x00000000,
0x001100EF, 0x01A1120B, 0x00051400, 0x01910480,
0x01821009, 0x001F0000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x001A0700, 0x01A11E14,
0x001101FC, 0x00211A00, 0x00051500, 0x001103FC,
0x00011A00, 0x00051500, 0x001102FC, 0x00011A00,
0x00031A00, 0x001A0701, 0x00000000, 0x001F0000,
0x00000000, 0x00000000, 0x01A11E14, 0x01A1120B,
0x00000000, 0x001F0000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x001100FD, 0x00012E00,
0x00051700, 0x01A1120B, 0x001A0701, 0x001F0000,
0x00000000, 0x00000000, 0x001100EF, 0x01A1120B,
0x00051400, 0x001A0700, 0x001102FD, 0x00012E00,
0x00000000, 0x001F0000, 0x00000000, 0x00000000,
0x00070700, 0x00000000, 0x01000000, 0x00000300,
0x17030000, 0x00000000, 0x00000000, 0x00000000,
0x0A0A140A, 0x10020201, 0x332A0002, 0x01010000,
0x0B000404, 0x04030308, 0x00010100, 0x02020301,
0x01001000, 0x00000034, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x55AA55AA, 0x33CC33CC,
0x0FF00FF0, 0x0F0FF0F0, 0x00008E38, 0x00000001,
0x00000002, 0x00020001, 0x00020001, 0x02010201,
0x0000000F, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0xAAAAA593,
0xA5939999, 0x00000000, 0x00005555, 0x00003333,
0x0000CCCC, 0x00000000, 0x0003FFFF, 0x00003333,
0x0000CCCC, 0x00000000, 0x036DB6DB, 0x00249249,
0x05B6DB6D, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x036DB6DB, 0x00249249,
0x05B6DB6D, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x01000000, 0x00000100,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00010000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00010000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00080000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x01180400,
0x03020100, 0x00060504, 0x00010100, 0x00000008,
0x00080000, 0x00000001, 0x00000000, 0x0001AA00,
0x00000100, 0x00000000, 0x00010000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00020000, 0x00000100, 0x00010000, 0x0000000B,
0x0000001C, 0x00000100, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x03010000, 0x01000100,
0x01020001, 0x00010300, 0x05000104, 0x01060001,
0x00010700, 0x00000000, 0x00000000, 0x00010000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000301, 0x00000000, 0x00000000, 0x01010000,
0x00000000, 0x00000200, 0x00000000, 0xB8000000,
0x010000FF, 0x0000FFE8, 0x00FFA801, 0xFFD80100,
0x00007F10, 0x00000000, 0x00000034, 0x0000003D,
0x00020079, 0x02000200, 0x02000204, 0x06000C06,
0x04040200, 0x04100804, 0x14090004, 0x1C081024,
0x0000120C, 0x00000015, 0x000000CF, 0x00000026,
0x0000017F, 0x00000130, 0x04000C2E, 0x00000404,
0x01080032, 0x01080032, 0x000F0032, 0x00000000,
0x00000000, 0x00000000, 0x00010300, 0x00010301,
0x03030000, 0x00000001, 0x00010303, 0x00030000,
0x0013000C, 0x0A060037, 0x03030526, 0x000C0032,
0x0017003D, 0x0025004B, 0x00010101, 0x0000000E,
0x00000019, 0x010000C8, 0x000F000F, 0x0007000C,
0x001A0100, 0x0015001A, 0x0100000B, 0x00C900C9,
0x005100A1, 0x29003329, 0x33290033, 0x0A070600,
0x0A07060D, 0x0D09070D, 0x000C000D, 0x00001000,
0x00000C00, 0x00001000, 0x00000C00, 0x02001000,
0x0002000E, 0x00160019, 0x1E1A00C8, 0x00100004,
0x361C0008, 0x00000000, 0x0000000C, 0x0006000C,
0x0300361C, 0x04001300, 0x000D0019, 0x0000361C,
0x20003300, 0x00000000, 0x02000000, 0x04040802,
0x00060404, 0x0003C34F, 0x05022001, 0x0203000A,
0x04040408, 0xC34F0604, 0x10010005, 0x040A0502,
0x0A080F11, 0x1C0A040A, 0x0022C34F, 0x0C0C1002,
0x00019E0A, 0x0000102C, 0x000002FE, 0x00001DEC,
0x0000185C, 0x0000F398, 0x04000400, 0x03030400,
0x002AF803, 0x00002AF8, 0x0000D6D7, 0x00000003,
0x0000006E, 0x00000016, 0x00004E20, 0x00004E20,
0x00030D40, 0x00000005, 0x000000C8, 0x00000027,
0x00027100, 0x00027100, 0x00186A00, 0x00000028,
0x00000640, 0x01000136, 0x00530040, 0x00010004,
0x00960040, 0x00010004, 0x04B00040, 0x00000318,
0x00280005, 0x05040404, 0x00070603, 0x06030503,
0x0503000D, 0x00640603, 0x06040608, 0x00040604,
0x00260015, 0x01050130, 0x01000100, 0x00020201,
0x04040000, 0x01010104, 0x03020302, 0x00000100,
0x02020101, 0x00000000, 0x09910260, 0x11911600,
0x19A21009, 0x19A10100, 0x19A10201, 0x19A10302,
0x19A10A03, 0x19A10B04, 0x19A10C05, 0x19A10E07,
0x19A10F08, 0x19A1110A, 0x19A1120B, 0x19A1130C,
0x19A1140D, 0x19A00C00, 0x199F0000, 0x199F0000,
0x199F0000, 0x199F0000, 0x01910300, 0x01A21009,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x001140BF, 0x01811009, 0x01850400, 0x01A10C05,
0x01850300, 0x01A10C11, 0x01850300, 0x001100BF,
0x01811009, 0x01850500, 0x019F0000, 0x019F0000,
0x01510001, 0x01D102A0, 0x01E21009, 0x00051900,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x01510001,
0x01D10290, 0x01E21009, 0x01510001, 0x01D10000,
0x01E21009, 0x00051800, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x0011008F, 0x00910000,
0x01811009, 0x01910040, 0x01A21009, 0x019F0000,
0x01911000, 0x01A21009, 0x01A10100, 0x01A10201,
0x01A10302, 0x01A10A03, 0x01A10B04, 0x01A10C05,
0x01A10E07, 0x01A10F08, 0x01A1110A, 0x01A1120B,
0x01A1130C, 0x01A1140D, 0x01A00C00, 0x01910800,
0x01A21009, 0x019F0000, 0x019F0000, 0x019F0000,
0x0101017F, 0x00010101, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x01000000, 0x01000101,
0x00000000, 0x00000000, 0x00050000, 0x00070100,
0x000F0200, 0x00000000, 0x01A10100, 0x01A10201,
0x01A10302, 0x01A00B04, 0x00210D06, 0x01A1110A,
0x01A1140D, 0x00098000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x019F0000, 0x019F0000,
0x019F0000, 0x019F0000, 0x01A10100, 0x01A10201,
0x01A10302, 0x01A10A03, 0x01A10B04, 0x00210D06,
0x01A1110A, 0x00000000, 0x01A1140D, 0x00000000,
0x00000000, 0x00000000, 0x01A1120B, 0x000A0000,
0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x000A0000, 0x01061300,
0x00000000, 0x00000000, 0x00061180, 0x000612C0,
0x00000000, 0x00000000, 0x001F0000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x01811009, 0x0011EFAF,
0x01A1120B, 0x001F0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x001F0000, 0x001100BF,
0x01A1120B, 0x080D0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x080C0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x001F0200, 0x001F0200,
0x001F0200, 0x001F0200, 0x001F0200, 0x001F0200,
0x001F0200, 0x001F0200, 0x001F0200, 0x001F0200,
0x001F0200, 0x001F0200, 0x001100EF, 0x01A1120B,
0x001F0000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x01A1120B, 0x001F0000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x001100EF, 0x01A1120B,
0x001F0000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00211F14, 0x00212014,
0x00212116, 0x00212217, 0x001F0000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x001A85FF, 0x00051E00, 0x001F0000, 0x00000000,
0x00211F14, 0x00212015, 0x00212116, 0x00212217,
0x01A1120B, 0x001F0000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x0031FFBF, 0x01A11009,
0x01A10E07, 0x01A10F08, 0x003100BF, 0x01A11009,
0x00051800, 0x003F0000, 0x003F0000, 0x003F0000,
0x003F0000, 0x003F0000, 0x003F0000, 0x003F0000,
0x003F0000, 0x003F0000, 0x0031FFBF, 0x01A11009,
0x01A10E07, 0x01A10F08, 0x003100BF, 0x01A11009,
0x00051800, 0x003F0000, 0x003F0000, 0x003F0000,
0x003F0000, 0x003F0000, 0x003F0000, 0x003F0000,
0x003F0000, 0x003F0000, 0x08084340, 0x0011FFFF,
0x2011FFFB, 0x00012E00, 0x001100EF, 0x01A1120B,
0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x083E4340, 0x00212E00,
0x01A1120B, 0x003F0000, 0x003F0000, 0x003F0000,
0x003F0000, 0x003F0000, 0x003F0000, 0x08201020,
0x28100020, 0x08083020, 0x08400020, 0x08402020,
0x08483020, 0x10083020, 0x20180020, 0x30480020,
0x78880020, 0x488010E0, 0x494B0000, 0x49089080,
0x49080000, 0x490011C0, 0x0A000020, 0x08000020,
0x08000020, 0x08000020, 0x08000020, 0x08000020,
0x08000020, 0x08000020, 0x08000020, 0x08000020,
0x08000020, 0x08000020, 0x08000020, 0x08000020,
0x08000020, 0x08000020, 0x08000020, 0x08000020,
0x08000020, 0x08000020, 0x08000020, 0x08000020,
0x08000020, 0x08000020, 0x08000020, 0x08000020,
0x08000020, 0x08000020, 0x08000020, 0x08000020,
0x001100FF, 0x01810302, 0x001100DF, 0x00010D06,
0x001100EF, 0x01A1120B, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
0x00010D06, 0x01810302, 0x0181160E, 0x001F0000,
0x001F0000, 0x001F0000, 0x001F0000, 0x001F0000,
0x081A52FD, 0x001A12FF, 0x00051A00, 0x001A13FF,
0x00051B00, 0x001F13FF, 0x081A52FD, 0x001A12FF,
0x00051A00, 0x001A13FF, 0x00051B00, 0x001F13FF,
0x081A52FD, 0x001A12FF, 0x00051A00, 0x001A13FF,
0x00051B00, 0x001F13FF, 0x00032300, 0x00032400,
0x001F0000, 0x001F0000, 0x00800000, 0x0031FFBF,
0x01A11009, 0x01A10E07, 0x01A10F08, 0x003100BF,
0x01A11009, 0x00051800, 0x003F0000, 0x003F0000,
0x003F0000, 0x003F0000, 0x003F0000, 0x003F0000,
0x003F0000, 0x003F0000, 0x00800000, 0x0031FFBF,
0x01A11009, 0x01A10E07, 0x01A10F08, 0x003100BF,
0x01A11009, 0x00051800, 0x003F0000, 0x003F0000,
0x003F0000, 0x003F0000, 0x003F0000, 0x003F0000,
0x003F0000, 0x003F0000, 0x081100DF, 0x08010D06,
0x0011000F, 0x0181160E, 0x001100EF, 0x01A1120B,
0x001F0000, 0x001F0000, 0x001F0000, 0x009C0000,
0x08010D06, 0x0181160E, 0x01A1120B, 0x001F0000,
0x001F0000, 0x001F0000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x11910048,
0x09910060, 0x19A21009, 0x19A10100, 0x19A10201,
0x19A10302, 0x19A10A03, 0x19A10B04, 0x18051C00,
0x19A1110A, 0x19A1120B, 0x19A1130C, 0x19A1140D,
0x19A1160E, 0x181140BF, 0x19A11009, 0x19A10C05,
0x19A00C00, 0x19A10E07, 0x19A10F08, 0x19910280,
0x19A21009, 0x18051000, 0x18861101, 0x181F0000,
0x18000000, 0x18000000, 0x18000000, 0x18000000,
0x18000000, 0x18000000, 0x18000000, 0x18000000,
0x18000000, 0x18000000, 0x18000000, 0x18000000,
0x18000000, 0x18000000, 0x18000000, 0x18861100,
0x19A11009, 0x101B0001, 0x181B0100, 0x18000500,
0x181B0200, 0x00000000, 0x181B0600, 0x181B0C00,
0x181B0100, 0x181B0200, 0x181B0300, 0x181B0400,
0x181F0000, 0x18000000, 0x18000000, 0x18000000,
0x18000000, 0x18000000, 0x18000000, 0x18000000,
0x18000000, 0x18000000, 0x18000000, 0x18000000,
0x18000000, 0x18000000, 0x18000000, 0x18000000,
0x18000000, 0x004B1040, 0x001011C0, 0x00089080,
0x000811C0, 0x040811C0, 0x02000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x5F407FAA,
0x007B776F, 0x4AB555AA, 0xB5A9A956, 0x9F80BFAA,
0x00BBB7AF, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00002AF8, 0x0000D6D7, 0x0000006E,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x0000000E, 0x00000019, 0x000000C8,
0x00000001, 0x00000001, 0x00000003, 0x00000007,
0x00000007, 0x00000009, 0x00000001, 0x00000001,
0x00000003, 0x00000001, 0x00000001, 0x00000003,
0x0000006E, 0x000000C8, 0x00000640, 0x00000001,
0x00000001, 0x00000003, 0x00000002, 0x00000004,
0x0000001C, 0x00000007, 0x0000000B, 0x00000051,
0x0000000C, 0x00000015, 0x000000A1, 0x00000003,
0x00000000, 0x0000000C, 0x00000000, 0x00000000,
0x00000000, 0x0000000F, 0x0000000F, 0x0000000F,
0x00002AF9, 0x00002AF9, 0x00002AF9, 0x00000034,
0x0000001E, 0x0000003C, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x000000C0, 0x00000000, 0x00000000, 0x55550000,
0x00003C5A, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00D60000,
0x50005000, 0x803E0050, 0x00000200, 0x00000000,
0x00000000, 0x00007800, 0x00000000, 0x00000000,
0x00000000, 0x00C61110, 0x2C002834, 0x0C06002C,
0x00000200, 0x00000000, 0x00000000, 0x00007800,
0x00000000, 0x00000000, 0x00000000, 0x00C6BBB0,
0x2C002834, 0x0C06002C, 0x00000200, 0x00000000,
0x00000000, 0x00007800, 0x00000000, 0x00000000,
0x00000000, 0x00D60000, 0x50005000, 0x803E0050,
0x00000200, 0x00000000, 0x00000000, 0x00007800,
0x00000000, 0x00000000, 0x00000000, 0x00C61110,
0x2C002834, 0x082E002C, 0x00000200, 0x00000000,
0x00000000, 0x00007800, 0x00000000, 0x00000000,
0x00000000, 0x00C6BBB0, 0x2C002834, 0x082E002C,
0x00000200, 0x00000000, 0x00000000, 0x00007800,
0x00000000, 0x00000000, 0x00000000, 0x80808080,
0x800D8080, 0x80808080, 0x17808080, 0x80808025,
0x2221201F, 0x80808080, 0x80808080, 0x80808080,
0x80808080, 0x80808080, 0x80808080, 0x80808080,
0x80808080, 0x80808080, 0x80808080, 0x80808080,
0x80808080, 0x80808080, 0x80808080, 0x0A030201,
0x0E800C0B, 0x1211100F, 0x80161413, 0x08004C80,
0x8080801E, 0x80804E80, 0x80808080, 0x80808080,
0x80808080
};
struct dbsc5_table_patch {
const u32 reg;
const u32 val;
};
static const struct dbsc5_table_patch dbsc5_table_patch_slice_3200[] = {
{ PHY_REGULATOR_EN_CNT, 0x10 },
{ PHY_RX_CAL_ALL_DLY, 0x07 },
{ PHY_RDDATA_EN_TSEL_DLY, 0x08 },
{ PHY_RDDATA_EN_OE_DLY, 0x0B },
{ PHY_RPTR_UPDATE, 0x07 },
{ PHY_WRLVL_RESP_WAIT_CNT, 0x25 },
{ PHY_RDLVL_MAX_EDGE, 0x012D },
{ PHY_RDDATA_EN_DLY, 0x0B },
{ PHY_RDDQS_LATENCY_ADJUST, 0x04 },
{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x05 },
{ PHY_GTLVL_LAT_ADJ_START, 0x03 },
{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_3200[] = {
{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_pi_3200[] = {
{ PI_TCKCKEL_F2, 0x03 },
{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x57 },
{ PI_TREF_F2, 0x613 },
{ PI_TDFI_WRLVL_WW_F0, 0x2B },
{ PI_TDFI_WRLVL_WW_F1, 0x2B },
{ PI_TDFI_WRLVL_WW_F2, 0x2B },
{ PI_RDLAT_ADJ_F2, 0x22 },
{ PI_TDFI_CALVL_CAPTURE_F2, 0x1D },
{ PI_TDFI_CALVL_CC_F2, 0x43 },
{ PI_TVRCG_ENABLE_F2, 0x51 },
{ PI_TVRCG_DISABLE_F2, 0x29 },
{ PI_TXP_F2, 0x07 },
{ PI_TMRWCKEL_F2, 0x0A },
{ PI_TDFI_CALVL_STROBE_F2, 0x06 },
{ PI_TFC_F2, 0x64 },
{ PI_TCKEHDQS_F2, 0x12 },
{ PI_TDFI_WDQLVL_RW_F2, 0x09 },
{ PI_TDFI_WDQLVL_WR_F2, 0x10 },
{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x10 },
{ PI_MBIST_RDLAT_ADJ_F2, 0x1E },
{ PI_TWTR_S_F2, 0x05 },
{ PI_TWTR_L_F2, 0x05 },
{ PI_TWTR_F2, 0x05 },
{ PI_TWR_F2, 0x0E },
{ PI_TDQSCK_MAX_F2, 0x01 },
{ PI_TDFI_CTRLUPD_MAX_F2, 0x0C26 },
{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0x797C },
{ PI_TXSNR_F2, 0x9B },
{ PI_ZQRESET_F2, 0x0014 },
{ PI_TCBTRTW_F2, 0x04 },
{ PI_SEQ_WAIT_16_F2, 0x000064 },
{ PI_SEQ_WAIT_17_F2, 0x000002 },
{ PI_SEQ_WAIT_18_F2, 0x000007 },
{ PI_SEQ_WAIT_19_F2, 0x000002 },
{ PI_SEQ_WAIT_20_F2, 0x000002 },
{ PI_SEQ_WAIT_21_F2, 0x000320 },
{ PI_SEQ_WAIT_22_F2, 0x000002 },
{ PI_SEQ_WAIT_23_F2, 0x00000E },
{ PI_SEQ_WAIT_24_F2, 0x000029 },
{ PI_SEQ_WAIT_25_F2, 0x000051 },
{ PI_SEQ_WAIT_26_F2, 0x000003 },
{ PI_SEQ_WAIT_30_F2, 0x00002B },
{ PI_WRDCM_LVL_EN_F1, 0x00 },
{ PI_WRDCM_LVL_EN_F2, 0x00 },
{ PI_DRAMDCA_LVL_EN_F1, 0x00 },
{ PI_DRAMDCA_LVL_EN_F2, 0x00 },
{ PI_TINIT_F2, 0x013880 },
{ PI_TINIT1_F2, 0x013880 },
{ PI_TINIT3_F2, 0x0C3500 },
{ PI_TINIT4_F2, 0x000014 },
{ PI_TINIT5_F2, 0x000320 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_slice_3733[] = {
{ PHY_REGULATOR_EN_CNT, 0x13 },
{ PHY_RX_CAL_ALL_DLY, 0x08 },
{ PHY_RDDATA_EN_TSEL_DLY, 0x0A },
{ PHY_RDDATA_EN_OE_DLY, 0x0D },
{ PHY_RPTR_UPDATE, 0x08 },
{ PHY_WRLVL_RESP_WAIT_CNT, 0x2A },
{ PHY_RDLVL_MAX_EDGE, 0x0149 },
{ PHY_RDDATA_EN_DLY, 0x0D },
{ PHY_RDDQS_LATENCY_ADJUST, 0x04 },
{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x9C },
{ PHY_GTLVL_LAT_ADJ_START, 0x04 },
{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_3733[] = {
{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_pi_3733[] = {
{ PI_TCKCKEL_F2, 0x03 },
{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x5B },
{ PI_TREF_F2, 0x717 },
{ PI_TDFI_WRLVL_WW_F0, 0x2C },
{ PI_TDFI_WRLVL_WW_F1, 0x2C },
{ PI_TDFI_WRLVL_WW_F2, 0x2C },
{ PI_RDLAT_ADJ_F2, 0x24 },
{ PI_TDFI_CALVL_CAPTURE_F2, 0x1F },
{ PI_TDFI_CALVL_CC_F2, 0x45 },
{ PI_TVRCG_ENABLE_F2, 0x5F },
{ PI_TVRCG_DISABLE_F2, 0x30 },
{ PI_TXP_F2, 0x07 },
{ PI_TMRWCKEL_F2, 0x0A },
{ PI_TDFI_CALVL_STROBE_F2, 0x06 },
{ PI_TFC_F2, 0x75 },
{ PI_TCKEHDQS_F2, 0x13 },
{ PI_TDFI_WDQLVL_RW_F2, 0x09 },
{ PI_TDFI_WDQLVL_WR_F2, 0x12 },
{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x10 },
{ PI_MBIST_RDLAT_ADJ_F2, 0x20 },
{ PI_TWTR_S_F2, 0x06 },
{ PI_TWTR_L_F2, 0x06 },
{ PI_TWTR_F2, 0x06 },
{ PI_TWR_F2, 0x10 },
{ PI_TDFI_CTRLUPD_MAX_F2, 0x0E2E },
{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0x8DCC },
{ PI_TXSNR_F2, 0xB5 },
{ PI_ZQRESET_F2, 0x0018 },
{ PI_TCBTRTW_F2, 0x05 },
{ PI_SEQ_WAIT_16_F2, 0x000075 },
{ PI_SEQ_WAIT_17_F2, 0x000002 },
{ PI_SEQ_WAIT_18_F2, 0x000007 },
{ PI_SEQ_WAIT_19_F2, 0x000002 },
{ PI_SEQ_WAIT_20_F2, 0x000002 },
{ PI_SEQ_WAIT_21_F2, 0x0003A6 },
{ PI_SEQ_WAIT_22_F2, 0x000002 },
{ PI_SEQ_WAIT_23_F2, 0x000011 },
{ PI_SEQ_WAIT_24_F2, 0x000030 },
{ PI_SEQ_WAIT_25_F2, 0x00005F },
{ PI_SEQ_WAIT_26_F2, 0x000005 },
{ PI_SEQ_WAIT_30_F2, 0x00002D },
{ PI_TINIT_F2, 0x016C90 },
{ PI_TINIT1_F2, 0x016C90 },
{ PI_TINIT3_F2, 0x0E3D98 },
{ PI_TINIT4_F2, 0x000018 },
{ PI_TINIT5_F2, 0x0003A6 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_slice_4266[] = {
{ PHY_REGULATOR_EN_CNT, 0x16 },
{ PHY_RX_CAL_ALL_DLY, 0x09 },
{ PHY_RDDATA_EN_TSEL_DLY, 0x0B },
{ PHY_RDDATA_EN_OE_DLY, 0x0E },
{ PHY_RPTR_UPDATE, 0x08 },
{ PHY_WRLVL_RESP_WAIT_CNT, 0x2E },
{ PHY_RDLVL_MAX_EDGE, 0x0164 },
{ PHY_RDDATA_EN_DLY, 0x0E },
{ PHY_RDDQS_LATENCY_ADJUST, 0x05 },
{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x30 },
{ PHY_GTLVL_LAT_ADJ_START, 0x04 },
{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_4266[] = {
{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_pi_4266[] = {
{ PI_TCKCKEL_F2, 0x03 },
{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x64 },
{ PI_TREF_F2, 0x81C },
{ PI_TDFI_WRLVL_WW_F0, 0x2D },
{ PI_TDFI_WRLVL_WW_F1, 0x2D },
{ PI_TDFI_WRLVL_WW_F2, 0x2D },
{ PI_RDLAT_ADJ_F2, 0x2B },
{ PI_TDFI_CALVL_CAPTURE_F2, 0x20 },
{ PI_TDFI_CALVL_CC_F2, 0x46 },
{ PI_TVRCG_ENABLE_F2, 0x6C },
{ PI_TVRCG_DISABLE_F2, 0x37 },
{ PI_TXP_F2, 0x07 },
{ PI_TMRWCKEL_F2, 0x0A },
{ PI_TFC_F2, 0x86 },
{ PI_TCKEHDQS_F2, 0x14 },
{ PI_TDFI_WDQLVL_RW_F2, 0x0B },
{ PI_TDFI_WDQLVL_WR_F2, 0x13 },
{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x14 },
{ PI_MBIST_RDLAT_ADJ_F2, 0x27 },
{ PI_TWTR_S_F2, 0x07 },
{ PI_TWTR_L_F2, 0x07 },
{ PI_TWTR_F2, 0x07 },
{ PI_TWR_F2, 0x13 },
{ PI_TDFI_CTRLUPD_MAX_F2, 0x1038 },
{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0xA230 },
{ PI_TXSNR_F2, 0xCF },
{ PI_ZQRESET_F2, 0x001B },
{ PI_TCBTRTW_F2, 0x06 },
{ PI_SEQ_WAIT_16_F2, 0x000086 },
{ PI_SEQ_WAIT_17_F2, 0x000002 },
{ PI_SEQ_WAIT_18_F2, 0x000007 },
{ PI_SEQ_WAIT_19_F2, 0x000002 },
{ PI_SEQ_WAIT_20_F2, 0x000002 },
{ PI_SEQ_WAIT_21_F2, 0x00042B },
{ PI_SEQ_WAIT_22_F2, 0x000002 },
{ PI_SEQ_WAIT_23_F2, 0x000013 },
{ PI_SEQ_WAIT_24_F2, 0x000037 },
{ PI_SEQ_WAIT_25_F2, 0x00006C },
{ PI_SEQ_WAIT_26_F2, 0x000006 },
{ PI_SEQ_WAIT_30_F2, 0x000032 },
{ PI_TINIT_F2, 0x01A0AB },
{ PI_TINIT1_F2, 0x01A0AB },
{ PI_TINIT3_F2, 0x1046AB },
{ PI_TINIT4_F2, 0x00001B },
{ PI_TINIT5_F2, 0x00042B }
};
static const struct dbsc5_table_patch dbsc5_table_patch_slice_4800[] = {
{ PHY_REGULATOR_EN_CNT, 0x18 },
{ PHY_RX_CAL_ALL_DLY, 0x0A },
{ PHY_RDDATA_EN_TSEL_DLY, 0x0D },
{ PHY_RDDATA_EN_OE_DLY, 0x10 },
{ PHY_RPTR_UPDATE, 0x08 },
{ PHY_WRLVL_RESP_WAIT_CNT, 0x31 },
{ PHY_RDLVL_MAX_EDGE, 0x017F },
{ PHY_RDDATA_EN_DLY, 0x10 },
{ PHY_RDDQS_LATENCY_ADJUST, 0x05 },
{ PHY_RDDQS_GATE_SLAVE_DELAY, 0xC6 },
{ PHY_GTLVL_LAT_ADJ_START, 0x05 },
{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_4800[] = {
{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_pi_4800[] = {
{ PI_TCKCKEL_F2, 0x03 },
{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x68 },
{ PI_RDLAT_ADJ_F2, 0x2D },
{ PI_TREF_F2, 0x920 },
{ PI_TDFI_WRLVL_WW_F0, 0x2E },
{ PI_TDFI_WRLVL_WW_F1, 0x2E },
{ PI_TDFI_WRLVL_WW_F2, 0x2E },
{ PI_TDFI_CALVL_CAPTURE_F2, 0x21 },
{ PI_TDFI_CALVL_CC_F2, 0x47 },
{ PI_TVRCG_DISABLE_F2, 0x3D },
{ PI_TVRCG_ENABLE_F2, 0x79 },
{ PI_TXP_F2, 0x08 },
{ PI_TMRWCKEL_F2, 0x0A },
{ PI_TCKEHDQS_F2, 0x14 },
{ PI_TFC_F2, 0x96 },
{ PI_TDFI_WDQLVL_RW_F2, 0x0B },
{ PI_TDFI_WDQLVL_WR_F2, 0x15 },
{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x18 },
{ PI_MBIST_RDLAT_ADJ_F2, 0x29 },
{ PI_TWTR_S_F2, 0x08 },
{ PI_TWR_F2, 0x15 },
{ PI_TWTR_F2, 0x08 },
{ PI_TWTR_L_F2, 0x08 },
{ PI_TDFI_CTRLUPD_MAX_F2, 0x1240 },
{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0xB680 },
{ PI_TXSNR_F2, 0x0E9 },
{ PI_ZQRESET_F2, 0x001E },
{ PI_TCBTRTW_F2, 0x06 },
{ PI_SEQ_WAIT_16_F2, 0x000096 },
{ PI_SEQ_WAIT_17_F2, 0x000002 },
{ PI_SEQ_WAIT_18_F2, 0x000008 },
{ PI_SEQ_WAIT_19_F2, 0x000002 },
{ PI_SEQ_WAIT_20_F2, 0x000002 },
{ PI_SEQ_WAIT_21_F2, 0x0004B0 },
{ PI_SEQ_WAIT_22_F2, 0x000002 },
{ PI_SEQ_WAIT_23_F2, 0x000015 },
{ PI_SEQ_WAIT_24_F2, 0x00003D },
{ PI_SEQ_WAIT_25_F2, 0x000079 },
{ PI_SEQ_WAIT_26_F2, 0x000008 },
{ PI_SEQ_WAIT_30_F2, 0x000034 },
{ PI_TINIT_F2, 0x01D4A9 },
{ PI_TINIT1_F2, 0x01D4A9 },
{ PI_TINIT3_F2, 0x124E91 },
{ PI_TINIT4_F2, 0x00001E },
{ PI_TINIT5_F2, 0x0004B0 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_slice_5500[] = {
{ PHY_REGULATOR_EN_CNT, 0x1C },
{ PHY_RX_CAL_ALL_DLY, 0x0C },
{ PHY_RDDATA_EN_TSEL_DLY, 0x10 },
{ PHY_RDDATA_EN_OE_DLY, 0x13 },
{ PHY_WRLVL_RESP_WAIT_CNT, 0x37 },
{ PHY_RDLVL_MAX_EDGE, 0x01A3 },
{ PHY_RDDATA_EN_DLY, 0x13 },
{ PHY_RDDQS_LATENCY_ADJUST, 0x06 },
{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x8F },
{ PHY_GTLVL_LAT_ADJ_START, 0x06 },
{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_5500[] = {
{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_pi_5500[] = {
{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x71 },
{ PI_RDLAT_ADJ_F2, 0x32 },
{ PI_TREF_F2, 0xA79 },
{ PI_TDFI_WRLVL_WW_F0, 0x30 },
{ PI_TDFI_WRLVL_WW_F1, 0x30 },
{ PI_TDFI_WRLVL_WW_F2, 0x30 },
{ PI_TDFI_CALVL_CAPTURE_F2, 0x23 },
{ PI_TDFI_CALVL_CC_F2, 0x49 },
{ PI_TVRCG_DISABLE_F2, 0x46 },
{ PI_TVRCG_ENABLE_F2, 0x8B },
{ PI_TMRWCKEL_F2, 0x0B },
{ PI_TCKEHDQS_F2, 0x15 },
{ PI_TFC_F2, 0xAD },
{ PI_TDFI_WDQLVL_RW_F2, 0x0C },
{ PI_TDFI_WDQLVL_WR_F2, 0x17 },
{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x1C },
{ PI_MBIST_RDLAT_ADJ_F2, 0x2E },
{ PI_TWTR_S_F2, 0x09 },
{ PI_TWR_F2, 0x18 },
{ PI_TWTR_F2, 0x09 },
{ PI_TWTR_L_F2, 0x09 },
{ PI_TDFI_CTRLUPD_MAX_F2, 0x14F2 },
{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0xD174 },
{ PI_TXSNR_F2, 0x10B },
{ PI_ZQRESET_F2, 0x0023 },
{ PI_TCBTRTW_F2, 0x07 },
{ PI_SEQ_WAIT_16_F2, 0x0000AD },
{ PI_SEQ_WAIT_21_F2, 0x000561 },
{ PI_SEQ_WAIT_23_F2, 0x000019 },
{ PI_SEQ_WAIT_24_F2, 0x000046 },
{ PI_SEQ_WAIT_25_F2, 0x00008B },
{ PI_SEQ_WAIT_26_F2, 0x00000A },
{ PI_SEQ_WAIT_30_F2, 0x000038 },
{ PI_TINIT_F2, 0x0219AF },
{ PI_TINIT1_F2, 0x0219AF },
{ PI_TINIT3_F2, 0x1500CF },
{ PI_TINIT4_F2, 0x000023 },
{ PI_TINIT5_F2, 0x000561 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_slice_6000[] = {
{ PHY_REGULATOR_EN_CNT, 0x1F },
{ PHY_RDDATA_EN_TSEL_DLY, 0x12 },
{ PHY_RDDATA_EN_OE_DLY, 0x15 },
{ PHY_WRLVL_RESP_WAIT_CNT, 0x3A },
{ PHY_RDLVL_MAX_EDGE, 0x01BD },
{ PHY_RDDATA_EN_DLY, 0x15 },
{ PHY_RDDQS_LATENCY_ADJUST, 0x07 },
{ PHY_RDDQS_GATE_SLAVE_DELAY, 0x1B },
{ PHY_GTLVL_LAT_ADJ_START, 0x06 },
{ PHY_LP4_BOOT_RX_PCLK_CLK_SEL, 0x00 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_6000[] = {
{ PHY_ADR_MEAS_DLY_STEP_ENABLE, 0x00 },
{ PHY_ADR_CALVL_DLY_STEP, 0x02 }
};
static const struct dbsc5_table_patch dbsc5_table_patch_pi_6000[] = {
{ PI_TDELAY_RDWR_2_BUS_IDLE_F2, 0x75 },
{ PI_RDLAT_ADJ_F2, 0x34 },
{ PI_TREF_F2, 0xB6B },
{ PI_TDFI_WRLVL_WW_F0, 0x31 },
{ PI_TDFI_WRLVL_WW_F1, 0x31 },
{ PI_TDFI_WRLVL_WW_F2, 0x31 },
{ PI_TVRCG_DISABLE_F2, 0x4D },
{ PI_TVRCG_ENABLE_F2, 0x98 },
{ PI_TMRWCKEL_F2, 0x0C },
{ PI_TFC_F2, 0xBC },
{ PI_TDFI_WDQLVL_RW_F2, 0x0C },
{ PI_MBIST_TWCKENL_RD_ADJ_F2, 0x1C },
{ PI_MBIST_RDLAT_ADJ_F2, 0x30 },
{ PI_TWR_F2, 0x1A },
{ PI_TDFI_CTRLUPD_MAX_F2, 0x16D6 },
{ PI_TDFI_CTRLUPD_INTERVAL_F2, 0xE45C },
{ PI_TXSNR_F2, 0x123 },
{ PI_ZQRESET_F2, 0x0026 },
{ PI_SEQ_WAIT_16_F2, 0x0000BC },
{ PI_SEQ_WAIT_21_F2, 0x0005DD },
{ PI_SEQ_WAIT_23_F2, 0x00001B },
{ PI_SEQ_WAIT_24_F2, 0x00004D },
{ PI_SEQ_WAIT_25_F2, 0x000098 },
{ PI_SEQ_WAIT_30_F2, 0x00003A },
{ PI_TINIT_F2, 0x024A16 },
{ PI_TINIT1_F2, 0x024A16 },
{ PI_TINIT3_F2, 0x16E4D8 },
{ PI_TINIT4_F2, 0x000026 },
{ PI_TINIT5_F2, 0x0005DD }
};
static const struct dbsc5_table_patch dbsc5_table_patch_slice_mbpsdiv_640 = {
PHY_DATA_DC_CAL_CLK_SEL, 0x05
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_v_mbpsdiv_640 = {
PHY_CLK_DC_CAL_CLK_SEL, 0x04
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_g_mbpsdiv_640 = {
PHY_CAL_CLK_SELECT_0, 0x05
};
static const struct dbsc5_table_patch dbsc5_table_patch_slice_mbpsdiv_572 = {
PHY_RX_PCLK_CLK_SEL, 0x3
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_g_mbpsdiv_572 = {
PHY_PAD_ACS_RX_PCLK_CLK_SEL, 0x03
};
static const struct dbsc5_table_patch dbsc5_table_patch_adr_g_mbpsdiv_400[] = {
{ PHY_PLL_CTRL, 0x1542 },
{ PHY_PLL_CTRL_8X, 0x3342 }
};
/* Array of addresses for setting PI_DARRAY3_0 in each CS and frequency-set */
static const u32 PI_DARRAY3_0_CSx_Fx[CS_CNT][3] = {
{ PI_DARRAY3_0_CS0_F0, PI_DARRAY3_0_CS0_F1, PI_DARRAY3_0_CS0_F2 },
{ PI_DARRAY3_0_CS1_F0, PI_DARRAY3_0_CS1_F1, PI_DARRAY3_0_CS1_F2 }
};
/* Array of addresses for setting PI_DARRAY3_1 in each CS and frequency-set */
static const u32 PI_DARRAY3_1_CSx_Fx[CS_CNT][3] = {
{ PI_DARRAY3_1_CS0_F0, PI_DARRAY3_1_CS0_F1, PI_DARRAY3_1_CS0_F2 },
{ PI_DARRAY3_1_CS1_F0, PI_DARRAY3_1_CS1_F1, PI_DARRAY3_1_CS1_F2 }
};
/* DBSC registers */
#define DBSC_DBSYSCONF0 0x0
#define DBSC_DBSYSCONF1 0x0
#define DBSC_DBSYSCONF1A 0x4
#define DBSC_DBSYSCONF2 0x4
#define DBSC_DBPHYCONF0 0x8
#define DBSC_DBSYSCONF2A 0x8
#define DBSC_DBMEMKIND 0x20
#define DBSC_DBMEMKINDA 0x20
#define DBSC_DBMEMCONF(ch, cs) (0x30 + (0x2000 * ((ch) & 0x2)) + (0x10 * ((ch) & 0x1)) + (0x4 * (cs)))
#define DBSC_DBMEMCONFA(ch, cs) (0x30 + (0x4000 * ((ch) & 0x2)) + (0x10 * ((ch) & 0x1)) + (0x4 * (cs)))
#define DBSC_DBSYSCNT0 0x100
#define DBSC_DBSYSCNT0A 0x100
#define DBSC_DBACEN 0x200
#define DBSC_DBRFEN 0x204
#define DBSC_DBCMD 0x208
#define DBSC_DBWAIT 0x210
#define DBSC_DBBL 0x400
#define DBSC_DBBLA 0x400
#define DBSC_DBRFCNF1 0x414
#define DBSC_DBRFCNF2 0x418
#define DBSC_DBCALCNF 0x424
#define DBSC_DBDBICNT 0x518
#define DBSC_DBDFIPMSTRCNF 0x520
#define DBSC_DBDFICUPDCNF 0x540
#define DBSC_DBBCAMDIS 0x9FC
#define DBSC_DBSCHRW1 0x1024
#define DBSC_DBSCHTR0 0x1030
#define DBSC_DBTR(x) (0x300 + (0x4 * (x)))
#define DBSC_DBRNK(x) (0x430 + (0x4 * (x)))
#define DBSC_DBDFISTAT(ch) (0x600 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBDFICNT(ch) (0x604 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDCNT2(ch) (0x618 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDLK(ch) (0x620 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDRGA(ch) (0x624 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDRGD(ch) (0x628 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDRGM(ch) (0x62C + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDSTAT0(ch) (0x630 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBPDSTAT1(ch) (0x634 + (0x2000 * ((ch) & 0x2)) + (0x40 * ((ch) & 0x1)))
#define DBSC_DBSCHFCTST0 0x1040
#define DBSC_DBSCHFCTST1 0x1044
/* CPG PLL3 registers */
#define CPG_CPGWPR 0x0
#define CPG_FRQCRD0 0x80C
#define CPG_PLLECR 0x820
#define CPG_PLL3CR0 0x83C
#define CPG_PLL3CR1 0x8C0
#define CPG_FSRCHKCLRR4 0x590
#define CPG_FSRCHKSETR4 0x510
#define CPG_FSRCHKRA4 0x410
#define CPG_SRCR4 0x2C10
#define CPG_SRSTCLR4 0x2C90
#define CPG_FRQCRD_KICK_BIT BIT(31)
#define CPG_PLL3CR0_KICK_BIT BIT(31)
#define CPG_PLLECR_PLL3ST_BIT BIT(11)
#define CLK_DIV(a, diva, b, divb) (((a) * (divb)) / ((b) * (diva)))
struct renesas_dbsc5_board_config {
/* Channels in use */
u8 bdcfg_phyvalid;
/* Read vref (SoC) training range */
u32 bdcfg_vref_r;
/* Write vref (MR14, MR15) training range */
u16 bdcfg_vref_w;
/* CA vref (MR12) training range */
u16 bdcfg_vref_ca;
/* RFM required check */
bool bdcfg_rfm_chk;
/* Board parameter about channels */
struct {
/*
* 0x00: 4Gb dual channel die / 2Gb single channel die
* 0x01: 6Gb dual channel die / 3Gb single channel die
* 0x02: 8Gb dual channel die / 4Gb single channel die
* 0x03: 12Gb dual channel die / 6Gb single channel die
* 0x04: 16Gb dual channel die / 8Gb single channel die
* 0x05: 24Gb dual channel die / 12Gb single channel die
* 0x06: 32Gb dual channel die / 16Gb single channel die
* 0x07: 24Gb single channel die
* 0x08: 32Gb single channel die
* 0xFF: NO_MEMORY
*/
u8 bdcfg_ddr_density[CS_CNT];
/* SoC caX([6][5][4][3][2][1][0]) -> MEM caY: */
u32 bdcfg_ca_swap;
/* SoC dqsX([1][0]) -> MEM dqsY: */
u8 bdcfg_dqs_swap;
/* SoC dq([7][6][5][4][3][2][1][0]) -> MEM dqY/dm: (8 means DM) */
u32 bdcfg_dq_swap[SLICE_CNT];
/* SoC dm -> MEM dqY/dm: (8 means DM) */
u8 bdcfg_dm_swap[SLICE_CNT];
/* SoC ckeX([1][0]) -> MEM csY */
u8 bdcfg_cs_swap;
} ch[4];
};
struct renesas_dbsc5_dram_priv {
void __iomem *regs;
void __iomem *cpg_regs;
/* The board parameter structure of the board */
const struct renesas_dbsc5_board_config *dbsc5_board_config;
/* The board clock frequency */
u32 brd_clk;
u32 brd_clkdiv;
u32 brd_clkdiva;
/* The Mbps of Bus */
u32 bus_clk;
u32 bus_clkdiv;
/* The Mbps of DDR */
u32 ddr_mbps;
u32 ddr_mbpsdiv;
/* DDR memory multiplier setting value */
u32 ddr_mul;
u32 ddr_mul_nf;
u32 ddr_mul_low;
u32 ddr_mul_reg;
/* Value indicating the enabled channel */
u32 ddr_phyvalid;
/* The tccd value of DDR */
u32 ddr_tccd;
/* Memory capacity in each channel and each CS */
u8 ddr_density[DRAM_CH_CNT][CS_CNT];
/* Channels used for each memory rank */
u32 ch_have_this_cs[CS_CNT];
/* The maximum memory capacity */
u32 max_density;
/* Index of jedec spec1 setting table you use */
u32 js1_ind;
/* Array of jedec spec2 setting table */
u32 js2[JS2_CNT];
/* Read latency */
u32 RL;
/* Write latency */
u32 WL;
/* Array for DDR PI Slice settings */
u32 DDR_PI_REGSET[DDR_PI_REGSET_NUM_V4H];
/* Array for DDRPHY Slice settings */
u32 DDR_PHY_SLICE_REGSET[DDR_PHY_SLICE_REGSET_NUM_V4H];
/* Array for DDRPHY ADRRESS VALUE Slice settings */
u32 DDR_PHY_ADR_V_REGSET[DDR_PHY_SLICE_REGSET_NUM_V4H];
/* Array for DDRPHY ADRRESS CONTROL Slice settings */
u32 DDR_PHY_ADR_G_REGSET[DDR_PHY_SLICE_REGSET_NUM_V4H];
};
static const struct renesas_dbsc5_board_config renesas_v4h_dbsc5_board_config = {
/* RENESAS V4H White Hawk (64Gbit 1rank) */
.bdcfg_phyvalid = 0xF,
.bdcfg_vref_r = 0x0,
.bdcfg_vref_w = 0x0,
.bdcfg_vref_ca = 0x0,
.bdcfg_rfm_chk = true,
.ch = {
[0] = {
.bdcfg_ddr_density = { 0x06, 0xFF },
.bdcfg_ca_swap = 0x04506132,
.bdcfg_dqs_swap = 0x01,
.bdcfg_dq_swap = { 0x26147085, 0x12306845 },
.bdcfg_dm_swap = { 0x03, 0x07 },
.bdcfg_cs_swap = 0x10
},
[1] = {
.bdcfg_ddr_density = { 0x06, 0xFF },
.bdcfg_ca_swap = 0x02341065,
.bdcfg_dqs_swap = 0x10,
.bdcfg_dq_swap = { 0x56782314, 0x71048365 },
.bdcfg_dm_swap = { 0x00, 0x02 },
.bdcfg_cs_swap = 0x10
},
[2] = {
.bdcfg_ddr_density = { 0x06, 0xFF },
.bdcfg_ca_swap = 0x02150643,
.bdcfg_dqs_swap = 0x10,
.bdcfg_dq_swap = { 0x58264071, 0x41207536 },
.bdcfg_dm_swap = { 0x03, 0x08 },
.bdcfg_cs_swap = 0x10
},
[3] = {
.bdcfg_ddr_density = { 0x06, 0xFF },
.bdcfg_ca_swap = 0x01546230,
.bdcfg_dqs_swap = 0x01,
.bdcfg_dq_swap = { 0x45761328, 0x62801745 },
.bdcfg_dm_swap = { 0x00, 0x03 },
.bdcfg_cs_swap = 0x10
}
}
};
/**
* r_vch_nxt() - Macro for channel selection loop
*
* Return the ID of the channel to be used. Check for valid channels
* between the value of posn and the maximum number of CHs. If a valid
* channel is found, returns the value of that channel.
*/
static u32 r_vch_nxt(struct udevice *dev, u32 pos)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
int posn;
for (posn = pos; posn < DRAM_CH_CNT; posn++)
if (priv->ddr_phyvalid & BIT(posn))
break;
return posn;
}
/* Select only valid channels in all channels from CH0. */
#define r_foreach_vch(dev, ch) \
for ((ch) = r_vch_nxt((dev), 0); (ch) < DRAM_CH_CNT; (ch) = r_vch_nxt((dev), (ch) + 1))
/* All channels are selected. */
#define r_foreach_ech(ch) \
for (ch = 0; ch < DRAM_CH_CNT; ch++)
/**
* dbsc5_clk_cpg_write_32() - Write clock control register
*
* Write the complement value of setting value to the CPG_CPGWPR register
* for releaseing the protect. Write setting value to destination address.
*/
static void dbsc5_clk_cpg_write_32(struct udevice *dev, void __iomem *a, u32 v)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
writel(~v, priv->cpg_regs + CPG_CPGWPR);
writel(v, a);
}
enum dbsc5_clk_pll3_mode {
PLL3_LOW_FREQUENCY_MODE = 0,
PLL3_HIGH_FREQUENCY_MODE,
PLL3_HIGH_FREQUENCY_MODE_LOAD_REGISTER
};
/**
* dbsc5_clk_pll3_control() - Set PLL3
* @dev: DBSC5 device
* @mode: PLL3 frequency mode
*
* Determine the set value according to the frequency mode of the argument.
* Write the set value to CPG_FRQCRD0 register and CPG_FRQCRD0 one.
* Reflect settings
*/
static void dbsc5_clk_pll3_control(struct udevice *dev, u32 mode)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
u32 data_div, data_mul, data_nf, ssmode, val;
int ret;
/*
* PLL3VCO = EXTAL * priv->ddr_mul * 1/2
* clk_ctlr_sync = PLL3VCO * pll3_div
* priv->ddr_mul = (NI[7:0] + 1) * 2 + NF[24:0] / 2^24
*/
switch (mode) {
case PLL3_LOW_FREQUENCY_MODE:
/* Low frequency mode (50MHz) */
data_mul = (priv->ddr_mul_low / 2) - 1; /* PLL3VCO = 1600MHz */
data_div = 0x9; /* div = 32 */
data_nf = 0x0;
ssmode = 0x0;
break;
case PLL3_HIGH_FREQUENCY_MODE:
/* High frequency mode */
data_mul = (priv->ddr_mul / 2) - 1;
data_div = 0x0; /* div = 2 */
data_nf = priv->ddr_mul_nf;
ssmode = 0x4;
break;
case PLL3_HIGH_FREQUENCY_MODE_LOAD_REGISTER:
/* High frequency mode for loading to DDRPHY registers */
data_mul = (priv->ddr_mul_reg / 2) - 1;
data_div = 0x0; /* div = 2 */
data_nf = 0x0;
ssmode = 0x4;
break;
default:
printf("%s Mode %d not supported\n", __func__, mode);
hang();
}
data_mul = (data_mul << 20) | (ssmode << 16);
data_nf = data_nf << 21;
if (((readl(priv->cpg_regs + CPG_PLL3CR0) & 0x3FFFFF7F) != data_mul) ||
(readl(priv->cpg_regs + CPG_PLL3CR1) != data_nf)) {
/* PLL3CR0 multiplie set */
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_PLL3CR0, data_mul);
/* PLL3CR1 multiplie set */
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_PLL3CR1, data_nf);
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_PLL3CR0,
readl(priv->cpg_regs + CPG_PLL3CR0) |
CPG_PLL3CR0_KICK_BIT);
ret = readl_poll_timeout(priv->cpg_regs + CPG_PLLECR, val,
(val & CPG_PLLECR_PLL3ST_BIT),
1000000);
if (ret < 0) {
printf("%s CPG_PLLECR bit CPG_PLLECR_PLL3ST_BIT timeout\n", __func__);
hang();
}
}
/* PLL3 DIV set(Target value) */
ret = readl_poll_timeout(priv->cpg_regs + CPG_FRQCRD0, val,
((val & CPG_FRQCRD_KICK_BIT) == 0),
1000000);
if (ret < 0) {
printf("%s CPG_FRQCRD0 bit CPG_FRQCRD_KICK_BIT div set timeout\n", __func__);
hang();
}
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FRQCRD0,
(readl(priv->cpg_regs + CPG_FRQCRD0) & 0xFFFFFFF0) |
data_div);
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FRQCRD0,
readl(priv->cpg_regs + CPG_FRQCRD0) |
CPG_FRQCRD_KICK_BIT);
ret = readl_poll_timeout(priv->cpg_regs + CPG_FRQCRD0, val,
((val & CPG_FRQCRD_KICK_BIT) == 0),
1000000);
if (ret < 0) {
printf("%s CPG_FRQCRD0 bit CPG_FRQCRD_KICK_BIT timeout\n", __func__);
hang();
}
}
/**
* dbsc5_clk_wait_freqchgreq() - Training handshake functions
*
* Check the value of the argument req_assert. If req_assert is 1, wait until
* FREQCHGREQ of all channels is 1 before time expires. If req_assert is 0,
* wait until FREQCHGREQ of all channels is 0 before time expires. Return the
* result of whether time has expired or not as a return value.
*/
static u32 dbsc5_clk_wait_freqchgreq(struct udevice *dev, u32 req_assert)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 count = 0xFFFFFF;
u32 ch, reg;
do {
reg = !!req_assert;
r_foreach_vch(dev, ch)
reg &= readl(regs_dbsc_d + DBSC_DBPDSTAT0(ch));
count = count - 1;
} while (((reg & 0x1) != !!req_assert) && (count != 0));
return count == 0x0;
}
/**
* dbsc5_clk_set_freqchgack() - Training handshake functions
* @dev: DBSC5 device
* @ack_assert: Select DBSC_DBPDCNT2 content
*
* Check the value of the argument ackassert. If the value of ackassert
* is greater than or equal to 0, write 0xCF01 to DBSC_DBPDCNT2.
* If the value of ackassert is 0, write 0x0 to DBSC_DBPDCNT2.
*/
static void dbsc5_clk_set_freqchgack(struct udevice *dev, u32 ack_assert)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
const u32 reg = ack_assert ? 0xcf01 : 0x0;
u32 ch;
r_foreach_vch(dev, ch)
writel(reg, regs_dbsc_d + DBSC_DBPDCNT2(ch));
}
/**
* dbsc5_clk_wait_dbpdstat1() - Wait for status register update
* @dev: DBSC5 device
* @status: Expected status
*
* Read value the DBSC_DBPDSTAT1(ch) register. Wait until the contents
* of the status register are the same as status.
*/
static void dbsc5_clk_wait_dbpdstat1(struct udevice *dev, u32 status)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 i, ch, reg;
for (i = 0; i < 2; i++) {
do {
reg = status;
r_foreach_vch(dev, ch)
reg &= readl(regs_dbsc_d + DBSC_DBPDSTAT1(ch));
} while (reg != status);
}
}
/**
* dbsc5_clk_pll3_freq() - Set up the pll3 frequency
* @dev: DBSC5 device
*
* Wait for frequency change request. DBSC_DBPDSTAT0 value determines whether
* dbsc5_clk_pll3_control is called in low frequency mode or high frequency
* mode. Call dbsc5_clk_set_freqchgack(1) function. Check update completion until
* timeout. Call dbsc5_clk_set_freqchgack(0) function. If timed out, return with
* error log Wait for status register update.
*/
static int dbsc5_clk_pll3_freq(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 fsel, timeout;
dbsc5_clk_wait_freqchgreq(dev, 1);
fsel = (readl(regs_dbsc_d + DBSC_DBPDSTAT0(0)) & 0x300) >> 8;
dbsc5_clk_pll3_control(dev, fsel ? PLL3_HIGH_FREQUENCY_MODE :
PLL3_LOW_FREQUENCY_MODE);
dbsc5_clk_set_freqchgack(dev, 1);
timeout = dbsc5_clk_wait_freqchgreq(dev, 0);
dbsc5_clk_set_freqchgack(dev, 0);
if (timeout) {
printf("Time out\n");
return -ETIMEDOUT;
}
dbsc5_clk_wait_dbpdstat1(dev, 0x7);
return 0;
}
/**
* dbsc5_reg_write() - Write DBSC register
* @addr: Destination address
* @data: Setting value to be written
*
* Write 32bit value @data to register at @addr .
*/
static void dbsc5_reg_write(void __iomem *addr, u32 data)
{
writel(data, addr);
if (((uintptr_t)addr & 0x000A0000) == 0x000A0000)
writel(data, addr + 0x4000);
else
writel(data, addr + 0x8000);
}
/**
* dbsc5_reg_write() - DRAM Command Write Access
* @dev: DBSC5 device
* @cmd DRAM command.
*
* First, execute the dummy read to DBSC_DBCMD.
* Confirm that no DBSC command operation is in progress 0.
* Write the contents of the command to be sent to DRAM.
*/
static void dbsc5_send_dbcmd2(struct udevice *dev, u32 cmd)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 val;
int ret;
/* dummy read */
readl(regs_dbsc_d + DBSC_DBCMD);
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBWAIT, val, ((val & BIT(0)) == 0), 1000000);
if (ret < 0) {
printf("%s DBWAIT bit 0 timeout\n", __func__);
hang();
}
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBWAIT + 0x4000, val, ((val & BIT(0)) == 0), 1000000);
if (ret < 0) {
printf("%s DBWAIT + 0x4000 bit 0 timeout\n", __func__);
hang();
}
dbsc5_reg_write(regs_dbsc_d + DBSC_DBCMD, cmd);
}
/**
* dbsc5_reg_ddrphy_read() - Read setting from DDR PHY register
* @dev: DBSC5 device
* @ch: Target channel
* @regadd: Destination address
*
* Write matching values to DBPDRGA register and read value out of DBSC_DBPDRGD.
* Wait until the write process completed in each step.
*/
static u32 dbsc5_reg_ddrphy_read(struct udevice *dev, u32 ch, u32 regadd)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 val;
int ret;
writel(regadd | BIT(14), regs_dbsc_d + DBSC_DBPDRGA(ch));
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == (regadd | BIT(15) | BIT(14))), 1000000);
if (ret < 0) {
printf("%s regs_dbsc_d + DBSC_DBPDRGA timeout\n", __func__);
hang();
}
val = readl(regs_dbsc_d + DBSC_DBPDRGA(ch));
writel(regadd | BIT(15), regs_dbsc_d + DBSC_DBPDRGA(ch));
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == regadd), 1000000);
if (ret < 0) {
printf("%s regs_dbsc_d + DBSC_DBPDRGA | BIT(15) timeout\n", __func__);
hang();
}
writel(regadd | BIT(15), regs_dbsc_d + DBSC_DBPDRGA(ch));
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == regadd), 1000000);
if (ret < 0) {
printf("%s regs_dbsc_d + DBSC_DBPDRGA | BIT(15) again timeout\n", __func__);
hang();
}
return readl(regs_dbsc_d + DBSC_DBPDRGD(ch));
}
/**
* dbsc5_reg_ddrphy_write(dev, ) - Write setting to DDR PHY register
* @dev: DBSC5 device
* @ch: Target channel
* @regadd: Destination address
* @regdata: Value to be written
*
* Write matching values to DBPDRGA, DBPDRGD, DBPDRGA, DBPDRGA registers.
* Wait until the write process completed in each step.
*/
static void dbsc5_reg_ddrphy_write(struct udevice *dev, u32 ch, u32 regadd, u32 regdata)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 val;
int ret;
writel(regadd, regs_dbsc_d + DBSC_DBPDRGA(ch));
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == regadd), 1000000);
if (ret < 0) {
printf("%s regs_dbsc_d + DBSC_DBPDRGA timeout\n", __func__);
hang();
}
writel(regdata, regs_dbsc_d + DBSC_DBPDRGD(ch));
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == (regadd | BIT(15))), 1000000);
if (ret < 0) {
printf("%s regs_dbsc_d + DBSC_DBPDRGD timeout\n", __func__);
hang();
}
writel(regadd | BIT(15), regs_dbsc_d + DBSC_DBPDRGA(ch));
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGA(ch), val, (val == regadd), 1000000);
if (ret < 0) {
printf("%s regs_dbsc_d + DBSC_DBPDRGA | BIT(15) timeout\n", __func__);
hang();
}
writel(regadd, regs_dbsc_d + DBSC_DBPDRGA(ch));
}
/*
* dbsc5_reg_ddrphy_write_all() - Write setting from DDR PHY register for all channels
* @dev: DBSC5 device
* @regadd: Destination address
* @regdata: Value to be written
*
* Wrapper around dbsc5_reg_ddrphy_write() for all channels.
*/
static void dbsc5_reg_ddrphy_write_all(struct udevice *dev, u32 regadd, u32 regdata)
{
u32 ch;
r_foreach_vch(dev, ch)
dbsc5_reg_ddrphy_write(dev, ch, regadd, regdata);
}
/**
* dbsc5_reg_ddrphy_masked_write() - Write setting to DDR PHY register with mask
* @dev: DBSC5 device
* @ch: Target channel
* @regadd: Destination address
* @regdata: Value to be written
* @msk: Register mask
*
* Wrapper around dbsc5_reg_ddrphy_write() with DBPDRGM set.
*/
static void dbsc5_reg_ddrphy_masked_write(struct udevice *dev, u32 ch, u32 regadd, u32 regdata, u32 msk)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 val;
int ret;
writel(msk, regs_dbsc_d + DBSC_DBPDRGM(ch));
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGM(ch), val, (val == msk), 1000000);
if (ret < 0) {
printf("%s regs_dbsc_d + DBSC_DBPDRGM timeout\n", __func__);
hang();
}
dbsc5_reg_ddrphy_write(dev, ch, regadd, regdata);
writel(0, regs_dbsc_d + DBSC_DBPDRGM(ch));
ret = readl_poll_timeout(regs_dbsc_d + DBSC_DBPDRGM(ch), val, (val == 0), 1000000);
if (ret < 0) {
printf("%s regs_dbsc_d + DBSC_DBPDRGM != 0 timeout\n", __func__);
hang();
}
}
/**
* dbsc5_ddr_setval_slice() - Write setting to DDR PHY hardware
* @dev: DBSC5 device
* @ch: Target channel
* @slice: Target slice
* @regdef: Encoded PHY/PI register and bitfield
* @val: Value to be written
*
* Calculate the bit field in which to write the setting value
* from encoded register and bitfield @regdef parameter. Call
* dbsc5_reg_ddrphy_masked_write() to write the value to hardware.
*/
static void dbsc5_ddr_setval_slice(struct udevice *dev, u32 ch, u32 slice, u32 regdef, u32 val)
{
const u32 adr = DDR_REGDEF_ADR(regdef) + (0x100 * slice);
const u32 len = DDR_REGDEF_LEN(regdef);
const u32 lsb = DDR_REGDEF_LSB(regdef);
const u32 msk = (len == 32) ? 0xffffffff : ((BIT(len) - 1) << lsb);
const u32 dms = ~((!!(msk & BIT(24)) << 3) | (!!(msk & BIT(16)) << 2) |
(!!(msk & BIT(8)) << 1) | !!(msk & BIT(0))) & 0xf;
dbsc5_reg_ddrphy_masked_write(dev, ch, adr, val << lsb, dms);
}
/*
* dbsc5_ddr_setval() - Write setting from DDR PHY hardware slice 0
* @dev: DBSC5 device
* @ch: Target channel
* @regdef: Encoded PHY/PI register and bitfield
* @val: Value to be written
*
* Wrapper around dbsc5_ddr_setval_slice() for slice 0.
*/
static void dbsc5_ddr_setval(struct udevice *dev, u32 ch, u32 regdef, u32 val)
{
dbsc5_ddr_setval_slice(dev, ch, 0, regdef, val);
}
/*
* dbsc5_ddr_setval_all_ch_slice() - Write setting from DDR PHY hardware for all channels and one slice
* @dev: DBSC5 device
* @slice: Target slice
* @regdef: Encoded PHY/PI register and bitfield
* @val: Value to be written
*
* Wrapper around dbsc5_ddr_setval_slice() for slice 0.
*/
static void dbsc5_ddr_setval_all_ch_slice(struct udevice *dev, u32 slice, u32 regdef, u32 val)
{
u32 ch;
r_foreach_vch(dev, ch)
dbsc5_ddr_setval_slice(dev, ch, slice, regdef, val);
}
/*
* dbsc5_ddr_setval_all_ch() - Write setting from DDR PHY hardware for all channels and slice 0
* @dev: DBSC5 device
* @regdef: Encoded PHY/PI register and bitfield
* @val: Value to be written
*
* Wrapper around dbsc5_ddr_setval_all_ch_slice() for slice 0.
*/
static void dbsc5_ddr_setval_all_ch(struct udevice *dev, u32 regdef, u32 val)
{
dbsc5_ddr_setval_all_ch_slice(dev, 0, regdef, val);
}
/*
* dbsc5_ddr_setval_all_ch_all_slice() - Write setting from DDR PHY hardware for all channels and all slices
* @dev: DBSC5 device
* @regdef: Encoded PHY/PI register and bitfield
* @val: Value to be written
*
* Wrapper around dbsc5_ddr_setval_all_ch_slice() for slice 0.
*/
static void dbsc5_ddr_setval_all_ch_all_slice(struct udevice *dev, u32 regdef, u32 val)
{
u32 slice;
for (slice = 0; slice < SLICE_CNT; slice++)
dbsc5_ddr_setval_all_ch_slice(dev, slice, regdef, val);
}
/**
* dbsc5_ddr_getval_slice() - Read setting from DDR PHY/PI hardware
* @dev: DBSC5 device
* @ch: Target channel
* @slice: Target slice
* @regdef: Encoded PHY/PI register and bitfield
*
* Calculate the address and the bit-field from "regdef" value.
* Call dbsc5_reg_ddrphy_read() to read value from the target address.
*/
static u32 dbsc5_ddr_getval_slice(struct udevice *dev, u32 ch, u32 slice, u32 regdef)
{
const u32 adr = DDR_REGDEF_ADR(regdef) + (0x100 * slice);
const u32 len = DDR_REGDEF_LEN(regdef);
const u32 lsb = DDR_REGDEF_LSB(regdef);
const u32 msk = (len == 32) ? 0xffffffff : (BIT(len) - 1);
return (dbsc5_reg_ddrphy_read(dev, ch, adr) >> lsb) & msk;
}
/**
* dbsc5_ddr_getval() - Read setting from DDR PHY/PI hardware slice 0
* @dev: DBSC5 device
* @ch: Target channel
* @regdef: Encoded PHY/PI register and bitfield
*
* Wrapper around dbsc5_ddr_getval_slice() for slice 0.
*/
static u32 dbsc5_ddr_getval(struct udevice *dev, u32 ch, u32 regdef)
{
return dbsc5_ddr_getval_slice(dev, ch, 0, regdef);
}
/**
* dbsc5_table_patch_set() - Modify DDR PHY/PI settings table
* @tbl: DDR PHY/PI setting table pointer
* @adrmsk_pi: Use wider address mask for PI register
* @patch: List of modifications to the settings table
* @patchlen: Length of the list of modifications to the settings table
*
* Calculate the target index of settings table, calculate the bit-field
* to write the setting value, and write the setting value to the target
* bit-field in the index.
*/
static void dbsc5_table_patch_set(u32 *tbl, const bool adrmsk_pi,
const struct dbsc5_table_patch *patch,
int patchlen)
{
const u32 adrmsk = adrmsk_pi ? 0x7FF : 0xFF;
u32 adr, len, lsb, msk;
int i;
for (i = 0; i < patchlen; i++) {
adr = DDR_REGDEF_ADR(patch[i].reg);
len = DDR_REGDEF_LEN(patch[i].reg);
lsb = DDR_REGDEF_LSB(patch[i].reg);
msk = (len == 32) ? 0xffffffff : ((BIT(len) - 1) << lsb);
tbl[adr & adrmsk] &= ~msk;
tbl[adr & adrmsk] |= (patch[i].val << lsb) & msk;
}
}
/**
* dbsc5_ddrtbl_getval() - Read setting from DDR PHY/PI settings table
* @tbl: DDR PHY/PI setting table pointer
* @regdef: Encoded PHY/PI register and bitfield
* @adrmsk_pi: Use wider address mask for PI register
*
* Calculate the target index of *tbl and the bit-field to read the
* setting value and read and return the setting value from the target
* bit-field in the index.
*/
static u32 dbsc5_ddrtbl_getval(const u32 *tbl, u32 regdef, bool adrmsk_pi)
{
const u32 adrmsk = adrmsk_pi ? 0x7FF : 0xFF;
const u32 adr = DDR_REGDEF_ADR(regdef);
const u32 len = DDR_REGDEF_LEN(regdef);
const u32 lsb = DDR_REGDEF_LSB(regdef);
const u32 msk = (len == 32) ? 0xffffffff : (BIT(len) - 1);
return (tbl[adr & adrmsk] >> lsb) & msk;
}
/**
* dbsc5_f_scale() - Calculate the best value for DBSC timing setting
* @priv: Driver private data
* @frac: Perform fractional rounding
* @ps Optimal setting value in pico second
* @cyc Optimal setting value in cycle count
*
* Convert the optimal value in pico second to in cycle count. Optionally, if @frac is true,
* perform fractional rounding. Compare the value of the result of the conversion with the
* value of the argument @cyc and return the larger value.
*/
static u32 dbsc5_f_scale(struct renesas_dbsc5_dram_priv *priv, const bool frac, u32 ps, u32 cyc)
{
const u32 mul = frac ? 8 : 800000;
const u32 tmp = DIV_ROUND_UP(ps, 10UL) * priv->ddr_mbps;
const u32 f_scale_div = DIV_ROUND_UP(tmp, mul * priv->ddr_mbpsdiv);
return (f_scale_div > cyc) ? f_scale_div : cyc;
}
/**
* dbsc5_f_scale_js2() - Select optimal settings based on jedec_spec2
* @priv: Driver private data
*
* Calculate and assign each setting value of jedec_spec2 by "dbsc5_f_scale" function.
* Only the following array elements are calculated using different formulas from those
* described above -- JS2_tRRD/JS2_tFAW/JS2_tZQCALns/JS2_tRCpb/JS2_tRCab.
*/
static void dbsc5_f_scale_js2(struct renesas_dbsc5_dram_priv *priv)
{
const int derate = 0;
int i;
for (i = 0; i < JS2_TBLCNT; i++) {
priv->js2[i] = dbsc5_f_scale(priv, false,
jedec_spec2[derate][i].ps,
jedec_spec2[derate][i].cyc);
}
priv->js2[JS2_tZQCALns] = dbsc5_f_scale(priv, false,
jedec_spec2[derate][JS2_tZQCALns].ps * 1000UL, 0);
priv->js2[JS2_tDQ72DQns] = dbsc5_f_scale(priv, false,
jedec_spec2[derate][JS2_tDQ72DQns].ps * 1000UL, 0);
priv->js2[JS2_tCAENTns] = dbsc5_f_scale(priv, false,
jedec_spec2[derate][JS2_tCAENTns].ps * 1000UL, 0);
priv->js2[JS2_tRCpb] = priv->js2[JS2_tRAS] + priv->js2[JS2_tRPpb];
priv->js2[JS2_tRCab] = priv->js2[JS2_tRAS] + priv->js2[JS2_tRPab];
priv->js2[JS2_tRFCab] = dbsc5_f_scale(priv, false,
jedec_spec2_tRFC_ab[priv->max_density] * 1000UL, 0);
priv->js2[JS2_tRBTP] = dbsc5_f_scale(priv, false, 7500, 2) - 2;
priv->js2[JS2_tXSR] = priv->js2[JS2_tRFCab] +
dbsc5_f_scale(priv, false, 7500, 2);
priv->js2[JS2_tPDN] = dbsc5_f_scale(priv, false, 10000, 0) + 1;
priv->js2[JS2_tPDN_DSM] = dbsc5_f_scale(priv, true,
jedec_spec2[derate][JS2_tPDN_DSM].ps * 10UL, 0);
priv->js2[JS2_tXSR_DSM] = dbsc5_f_scale(priv, true,
jedec_spec2[derate][JS2_tXSR_DSM].ps * 10UL, 0);
priv->js2[JS2_tXDSM_XP] = dbsc5_f_scale(priv, true,
jedec_spec2[derate][JS2_tXDSM_XP].ps * 10UL, 0);
priv->js2[JS2_tWLWCKOFF] = dbsc5_f_scale(priv, false, 14000, 5);
}
/**
* dbsc5_ddrtbl_calc() - Calculate JS1/JS2
* @priv: Driver private data
*
* Determine jedec_spec1 configuration table based on priv->ddr_mbps
* and priv->ddr_mbpsdiv. Calculate the value of the jedec_spec2
* configuration table from priv->ddr_mbps and priv->ddr_mbpsdiv.
*/
static void dbsc5_ddrtbl_calc(struct renesas_dbsc5_dram_priv *priv)
{
int i;
/* Search jedec_spec1 index */
for (i = JS1_USABLEC_SPEC_LO; i < JS1_FREQ_TBL_NUM - 1; i++)
if (js1[i].fx3 * 2 * priv->ddr_mbpsdiv >= priv->ddr_mbps * 3)
break;
priv->js1_ind = clamp(i, 0, JS1_USABLEC_SPEC_HI);
priv->RL = js1[priv->js1_ind].RLset1;
priv->WL = js1[priv->js1_ind].WLsetA;
/* Calculate jedec_spec2 */
dbsc5_f_scale_js2(priv);
};
/**
* dbsc5_ddrtbl_load() Load table data into DDR registers
* @dev: DBSC5 device
*
* Copy the base configuration table to a local array. Change PI register table
* settings to match priv->ddr_mbps and priv->ddr_mbpsdiv.
*
* If the set value vref_r is not 0, change the "Read Vref (SoC side) Training range"
* setting in the configuration table.
*
* If the set value vref_w is not 0, change the "Write Vref (MR14, MR15) Training range"
* setting in the configuration table.
*
* If the set value vref_ca is not 0, change the "CA Vref (MR12) Training range"
* setting in the configuration table.
*
* If priv->ddr_mbps/priv->ddr_mbpsdiv is less than 5120,
* change the contents of the PHY register setting table.
* If priv->ddr_mbps/priv->ddr_mbpsdiv is less than 4576,
* change the contents of the PHY register setting table.
*
* Reflect the contents of the configuration table in the register.
*/
static void dbsc5_ddrtbl_load(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const struct dbsc5_table_patch dbsc5_table_patch_adr_g_mbps = {
PHY_CAL_INTERVAL_COUNT_0, 10000 * priv->ddr_mbps / priv->ddr_mbpsdiv / 8 / 256,
};
const struct dbsc5_table_patch dbsc5_table_patch_pi_js[] = {
{ PI_WRLAT_F2, priv->WL },
{ PI_TWCKENL_WR_ADJ_F2, (js1[priv->js1_ind].WCKENLW * 4) + 4 },
{ PI_TWCKENL_RD_ADJ_F2, (js1[priv->js1_ind].WCKENLR * 4) + 4 },
{ PI_TWCKPRE_STATIC_F2, (js1[priv->js1_ind].WCKPRESTA * 4) },
{ PI_TWCKPRE_TOGGLE_RD_F2, (js1[priv->js1_ind].WCKPRETGLR) * 4 },
{ PI_CASLAT_F2, priv->RL },
{ PI_TWCKENL_FS_ADJ_F2, (js1[priv->js1_ind].WCKENLF * 4) + 4 },
{ PI_TRFC_F2, priv->js2[JS2_tRFCab] },
{ PI_WRLVL_WCKOFF_F2, (priv->js2[JS2_tWLWCKOFF]) + 3 },
{ PI_WRLAT_ADJ_F2, (priv->WL * 4) + 2 },
{ PI_TCAENT_F2, priv->js2[JS2_tCAENTns] },
{ PI_TVREF_LONG_F2, (priv->js2[JS2_tCAENTns]) + 1 },
{ PI_TVREF_SHORT_F2, (priv->js2[JS2_tCAENTns]) + 1 },
{ PI_TRCD_F2, priv->js2[JS2_tRCD] },
{ PI_TRP_F2, priv->js2[JS2_tRPab] },
{ PI_TRTP_F2, js1[priv->js1_ind].nRBTP },
{ PI_TRAS_MIN_F2, priv->js2[JS2_tRAS] },
{ PI_TMRD_F2, (priv->js2[JS2_tMRD]) + 1 },
{ PI_TSR_F2, priv->js2[JS2_tSR] },
{ PI_TZQCAL_F2, priv->js2[JS2_tZQCALns] },
{ PI_TZQLAT_F2, priv->js2[JS2_tZQLAT] },
{ PI_TDQ72DQ_F2, priv->js2[JS2_tDQ72DQns] },
{ PI_MC_TRFC_F2, priv->js2[JS2_tRFCab] },
};
const u32 vref_r = priv->dbsc5_board_config->bdcfg_vref_r;
const struct dbsc5_table_patch dbsc5_table_patch_slice_vref_r[] = {
{ PHY_VREF_INITIAL_START_POINT, vref_r & 0xFF },
{ PHY_VREF_INITIAL_STOP_POINT, (vref_r & 0xFF00) >> 8 },
{ PHY_VREF_INITIAL_STEPSIZE, (vref_r & 0xFF0000) >> 16 }
};
const u32 vref_w = priv->dbsc5_board_config->bdcfg_vref_w;
const struct dbsc5_table_patch dbsc5_table_patch_pi_vref_w[] = {
{ PI_WDQLVL_VREF_INITIAL_START_POINT_F0, vref_w & 0xff },
{ PI_WDQLVL_VREF_INITIAL_START_POINT_F1, vref_w & 0xff },
{ PI_WDQLVL_VREF_INITIAL_START_POINT_F2, vref_w & 0xff },
{ PI_WDQLVL_VREF_INITIAL_STOP_POINT_F0, (vref_w & 0xff00) >> 8 },
{ PI_WDQLVL_VREF_INITIAL_STOP_POINT_F1, (vref_w & 0xff00) >> 8 },
{ PI_WDQLVL_VREF_INITIAL_STOP_POINT_F2, (vref_w & 0xff00) >> 8 }
};
const u32 vref_ca = priv->dbsc5_board_config->bdcfg_vref_ca;
const struct dbsc5_table_patch dbsc5_table_patch_pi_vref_ca[] = {
{ PI_CALVL_VREF_INITIAL_START_POINT_F0, vref_ca & 0xff },
{ PI_CALVL_VREF_INITIAL_START_POINT_F1, vref_ca & 0xff },
{ PI_CALVL_VREF_INITIAL_START_POINT_F2, vref_ca & 0xff },
{ PI_CALVL_VREF_INITIAL_STOP_POINT_F0, (vref_ca & 0xff00) >> 8 },
{ PI_CALVL_VREF_INITIAL_STOP_POINT_F1, (vref_ca & 0xff00) >> 8 },
{ PI_CALVL_VREF_INITIAL_STOP_POINT_F2, (vref_ca & 0xff00) >> 8 }
};
int i, cs, slice;
u32 adr;
/* Prepare register tables */
memcpy(priv->DDR_PHY_SLICE_REGSET, DDR_PHY_SLICE_REGSET_V4H, sizeof(DDR_PHY_SLICE_REGSET_V4H));
memcpy(priv->DDR_PHY_ADR_V_REGSET, DDR_PHY_ADR_V_REGSET_V4H, sizeof(DDR_PHY_ADR_V_REGSET_V4H));
memcpy(priv->DDR_PHY_ADR_G_REGSET, DDR_PHY_ADR_G_REGSET_V4H, sizeof(DDR_PHY_ADR_G_REGSET_V4H));
memcpy(priv->DDR_PI_REGSET, DDR_PI_REGSET_V4H, sizeof(DDR_PI_REGSET_V4H));
/* Adjust PI parameters */
dbsc5_table_patch_set(priv->DDR_PHY_ADR_G_REGSET, false,
&dbsc5_table_patch_adr_g_mbps, 1);
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_js,
ARRAY_SIZE(dbsc5_table_patch_pi_js));
if (priv->ddr_mbps < (3201 * priv->ddr_mbpsdiv)) {
/* 2751-3200 */
dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
dbsc5_table_patch_slice_3200,
ARRAY_SIZE(dbsc5_table_patch_slice_3200));
dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
dbsc5_table_patch_adr_v_3200,
ARRAY_SIZE(dbsc5_table_patch_adr_v_3200));
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_3200,
ARRAY_SIZE(dbsc5_table_patch_pi_3200));
} else if (priv->ddr_mbps < (3734 * priv->ddr_mbpsdiv)) {
/* 3201-3733 */
dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
dbsc5_table_patch_slice_3733,
ARRAY_SIZE(dbsc5_table_patch_slice_3733));
dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
dbsc5_table_patch_adr_v_3733,
ARRAY_SIZE(dbsc5_table_patch_adr_v_3733));
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_3733,
ARRAY_SIZE(dbsc5_table_patch_pi_3733));
} else if (priv->ddr_mbps < (4268 * priv->ddr_mbpsdiv)) {
/* 3734-4267 */
dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
dbsc5_table_patch_slice_4266,
ARRAY_SIZE(dbsc5_table_patch_slice_4266));
dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
dbsc5_table_patch_adr_v_4266,
ARRAY_SIZE(dbsc5_table_patch_adr_v_4266));
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_4266,
ARRAY_SIZE(dbsc5_table_patch_pi_4266));
} else if (priv->ddr_mbps < (4801 * priv->ddr_mbpsdiv)) {
/* 4269-4800 */
dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
dbsc5_table_patch_slice_4800,
ARRAY_SIZE(dbsc5_table_patch_slice_4800));
dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
dbsc5_table_patch_adr_v_4800,
ARRAY_SIZE(dbsc5_table_patch_adr_v_4800));
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_4800,
ARRAY_SIZE(dbsc5_table_patch_pi_4800));
} else if (priv->ddr_mbps < (5501 * priv->ddr_mbpsdiv)) {
/* 4801 - 5500 */
dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
dbsc5_table_patch_slice_5500,
ARRAY_SIZE(dbsc5_table_patch_slice_5500));
dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
dbsc5_table_patch_adr_v_5500,
ARRAY_SIZE(dbsc5_table_patch_adr_v_5500));
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_5500,
ARRAY_SIZE(dbsc5_table_patch_pi_5500));
} else if (priv->ddr_mbps < (6001 * priv->ddr_mbpsdiv)) {
/* 5501 - 6000 */
dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
dbsc5_table_patch_slice_6000,
ARRAY_SIZE(dbsc5_table_patch_slice_6000));
dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
dbsc5_table_patch_adr_v_6000,
ARRAY_SIZE(dbsc5_table_patch_adr_v_6000));
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_6000,
ARRAY_SIZE(dbsc5_table_patch_pi_6000));
}
for (cs = 0; cs < CS_CNT; cs++) {
struct dbsc5_table_patch dbsc5_table_patch_pi_mr12[] = {
{ PI_DARRAY3_0_CSx_Fx[cs][2], js1[priv->js1_ind].MR1 },
{ PI_DARRAY3_1_CSx_Fx[cs][2], js1[priv->js1_ind].MR2 },
};
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_mr12,
ARRAY_SIZE(dbsc5_table_patch_pi_mr12));
}
/* Read Vref (SoC side) Training range */
if (priv->dbsc5_board_config->bdcfg_vref_r) {
dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
dbsc5_table_patch_slice_vref_r,
ARRAY_SIZE(dbsc5_table_patch_slice_vref_r));
}
/* Write Vref (MR14, MR15) Training range */
if (priv->dbsc5_board_config->bdcfg_vref_w) {
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_vref_w,
ARRAY_SIZE(dbsc5_table_patch_pi_vref_w));
}
/* CA Vref (MR12) Training range */
if (priv->dbsc5_board_config->bdcfg_vref_ca) {
dbsc5_table_patch_set(priv->DDR_PI_REGSET, true,
dbsc5_table_patch_pi_vref_ca,
ARRAY_SIZE(dbsc5_table_patch_pi_vref_ca));
}
/* Low Freq setting */
if (priv->ddr_mbps < (8 * 640 * priv->ddr_mbpsdiv)) {
/* CAL_CLK(10-20MHz) */
dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
&dbsc5_table_patch_slice_mbpsdiv_640, 1);
dbsc5_table_patch_set(priv->DDR_PHY_ADR_V_REGSET, false,
&dbsc5_table_patch_adr_v_mbpsdiv_640, 1);
dbsc5_table_patch_set(priv->DDR_PHY_ADR_G_REGSET, false,
&dbsc5_table_patch_adr_g_mbpsdiv_640, 1);
}
if (priv->ddr_mbps < (8 * 572 * priv->ddr_mbpsdiv)) {
/* CAL_CLK(10-20MHz) */
dbsc5_table_patch_set(priv->DDR_PHY_SLICE_REGSET, false,
&dbsc5_table_patch_slice_mbpsdiv_572, 1);
dbsc5_table_patch_set(priv->DDR_PHY_ADR_G_REGSET, false,
&dbsc5_table_patch_adr_g_mbpsdiv_572, 1);
}
if (priv->ddr_mbps < (8 * 401 * priv->ddr_mbpsdiv)) {
dbsc5_table_patch_set(priv->DDR_PHY_ADR_G_REGSET, false,
dbsc5_table_patch_adr_g_mbpsdiv_400,
ARRAY_SIZE(dbsc5_table_patch_adr_g_mbpsdiv_400));
}
/* SET DATA SLICE TABLE */
for (slice = 0; slice < SLICE_CNT; slice++) {
adr = DDR_PHY_SLICE_REGSET_OFS_V4H + (DDR_PHY_SLICE_REGSET_SIZE_V4H * slice);
for (i = 0; i < DDR_PHY_SLICE_REGSET_NUM_V4H; i++)
dbsc5_reg_ddrphy_write_all(dev, adr + i, priv->DDR_PHY_SLICE_REGSET[i]);
}
/* SET ADR SLICE TABLE */
for (i = 0; i < DDR_PHY_ADR_V_REGSET_NUM_V4H; i++)
dbsc5_reg_ddrphy_write_all(dev, DDR_PHY_ADR_V_REGSET_OFS_V4H + i, priv->DDR_PHY_ADR_V_REGSET[i]);
/* SET ADRCTRL SLICE TABLE */
for (i = 0; i < DDR_PHY_ADR_G_REGSET_NUM_V4H; i++)
dbsc5_reg_ddrphy_write_all(dev, DDR_PHY_ADR_G_REGSET_OFS_V4H + i, priv->DDR_PHY_ADR_G_REGSET[i]);
/* SET PI REGISTERS */
for (i = 0; i < DDR_PI_REGSET_NUM_V4H; i++)
dbsc5_reg_ddrphy_write_all(dev, DDR_PI_REGSET_OFS_V4H + i, priv->DDR_PI_REGSET[i]);
}
/**
* dbsc5_ddr_config() - Configure DDR registers
* @dev: DBSC5 device
*
* Set up wiring for DQ and DM pins and VREF_DRIVING. Set the CA pin wiring
* and ADR_CALVL_SWIZZLE settings. Make wiring settings for the CS pin. When
* memory rank is 1, set RANK setting to 1 to disable CS training. Configure
* the DATA_BYTE_SWAP setting.
*/
static void dbsc5_ddr_config(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
u32 ca_swap, cs_swap, dqs_swap;
u32 ch, slice;
r_foreach_vch(dev, ch) {
/* Board settings (DQ, DM, VREF_DRIVING) */
dqs_swap = priv->dbsc5_board_config->ch[ch].bdcfg_dqs_swap;
for (slice = 0; slice < SLICE_CNT; slice++) {
dbsc5_ddr_setval_slice(dev, ch, slice, PHY_DQ_DM_SWIZZLE0,
priv->dbsc5_board_config->ch[ch].bdcfg_dq_swap[slice]);
dbsc5_ddr_setval_slice(dev, ch, slice, PHY_DQ_DM_SWIZZLE1,
priv->dbsc5_board_config->ch[ch].bdcfg_dm_swap[slice]);
dbsc5_ddr_setval_slice(dev, ch, slice, PHY_CALVL_VREF_DRIVING_SLICE,
!((dqs_swap >> (4 * slice)) & 1));
}
dbsc5_ddr_setval(dev, ch, PHY_DATA_BYTE_ORDER_SEL,
priv->dbsc5_board_config->ch[ch].bdcfg_dqs_swap | 0x76543200);
/* Board settings (CA, ADDR_MUX) */
ca_swap = priv->dbsc5_board_config->ch[ch].bdcfg_ca_swap;
/* ADDR_MUX */
dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_0, ca_swap & 0xf);
ca_swap >>= 4;
dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_1, ca_swap & 0xf);
ca_swap >>= 4;
dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_2, ca_swap & 0xf);
ca_swap >>= 4;
dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_3, ca_swap & 0xf);
ca_swap >>= 4;
dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_4, ca_swap & 0xf);
ca_swap >>= 4;
dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_5, ca_swap & 0xf);
ca_swap >>= 4;
dbsc5_ddr_setval(dev, ch, PI_ADDR_MUX_6, ca_swap & 0xf);
ca_swap >>= 4;
/* ADR_CALVL_SWIZZLE */
ca_swap = priv->dbsc5_board_config->ch[ch].bdcfg_ca_swap;
dbsc5_ddr_setval(dev, ch, PHY_ADR_CALVL_SWIZZLE0, ca_swap & 0x0fffffff);
/* Board settings (CS) */
/* CKE_MUX */
/* SoC CKE -> DRAM CS */
cs_swap = priv->dbsc5_board_config->ch[ch].bdcfg_cs_swap;
dbsc5_ddr_setval(dev, ch, PI_CKE_MUX_0, (cs_swap & 0xf) + 2);
dbsc5_ddr_setval(dev, ch, PI_CKE_MUX_1, ((cs_swap >> 4) & 0xf) + 2);
dbsc5_ddr_setval(dev, ch, PHY_CS_ACS_ALLOCATION_BIT2_2, (cs_swap & 0xf) + 1);
dbsc5_ddr_setval(dev, ch, PHY_CS_ACS_ALLOCATION_BIT3_2, ((cs_swap >> 4) & 0xf) + 1);
/* Mask CS_MAP if RANK1 is not found */
if (!(priv->ch_have_this_cs[1] & BIT(ch))) {
dbsc5_ddr_setval(dev, ch, PHY_ADR_CALVL_RANK_CTRL, 0x0);
for (slice = 0; slice < SLICE_CNT; slice++)
dbsc5_ddr_setval_slice(dev, ch, slice, PHY_PER_CS_TRAINING_EN, 0x0);
}
}
r_foreach_vch(dev, ch) {
/* DATA_BYTE_SWAP */
dqs_swap = priv->dbsc5_board_config->ch[ch].bdcfg_dqs_swap;
dbsc5_ddr_setval(dev, ch, PI_DATA_BYTE_SWAP_EN, 0x1);
dbsc5_ddr_setval(dev, ch, PI_DATA_BYTE_SWAP_SLICE0, dqs_swap & 0xf);
dbsc5_ddr_setval(dev, ch, PI_DATA_BYTE_SWAP_SLICE1, (dqs_swap >> 4) & 0xf);
if (!(priv->ch_have_this_cs[1] & BIT(ch)))
dbsc5_ddr_setval(dev, ch, PI_CS_MAP, 0x1);
}
}
/**
* dbsc5_dbsc_regset_pre() - Configure primary DDR registers
* @dev: DBSC5 device
*
* Set SDRAM type, Burst length, and PHY type. Frequency mode setting.
* Write SDRAM configuration contents to registers.
*/
static void dbsc5_dbsc_regset_pre(struct udevice *dev)
{
#define DBMEMCONF_REG(d3, row, bg, bank, col, dw) \
(((d3) << 30) | ((row) << 24) | ((bg) << 20) | ((bank) << 16) | ((col) << 8) | (dw))
#define DBMEMCONF_REGD(density) /* 16bit */ \
DBMEMCONF_REG(((density) % 2), ((((density) + 1) / 2) + (28 - 2 - 2 - 10 - 1)), 2, 2, 10, 1)
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_a = priv->regs + DBSC5_DBSC_A_OFFSET;
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 density;
u32 ch, cs;
/* Primary settings */
/* LPDDR5, BL=16, DFI interface */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBMEMKIND, 0xC);
dbsc5_reg_write(regs_dbsc_a + DBSC_DBMEMKINDA, 0xC);
dbsc5_reg_write(regs_dbsc_d + DBSC_DBBL, 0x2);
dbsc5_reg_write(regs_dbsc_a + DBSC_DBBLA, 0x2);
dbsc5_reg_write(regs_dbsc_d + DBSC_DBPHYCONF0, 0x1);
dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCONF0, 0x1);
/* FREQRATIO=2 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBSYSCONF1, 0x20000);
dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCONF1A, 0x0);
dbsc5_reg_write(regs_dbsc_d + DBSC_DBSYSCONF2, 0x1);
dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCONF2A, 0x241);
r_foreach_ech(ch) {
for (cs = 0; cs < CS_CNT; cs++) {
if (priv->ddr_density[ch][cs] == 0xFF) {
writel(0x00, regs_dbsc_d + DBSC_DBMEMCONF(ch, cs));
writel(0x00, regs_dbsc_a + DBSC_DBMEMCONFA(ch, cs));
} else {
density = priv->ddr_density[ch][cs];
writel(DBMEMCONF_REGD(density),
regs_dbsc_d + DBSC_DBMEMCONF(ch, cs));
writel(DBMEMCONF_REGD(density),
regs_dbsc_a + DBSC_DBMEMCONFA(ch, cs));
}
}
}
}
/**
* dbsc5_dbsc_regset() - Set DBSC timing parameters
* @dev: DBSC5 device
*
* Set the timing registers of the DBSC.
* Configure Scheduler settings.
*/
static void dbsc5_dbsc_regset(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_a = priv->regs + DBSC5_DBSC_A_OFFSET;
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 tmp[4];
/* DBTR0.CL : RL */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(0), priv->RL);
/* DBTR1.CWL : WL */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(1), priv->WL);
/* DBTR2.AL = 0 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(2), 0x0);
/* DBTR3.TRCD: tRCD */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(3), priv->js2[JS2_tRCD]);
/* DBTR4.TRPA,TRP: tRPab,tRPpb */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(4), (priv->js2[JS2_tRPab] << 16) |
priv->js2[JS2_tRPpb]);
/* DBTR5.TRC : tRCpb */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(5), priv->js2[JS2_tRCpb]);
/* DBTR6.TRAS : tRAS */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(6), priv->js2[JS2_tRAS]);
/* DBTR7.TRRD : tRRD */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(7), ((priv->js2[JS2_tRRD] - 1) << 16) |
(priv->js2[JS2_tRRD] - 1));
/* DBTR8.TFAW : tFAW */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(8), priv->js2[JS2_tFAW] - 1);
/* DBTR9.TRDPR: nRBTP */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(9), js1[priv->js1_ind].nRBTP);
/* DBTR10.TWR : nWR */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(10), js1[priv->js1_ind].nWR);
/*
* DBTR11.TRDWR : RL + BL/n_max + RU(tWCK2DQO(max)/tCK) +
* RD(tRPST/tCK) - ODTLon - RD(tODTon(min)/tCK) + 1 + feature
*/
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(11),
priv->RL + 4 + priv->js2[JS2_tWCK2DQO_HF] -
js1[priv->js1_ind].ODTLon - priv->js2[JS2_tODTon_min]);
/* DBTR12.TWRRD_S : WL + BL/2 + tWTR_S, TWRRD_L : WL + BL + tWTR_L */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(12),
((priv->WL + 2 + priv->js2[JS2_tWTR_S]) << 16) |
(priv->WL + 4 + priv->js2[JS2_tWTR_L]));
/* DBTR13.TRFCAB : tRFCab */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(13), priv->js2[JS2_tRFCab]);
/* DBTR14.TCSCAL,TCKEHDLL,tCKEH : tCSCAL,tXP,tXP */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(14), (priv->js2[JS2_tCSCAL] << 24) |
(priv->js2[JS2_tXP] << 16) |
priv->js2[JS2_tXP]);
/* DBTR15.TESPD,TCKESR,TCKEL : tESPD = 2,tSR,tSR */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(15), (0x02 << 24) |
(priv->js2[JS2_tSR] << 16) |
priv->js2[JS2_tSR]);
/* DBTR16 */
/* wdql(tphy_wrlat + tphy_wrdata) */
tmp[0] = (priv->WL * 4) - 1 + 5;
/* dqenltcy(tphy_wrlat) */
tmp[1] = (priv->WL * 4) - 2 - 2 + 5;
/* dql(tphy_rdlat + trddata_en) RL * 4 + phy_rptr_update + phy_rddqs_latency_adjust + 39 */
tmp[2] = (priv->RL * 4) +
dbsc5_ddrtbl_getval(priv->DDR_PHY_SLICE_REGSET, PHY_RPTR_UPDATE, false) +
dbsc5_ddrtbl_getval(priv->DDR_PHY_SLICE_REGSET, PHY_RDDQS_LATENCY_ADJUST, false) +
39;
/* dqienltncy(trddata_en) RL * 4 - phy_rddata_en_dly_X + 4 * phy_wck_freq_ratio_X */
tmp[3] = (priv->RL * 4) + 4 -
dbsc5_ddrtbl_getval(priv->DDR_PHY_SLICE_REGSET, PHY_RDDATA_EN_DLY, false);
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(16), (tmp[3] << 24) | (tmp[2] << 16) |
(tmp[1] << 8) | tmp[0]);
/* DBTR17.TMODRD,TMOD: tMRR,tMRW */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(17), (priv->js2[JS2_tMRR] << 24) |
(priv->js2[JS2_tMRW] << 16));
/* DBTR18. RODTL, RODTA = 0 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(18), 0x0);
/* DBTR19. TZQCL, TZQCS = 0 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(19), 0x0);
/* DBTR20.TXSDLL, TXS : tXSR,tXSR */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(20), ((priv->js2[JS2_tXSR]) << 16) |
priv->js2[JS2_tXSR]);
/* DBTR21.TCCD */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(21), (priv->ddr_tccd << 16) |
(priv->ddr_tccd * 2));
/* DBTR22.TZQCAL,TZQLAT : tZQCAL,tZQLAT */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(22), (priv->js2[JS2_tZQCALns] << 16) | priv->js2[JS2_tZQLAT]);
/* DBTR23. RRSPC = 0 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(23), 0x0);
/* DBTR24 */
/* WRCSLAT(tphy_wrcslat) */
tmp[0] = (priv->WL * 4) - 2;
/* WRCSGAP(tphy_wrcsgap) */
tmp[1] = 0x0C;
/* RDCSLAT(tphy_rdcslat) */
tmp[2] = priv->RL * 4;
/* RDCSGAP(tphy_rdcsgap) */
tmp[3] = 0x0C;
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(24), (tmp[3] << 24) | (tmp[2] << 16) |
(tmp[1] << 8) | tmp[0]);
/* DBTR25. TWDQLVLDIS = 0 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(25), 0x0);
/* DBTR26. TWCK2DQOOSC,TDQSOSC : WCK2DQI interval timer run time, WCK2DQO interval timer run time */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(26), 0x0);
/* DBTR27.TPDN : tPDN */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(27), priv->js2[JS2_tPDN]);
/* DBTR28.txsrdsm : tXSR_DSM */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(28), priv->js2[JS2_tXSR_DSM]);
/* DBTR29.tdsmxp : tXDSM_XP */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(29), priv->js2[JS2_tXDSM_XP]);
/* DBTR30.TCMDPD : tCMDPD = 3 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(30), 0x3);
/* DBTR31.TWCK2DQOMAX,TWCK2DQIMAX : tWCK2DQI/O_HF/LF */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(31), (priv->js2[JS2_tWCK2DQO_HF] << 4) |
priv->js2[JS2_tWCK2DQI_HF]);
/* DBTR32 */
/* twckenr */
tmp[0] = (js1[priv->js1_ind].WCKENLR * 4) + 4 - 1;
/* twckenw */
tmp[1] = (js1[priv->js1_ind].WCKENLW * 4) + 4 - 1;
/* twckenlf */
tmp[2] = (js1[priv->js1_ind].WCKENLF * 4) + 4;
/* twckpresta */
tmp[3] = js1[priv->js1_ind].WCKPRESTA * 4;
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(32), (tmp[3] << 24) | (tmp[2] << 16) |
(tmp[1] << 8) | tmp[0]);
/* DBTR33 */
/* TWCKTGL */
tmp[0] = 4;
/* TWCKDIS (RL+ bl/n_max) * 4 + RU(tWCKPST/tWCK) : tWCKPST = 2.5(MR10[3:2]) */
tmp[1] = ((priv->RL + 4) * 4) + 3;
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(33), (tmp[1] << 8) | tmp[0]);
/* DBTR34 */
/* TWCKSUS = 4 */
tmp[0] = 4;
/* TWCKPST RU(tWCKPST/tCK) : tWCKPST=2.5(MR10[3:2]) */
tmp[1] = 1;
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(34), (tmp[1] << 8) | tmp[0]);
/* DBTR35 */
/* TRD2WCKOFF RL + BL/n_max + RD(tWCKPST/tCK) + 1 */
tmp[0] = priv->RL + 4 + 0 + 1;
/* TWR2WCKOFF WL + BL/n_max + RD(tWCKPST/tCK) + 1 */
tmp[1] = priv->WL + 4 + 0 + 1;
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(35), (tmp[1] << 16) | tmp[0]);
/* DBTR36 */
/* TWSSUSWRX : CAS(WCKSUS)WRX */
tmp[0] = 3;
/* TWSOFFWRX : CAS(WS_OFF)WRX */
tmp[1] = 3;
/* TWSFSWRX : CAS(WS_FS)WRX */
tmp[2] = 2;
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(36), (tmp[2] << 16) | (tmp[1] << 8) | tmp[0]);
/* DBTR37 */
/* tOSCO */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBTR(37), priv->js2[JS2_tOSCODQI]);
/* DBRNK2 */
/* RNKRR = 12 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBRNK(2), 0xCC);
/* DBRNK3 */
/* RNKRW = 6 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBRNK(3), 0x66);
/* DBRNK4 */
/* RNKWR = 6 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBRNK(4), 0x66);
/* DBRNK5 */
/* RNKWW = 14 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBRNK(5), 0xEE);
/* Timing registers for Scheduler */
/* SCFCTST0 */
/* SCPREACT */
tmp[0] = priv->js2[JS2_tRPpb] * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv;
/* SCACTRDWR */
tmp[1] = (priv->WL + 2 + 1 + js1[priv->js1_ind].nWR + priv->js2[JS2_tRPpb]) *
priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv;
/* SCRDACRT */
tmp[2] = ((js1[priv->js1_ind].nRBTP + 2) + priv->js2[JS2_tRPpb]) *
priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv;
/* SCACTACT */
tmp[3] = priv->js2[JS2_tRCpb] * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv;
dbsc5_reg_write(regs_dbsc_a + DBSC_DBSCHFCTST0, (tmp[3] << 24) | (tmp[2] << 16) |
(tmp[1] << 8) | tmp[0]);
/* SCFCTST1 */
/* SCASYNCOFS */
tmp[0] = 12;
/* SCACTRDWR */
tmp[1] = priv->js2[JS2_tRCD] * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv;
/* SCWRRD */
tmp[2] = (readl(regs_dbsc_d + DBSC_DBTR(12)) & 0xFF) * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv;
/* SCRDWR */
tmp[3] = (readl(regs_dbsc_d + DBSC_DBTR(11)) & 0xFF) * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv;
dbsc5_reg_write(regs_dbsc_a + DBSC_DBSCHFCTST1, (tmp[3] << 24) | (tmp[2] << 16) |
(tmp[1] << 8) | tmp[0]);
/* DBSCHRW1 */
/* SCTRFCAB */
tmp[0] = (priv->js2[JS2_tRFCab] + priv->js2[JS2_tZQLAT]) *
priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv;
dbsc5_reg_write(regs_dbsc_a + DBSC_DBSCHRW1, tmp[0]);
/* DBSCHTR0 */
/* SCDT0 */
tmp[0] = (4 * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv) - 1;
/* SCDT1 */
tmp[1] = (8 * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv) - 1;
/* SCDT2 */
tmp[2] = (12 * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv) - 1;
/* SCDT3 */
tmp[3] = (16 * priv->bus_clk * priv->ddr_mbpsdiv * 8UL /
priv->ddr_mbps / priv->bus_clkdiv) - 1;
dbsc5_reg_write(regs_dbsc_a + DBSC_DBSCHTR0, (tmp[3] << 24) | (tmp[2] << 16) |
(tmp[1] << 8) | tmp[0]);
/* QOS and CAM */
dbsc5_reg_write(regs_dbsc_a + DBSC_DBBCAMDIS, 0x1);
}
/**
* dbsc5_dbsc_regset_post() - Set DBSC registers
* @dev: DBSC5 device
*
* If memory rank is 2, CS_TRAINING_EN is set to the other side.
* Configure DBI read/write settings. Execute DRAM refresh settings.
* Set WTmode of DFI PHY to OFF. Set up PHY Periodic Write DQ training.
* Set WTmode of DFI PHY to ON. Calibration settings for PHY PAD.
* Set SDRAM calibration. Make DFI Control Update Setting settings.
* In the case of WARM_BOOT, cancel the self-refresh setting.
* Enable SDRAM auto refresh. Set up PHY Periodic Write DQ training.
* Enable access to SDRAM.
*/
static void dbsc5_dbsc_regset_post(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_a = priv->regs + DBSC5_DBSC_A_OFFSET;
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
/* Average periodic refresh interval/Average Refresh Interval [ns] */
const u32 dbsc_refint = 1920;
/* 0: Average interval is REFINT, 1: Average interval is 1/2 REFINT */
const u32 dbsc_refints = 0;
/* Periodic-WriteDQ/ReadDQ Training Interval [us] */
const u32 periodic_training_interval = 20000;
u32 phymster_req_interval;
u32 ch, slice;
u32 clk_count;
u32 refcycle;
u32 ctrl_clk;
u32 reg;
if ((renesas_get_cpu_rev_integer() < 3) && priv->ch_have_this_cs[1]) {
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
dbsc5_ddr_setval_slice(dev, ch, slice,
PHY_PER_CS_TRAINING_EN,
0x0);
}
}
}
dbsc5_reg_write(regs_dbsc_d + DBSC_DBDBICNT, 0x3);
/* set REFCYCLE */
refcycle = dbsc_refint * priv->ddr_mbps / 8000 / priv->ddr_mbpsdiv;
/* refpmax=8 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBRFCNF1, (refcycle & 0xFFFF) | BIT(19));
/* refpmin=1 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBRFCNF2, dbsc_refints | BIT(16));
dbsc5_reg_write(regs_dbsc_d + DBSC_DBDFIPMSTRCNF, 0x0);
/* Periodic-WriteDQ Training setting */
dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_EN_F2, 0x3);
dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_VREF_EN, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_DATA_DC_WDQLVL_ENABLE, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_PERIODIC, 0x1);
/* Periodic-ReadDQ Training setting */
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_EN_F2, 0x3);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_VREF_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDLVL_DLY_STEP, 0x4);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_PERIODIC, 0x1);
/* DFI_PHYMSTR_ACK , WTmode = b'01 */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBDFIPMSTRCNF, 0x11);
/* periodic SoC zqcal enable */
reg = dbsc5_ddrtbl_getval(priv->DDR_PHY_ADR_G_REGSET, PHY_CAL_MODE_0, false);
dbsc5_ddr_setval_all_ch(dev, PHY_CAL_MODE_0, reg | BIT(1));
/* Periodic dram zqcal enable */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBCALCNF, 0x1000010);
/* Periodic phy ctrl update enable */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBDFICUPDCNF, 0x504C0001);
/* Set Auto Refresh */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBRFEN, 0x1);
/* Periodic-WriteDQ/ReadDQ Training Interval setting */
phymster_req_interval = periodic_training_interval - 3000;
clk_count = 1024 - (dbsc5_ddrtbl_getval(priv->DDR_PI_REGSET, PI_LONG_COUNT_MASK, true) * 32);
ctrl_clk = priv->ddr_mbps / priv->ddr_mbpsdiv / 8;
reg = phymster_req_interval * ctrl_clk / clk_count;
dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_INTERVAL, reg);
/* DRAM access enable */
dbsc5_reg_write(regs_dbsc_a + DBSC_DBACEN, 0x1);
}
/**
* dbsc5_pi_training() - Training by PI
* @dev: DBSC5 device
*
* Enable WCK signal training and read gate training. Start PI training.
* After DFI initialization for all channels is once turned off, turned
* on all chennels of it. Power down the DRAM device once and then release
* the power down mode. Perform training in low frequency mode and training
* in high frequency mode. Wait for the DFI training completion status
* bit to stand until the time limit. Turn off DFI initialization for all
* channels. Turn off WTMODE of DFI PHY. Check if CA/CS Training has failed.
* Check if Wrlvl training is in error. If an error can be confirmed from
* the check result, the result is returned as a return value. Clear the
* status register for PI training.
*/
static u32 dbsc5_pi_training(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
const int retry_max = 0x10000;
u32 ca_training_ng = 0;
u32 wr_training_ng = 0;
u32 phytrainingok = 0;
u32 complete_ng = 0;
bool frqchg_req;
u32 ch, reg;
int retry;
int ret;
/* Init start */
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_WRDCM_LVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_DFS_INITIALIZATION_SEQ_9, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_DFS_INITIALIZATION_SEQ_10, 0x0);
/* PI_START */
dbsc5_ddr_setval_all_ch(dev, PI_START, 0x1);
r_foreach_vch(dev, ch)
writel(0x20, regs_dbsc_d + DBSC_DBDFICNT(ch));
r_foreach_vch(dev, ch)
writel(0x21, regs_dbsc_d + DBSC_DBDFICNT(ch));
/* Dummy PDE */
dbsc5_send_dbcmd2(dev, 0x8840000);
/* PDX */
dbsc5_send_dbcmd2(dev, 0x8840001);
/* Wait init_complete */
for (retry = 0; retry < retry_max; retry++) {
frqchg_req = false;
for (ch = 0; ch < DRAM_CH_CNT; ch++) {
if (!((~phytrainingok & priv->ddr_phyvalid) & BIT(ch)))
continue;
if (!(readl(regs_dbsc_d + DBSC_DBPDSTAT0(ch)) & BIT(0)))
continue;
frqchg_req = true;
break;
}
if (frqchg_req) {
ret = dbsc5_clk_pll3_freq(dev);
if (ret)
break;
} else {
r_foreach_vch(dev, ch) {
if (readl(regs_dbsc_d + DBSC_DBDFISTAT(ch)) & BIT(0))
phytrainingok |= BIT(ch);
}
if (phytrainingok == priv->ddr_phyvalid)
break;
}
}
/*
* dbdficnt0:
* dfi_dram_clk_disable=0
* dfi_frequency = 0
* freq_ratio = 10 (4:1)
* init_start =0
*/
r_foreach_vch(dev, ch)
writel(0x20, regs_dbsc_d + DBSC_DBDFICNT(ch));
/* DFI_PHYMSTR_ACK */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBDFIPMSTRCNF, 0x1);
/* Error check */
r_foreach_vch(dev, ch) {
/* CA/CS Training Error Check */
/* PI_CALVL_ERROR_BIT */
reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(4);
/* Error on decrement/increment pass */
reg |= dbsc5_ddr_getval(dev, ch, PHY_ADR_CALVL_OBS1) & (0x3 << 30);
/* Start outside of initial search range */
reg |= dbsc5_ddr_getval(dev, ch, PHY_ADR_CALVL_OBS2) & (0x3 << 24);
/* CSlvl error */
reg |= dbsc5_ddr_getval(dev, ch, PHY_CSLVL_OBS1) & (0xF << 28);
if (reg) {
ca_training_ng |= BIT(ch);
printf("%s pi_training_error:1\n", __func__);
}
/* Wrlvl Error Check */
/* PI_WRLVL_ERROR_BIT */
reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(3);
/* SLICE0 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_STATUS_OBS) & BIT(12);
/* SLICE1 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_STATUS_OBS) & BIT(12);
/* SLICE0 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_ERROR_OBS);
/* SLICE1 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_ERROR_OBS);
if (reg) {
wr_training_ng |= BIT(ch);
printf("%s pi_training_error:2\n", __func__);
}
}
complete_ng = (wr_training_ng | ca_training_ng);
if (complete_ng)
return ~complete_ng;
/* PI_INT_ACK assert */
r_foreach_vch(dev, ch) {
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
}
return phytrainingok;
}
/**
* dbsc5_write_leveling_adjust() - Write Leveling Cycle Adjust
* @dev: DBSC5 device
*
* Get delay value from the result write leveling of slice 0 and 1.
* Calculate latency of dfi_wrdata_en / dfi_wrdata / dfi_wrdata_mask
* signals based on delay values.
*/
static void dbsc5_write_leveling_adjust(struct udevice *dev)
{
u32 result_hard0, result_hard1;
u32 avg, avg_frac, avg_cycle;
u32 ch;
r_foreach_vch(dev, ch) {
/* SLICE0 */
result_hard0 = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_HARD0_DELAY_OBS);
result_hard1 = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_HARD1_DELAY_OBS);
avg = result_hard0 + result_hard1;
if (result_hard0 > result_hard1)
avg += 0x400;
avg /= 2;
avg_frac = avg & 0xFF;
avg_cycle = (avg >> 8) & 0x3;
if (avg_cycle == 0x3) {
dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_DEC, 0x1);
dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_ADD, 0x0);
} else {
dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_DEC, 0x0);
dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_ADD, avg_cycle);
}
dbsc5_ddr_setval_slice(dev, ch, 0, PHY_WRITE_PATH_LAT_FRAC, avg_frac);
/* SLICE1 */
result_hard0 = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_HARD0_DELAY_OBS);
result_hard1 = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_HARD1_DELAY_OBS);
avg = result_hard0 + result_hard1;
if (result_hard0 >= result_hard1)
avg += 0x400;
avg /= 2;
avg_frac = avg & 0xFF;
avg_cycle = (avg >> 8) & 0x3;
if (avg_cycle == 0x3) {
dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_DEC, 0x1);
dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_ADD, 0x0);
} else {
dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_DEC, 0x0);
dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_ADD, avg_cycle);
}
dbsc5_ddr_setval_slice(dev, ch, 1, PHY_WRITE_PATH_LAT_FRAC, avg_frac);
}
dbsc5_ddr_setval_all_ch_all_slice(dev, SC_PHY_WCK_CALC, 0x1);
}
/**
* dbsc5_wl_gt_training() - Re-run Write Leveling & Read Gate Training
* @dev: DBSC5 device
*
* Set CA leveling OFF, read gate leveling ON, write gate leveling ON,
* PI dram wck training ON. Perform PI_DFS configuration. Start PI
* frequency training in manual mode. Perform training in high-frequency
* mode. Check for Write leveling Error and Gate leveling Error. If an
* error is identified, the resulting value is inverted and returned.
* Clear the PI status register.
*/
static u32 dbsc5_wl_gt_training(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const int retry_max = 0x10000;
u32 gt_training_ng = 0;
u32 wr_training_ng = 0;
u32 phytrainingok = 0;
u32 complete_ng = 0;
int retry, ret;
u32 ch, reg;
dbsc5_ddr_setval_all_ch(dev, PI_CALVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_EN_F2, 0x1);
dbsc5_ddr_setval_all_ch(dev, PI_DFS_ENTRY_SEQ_0, 0x181F0000);
dbsc5_ddr_setval_all_ch(dev, PI_DFS_INITIALIZATION_SEQ_1, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_TRAIN_ALL_FREQ_REQ, 0x1);
/* Freq Change High to High*/
ret = dbsc5_clk_pll3_freq(dev);
if (ret)
return ret;
for (retry = 0; retry < retry_max; retry++) {
r_foreach_vch(dev, ch)
if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(0))
phytrainingok |= BIT(ch);
if (phytrainingok == priv->ddr_phyvalid)
break;
}
/* Error Check */
r_foreach_vch(dev, ch) {
/* Wrlvl Error Check */
/* PI_WRLVL_ERROR_BIT */
reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(3);
/* SLICE0 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_STATUS_OBS) & BIT(12);
/* SLICE1 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_STATUS_OBS) & BIT(12);
/* SLICE0 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_ERROR_OBS);
/* SLICE1 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_ERROR_OBS);
if (reg) {
wr_training_ng |= BIT(ch);
printf("%s wl_gt_training_error:1\n", __func__);
}
/* Gtlvl Error Check */
/* PI_RDLVL_GATE_ERROR_BIT */
reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(2);
/* SLICE0 delay setup error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_GTLVL_STATUS_OBS) & (0x3 << 7);
/* SLICE1 delay setup error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_GTLVL_STATUS_OBS) & (0x3 << 7);
if (reg) {
gt_training_ng |= BIT(ch);
printf("%s wl_gt_training_error:2\n", __func__);
}
}
complete_ng = (wr_training_ng | gt_training_ng);
if (complete_ng)
return ~complete_ng;
/* PI_INT_ACK assert */
r_foreach_vch(dev, ch) {
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
}
return phytrainingok;
}
/**
* dbsc5_pi_int_ack_0_assert() - Training handshake functions
* @dev: DBSC5 device
* @bit: Status bit to poll
*
* Wait for the status bit specified in the argument to become 1 until the
* time limit. After checking status bits on all channels, clear the target
* status bits and returns the result of the check as the return value.
*/
static u32 dbsc5_pi_int_ack_0_assert(struct udevice *dev, u32 bit)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const int retry_max = 0x10000;
u32 ch, phytrainingok = 0;
int retry;
for (retry = 0; retry < retry_max; retry++) {
r_foreach_vch(dev, ch)
if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(bit))
phytrainingok |= BIT(ch);
if (phytrainingok == priv->ddr_phyvalid)
break;
}
if (phytrainingok != priv->ddr_phyvalid)
return phytrainingok;
r_foreach_vch(dev, ch)
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, BIT(bit));
return phytrainingok;
}
/**
* dbsc5_write_dca() - Write DCA Training
* @dev: DBSC5 device
*
* Get DCA Training CS0 Flip-0 training results for RANK0.
* Get DCA Training CS1 Flip-0 training results for RANK0.
* Calculate DRAMDCA settings from training results and write
* them to registers. Set DRAM DCA in MR30. Ensure that the
* training has been successfully completed. Clear CA status
* to 0.
*/
static void dbsc5_write_dca(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const int retry_max = 0x10000;
u32 phytrainingok = 0;
u32 ch, reg;
int retry;
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_DATA_DC_CAL_START, 0x1);
for (retry = 0; retry < retry_max; retry++) {
r_foreach_vch(dev, ch) {
reg = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_DATA_DC_CAL_START) |
dbsc5_ddr_getval_slice(dev, ch, 1, PHY_DATA_DC_CAL_START);
if (!reg)
phytrainingok |= BIT(ch);
}
if (phytrainingok == priv->ddr_phyvalid)
break;
}
}
/**
* dbsc5_dramdca_training() - DRAM DCA Training and Calculations
* @dev: DBSC5 device
*
* Get DCA Training CS0 Flip-0 training results for RANK0.
* Get DCA Training CS1 Flip-0 training results for RANK0.
* Calculate DRAMDCA settings from training results and write
* them to registers. Set DRAM DCA in MR30. Ensure that the
* training has been successfully completed. Clear CA status
* to 0.
*/
static u32 dbsc5_dramdca_training(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
const u32 mr30_conv[16] = {
0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1,
0x0, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF
};
u32 dca_result_l_0[DRAM_CH_CNT][CS_CNT];
u32 dca_result_u_0[DRAM_CH_CNT][CS_CNT];
u32 dca_result_l_1[DRAM_CH_CNT][CS_CNT];
u32 dca_result_u_1[DRAM_CH_CNT][CS_CNT];
u32 ch, phytrainingok, reg;
u32 tempu, templ;
/* Run DRAM DCA Training for Flip-0 */
dbsc5_ddr_setval_all_ch(dev, PI_DCMLVL_CS_SW, rank);
/* DRAMDCA go */
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_REQ, 0x1);
/* PI_INT_ACK assert */
phytrainingok = dbsc5_pi_int_ack_0_assert(dev, 28);
if (phytrainingok != priv->ddr_phyvalid)
return phytrainingok;
/* Result for DRAMDCA flip-0 */
r_foreach_vch(dev, ch) {
reg = dbsc5_ddr_getval(dev, ch, PI_DARRAY3_20_CS0_F2);
dca_result_u_0[ch][0] = mr30_conv[reg >> 4];
dca_result_l_0[ch][0] = mr30_conv[reg & 0xF];
if (!(rank & 0x2))
continue;
reg = dbsc5_ddr_getval(dev, ch, PI_DARRAY3_20_CS1_F2);
dca_result_u_0[ch][1] = mr30_conv[reg >> 4];
dca_result_l_0[ch][1] = mr30_conv[reg & 0xF];
}
/* Run DRAM DCA Training for Flip-1 */
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_FLIP_MASK, 0x1);
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_3, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_4, 0x0);
/* DRAMDCA go */
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_REQ, 0x1);
/* PI_INT_ACK assert */
phytrainingok = dbsc5_pi_int_ack_0_assert(dev, 28);
if (phytrainingok != priv->ddr_phyvalid)
return phytrainingok;
/* Result for DRAMDCA flip-1 */
r_foreach_vch(dev, ch) {
reg = dbsc5_ddr_getval(dev, ch, PI_DARRAY3_20_CS0_F2);
dca_result_u_1[ch][0] = mr30_conv[reg >> 4];
dca_result_l_1[ch][0] = mr30_conv[reg & 0xF];
if (!(rank & 0x2))
continue;
reg = dbsc5_ddr_getval(dev, ch, PI_DARRAY3_20_CS1_F2);
dca_result_u_1[ch][1] = mr30_conv[reg >> 4];
dca_result_l_1[ch][1] = mr30_conv[reg & 0xF];
}
/* Calculate and set DRAMDCA value */
r_foreach_vch(dev, ch) {
/* CS0 */
tempu = (dca_result_u_0[ch][0] + dca_result_u_1[ch][0]) / 2;
templ = (dca_result_l_0[ch][0] + dca_result_l_1[ch][0]) / 2;
reg = (mr30_conv[tempu] << 4) | mr30_conv[templ];
dbsc5_ddr_setval(dev, ch, PI_DARRAY3_20_CS0_F2, reg);
if (!(rank & 0x2))
continue;
/* CS1 */
tempu = (dca_result_u_0[ch][1] + dca_result_u_1[ch][1]) / 2;
templ = (dca_result_l_0[ch][1] + dca_result_l_1[ch][1]) / 2;
reg = (mr30_conv[tempu] << 4) | mr30_conv[templ];
dbsc5_ddr_setval(dev, ch, PI_DARRAY3_20_CS1_F2, reg);
}
/* Set DRAMDCA value in MR30 */
dbsc5_ddr_setval_all_ch(dev, PI_SW_SEQ_0, 0x1A11E14);
dbsc5_ddr_setval_all_ch(dev, PI_SW_SEQ_1, 0x1F0000);
dbsc5_ddr_setval_all_ch(dev, PI_SEQ_DEC_SW_CS, rank);
dbsc5_ddr_setval_all_ch(dev, PI_SW_SEQ_START, 0x1);
/* PI_INT_ACK assert */
phytrainingok = dbsc5_pi_int_ack_0_assert(dev, 19);
if (phytrainingok != priv->ddr_phyvalid)
return phytrainingok;
dbsc5_ddr_setval_all_ch(dev, PI_SEQ_DEC_SW_CS, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_FLIP_MASK, 0x2);
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_2, 0x1101FC);
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_3, 0x211A00);
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_ACTIVE_SEQ_4, 0x51500);
return phytrainingok;
}
/**
* dbsc5_write_leveling() - Re-run Write Leveling
* @dev: DBSC5 device
*
* CALVL training is set to OFF, WRDCM training is set to OFF, and DRAMDCA
* training is set to OFF. Set the memory rank for the Write leveling target
* and start leveling. Wait until leveling is complete.
*
* Check for Write leveling errors. If an error is confirmed to have occurred,
* the result is returned as a return value. Clear the PI status bit.
*/
static u32 dbsc5_write_leveling(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
const int retry_max = 0x10000;
u32 wr_training_ng = 0;
u32 phytrainingok = 0;
u32 ch, reg;
int retry;
dbsc5_ddr_setval_all_ch(dev, PI_CALVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_WRDCM_LVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_DRAMDCA_LVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_WRLVL_CS_SW, rank);
dbsc5_ddr_setval_all_ch(dev, PI_WRLVL_REQ, 0x1);
for (retry = 0; retry < retry_max; retry++) {
r_foreach_vch(dev, ch)
if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(29))
phytrainingok |= BIT(ch);
if (phytrainingok == priv->ddr_phyvalid)
break;
}
/* Error check */
r_foreach_vch(dev, ch) {
/* Wrlvl Error Check */
/* PI_WRLVL_ERROR_BIT */
reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(3);
/* SLICE0 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_STATUS_OBS) & BIT(12);
/* SLICE1 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_STATUS_OBS) & BIT(12);
/* SLICE0 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WRLVL_ERROR_OBS);
/* SLICE1 wrlvl error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WRLVL_ERROR_OBS);
if (reg) {
wr_training_ng |= BIT(ch);
printf("%s write_leveling_error:1\n", __func__);
}
}
if (wr_training_ng)
return ~wr_training_ng;
/* PI_INT_ACK assert */
r_foreach_vch(dev, ch) {
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
}
return phytrainingok;
}
/**
* dbsc5_manual_write_dca() - Manual Write DCA Training
* @dev: DBSC5 device
*
* Write DCA training according to memory rank.
*/
static void dbsc5_manual_write_dca(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const u32 rank = priv->ch_have_this_cs[1] ? 0x2 : 0x1;
u32 slv_dly_center[DRAM_CH_CNT][CS_CNT][SLICE_CNT];
u32 slv_dly_center_cyc;
u32 slv_dly_center_dly;
u32 slv_dly_min[DRAM_CH_CNT][SLICE_CNT];
u32 slv_dly_max[DRAM_CH_CNT][SLICE_CNT];
u32 slv_dly_min_tmp[DRAM_CH_CNT][CS_CNT][SLICE_CNT];
u32 slv_dly_max_tmp[DRAM_CH_CNT][CS_CNT][SLICE_CNT];
u32 phy_dcc_code_min[DRAM_CH_CNT][SLICE_CNT];
u32 phy_dcc_code_max[DRAM_CH_CNT][SLICE_CNT];
u32 phy_dcc_code_mid;
const int retry_max = 0x10000;
const u8 ratio_min_div = 0xA;
const u8 ratio_max_div = 0x2;
const u8 ratio_min = 0x6;
const u8 ratio_max = 0x3;
u32 ch, cs, slice, tmp;
u32 complete = 0;
int i, retry;
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
phy_dcc_code_min[ch][slice] = 0x7F;
phy_dcc_code_max[ch][slice] = 0x0;
}
}
for (cs = 0; cs < rank; cs++) {
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_INDEX, cs);
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
slv_dly_center[ch][cs][slice] =
dbsc5_ddr_getval_slice(dev, ch, slice, PHY_CLK_WRDQS_SLAVE_DELAY);
slv_dly_center_cyc = slv_dly_center[ch][cs][slice] & 0x180;
slv_dly_center_dly = slv_dly_center[ch][cs][slice] & 0x7F;
slv_dly_min_tmp[ch][cs][slice] =
slv_dly_center_cyc |
(slv_dly_center_dly * ratio_min / ratio_min_div);
slv_dly_max_tmp[ch][cs][slice] = slv_dly_center_cyc;
if ((slv_dly_center_dly * ratio_max) > (0x7F * ratio_max_div))
slv_dly_max_tmp[ch][cs][slice] |= 0x7F;
else
slv_dly_max_tmp[ch][cs][slice] |= slv_dly_center_dly * ratio_max / ratio_max_div;
}
}
}
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
if (rank == 0x2) {
if (slv_dly_max_tmp[ch][0][slice] < slv_dly_max_tmp[ch][1][slice])
slv_dly_max[ch][slice] = slv_dly_max_tmp[ch][1][slice];
else
slv_dly_max[ch][slice] = slv_dly_max_tmp[ch][0][slice];
if (slv_dly_min_tmp[ch][0][slice] < slv_dly_min_tmp[ch][1][slice])
slv_dly_min[ch][slice] = slv_dly_min_tmp[ch][0][slice];
else
slv_dly_min[ch][slice] = slv_dly_min_tmp[ch][1][slice];
} else {
slv_dly_max[ch][slice] = slv_dly_max_tmp[ch][0][slice];
slv_dly_min[ch][slice] = slv_dly_min_tmp[ch][0][slice];
}
}
}
for (i = 0; i <= 0x7F; i++) {
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
if (slv_dly_max[ch][slice] < (slv_dly_min[ch][slice] + i)) {
complete |= BIT(ch) << (8 * slice);
} else {
/* CS0/1 same setting, Need masked write */
dbsc5_ddr_setval_slice(dev, ch, slice,
PHY_CLK_WRDQS_SLAVE_DELAY,
slv_dly_min[ch][slice] + i);
dbsc5_ddr_setval_slice(dev, ch, slice, SC_PHY_WCK_CALC, 0x1);
dbsc5_ddr_setval(dev, ch, SC_PHY_MANUAL_UPDATE, 0x1);
}
}
}
if (complete == (priv->ddr_phyvalid | (priv->ddr_phyvalid << 8)))
break;
/* Execute write dca */
r_foreach_vch(dev, ch)
for (slice = 0; slice < SLICE_CNT; slice++)
if (!(((complete >> (8 * slice)) >> ch) & 0x1))
dbsc5_ddr_setval_slice(dev, ch, slice, PHY_DATA_DC_CAL_START, 0x1);
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
if (!(((complete >> (8 * slice)) >> ch) & 0x1)) {
for (retry = 0; retry < retry_max; retry++) {
tmp = dbsc5_ddr_getval_slice(dev, ch, slice,
PHY_DATA_DC_CAL_START);
if (!tmp)
break;
}
}
}
}
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
if ((slv_dly_min[ch][slice] + i) > slv_dly_max[ch][slice])
continue;
tmp = (dbsc5_ddr_getval_slice(dev, ch, slice, PHY_DATA_DC_DQS_CLK_ADJUST));
if ((tmp >> 6) == 0x1)
tmp = 0x0;
else if ((tmp >> 6) == 0x2)
tmp = 0x3F;
if (tmp < phy_dcc_code_min[ch][slice])
phy_dcc_code_min[ch][slice] = tmp;
if (phy_dcc_code_max[ch][slice] < tmp)
phy_dcc_code_max[ch][slice] = tmp;
}
}
}
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_MULTICAST_EN, 0x0);
for (cs = 0; cs < rank; cs++) {
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_INDEX, cs);
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
dbsc5_ddr_setval_slice(dev, ch, slice,
PHY_CLK_WRDQS_SLAVE_DELAY,
slv_dly_center[ch][cs][slice]);
dbsc5_ddr_setval_slice(dev, ch, slice,
SC_PHY_WCK_CALC, 0x1);
dbsc5_ddr_setval(dev, ch, SC_PHY_MANUAL_UPDATE, 0x1);
}
}
}
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_MULTICAST_EN, 0x1);
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
phy_dcc_code_mid = (phy_dcc_code_min[ch][slice] +
phy_dcc_code_max[ch][slice]) / 2;
dbsc5_ddr_setval_slice(dev, ch, slice,
PHY_DATA_DC_DQS_CLK_ADJUST,
phy_dcc_code_mid);
}
}
}
/**
* dbsc5_read_gate_training() - Re-run read gate training by PI
* @dev: DBSC5 device
*
* Write leveling set to OFF, read gate leveling set to ON. Set memory rank
* for leveling target, turn on read gate leveling. Wait for leveling to be
* completed until the time limit. Check for errors during gate leveling.
*
* If an error is confirmed to have occurred, the result is returned as a
* return value. Clear the PI status register.
*/
static u32 dbsc5_read_gate_training(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
const int retry_max = 0x10000;
u32 gt_training_ng = 0;
u32 phytrainingok = 0;
u32 ch, reg;
int retry;
dbsc5_ddr_setval_all_ch(dev, PI_WRLVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_EN_F2, 0x1);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_CS_SW, rank);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_REQ, 0x1);
for (retry = 0; retry < retry_max; retry++) {
r_foreach_vch(dev, ch)
if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(24))
phytrainingok |= BIT(ch);
if (phytrainingok == priv->ddr_phyvalid)
break;
}
/* Error Check */
r_foreach_vch(dev, ch) {
/* Gtlvl Error Check */
/* PI_RDLVL_GATE_ERROR_BIT */
reg = (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(2));
/* SLICE0 delay setup error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_GTLVL_STATUS_OBS) & (0x3 << 7);
/* SLICE1 delay setup error */
reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_GTLVL_STATUS_OBS) & (0x3 << 7);
if (reg) {
gt_training_ng |= BIT(ch);
printf("%s read_gate_training_error\n", __func__);
}
}
if (gt_training_ng)
return ~gt_training_ng;
/* PI_INT_ACK assert */
r_foreach_vch(dev, ch) {
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
}
return phytrainingok;
}
/**
* dbsc5_read_vref_training() - Read Data Training with VREF Training
* @dev: DBSC5 device
*
* Set reading leveling to ON and Vref leveling of reading to OFF.
* Set Vref reading training to OFF. Get start value, end value and
* number of steps for Vref training. Determine the optimal VREFSEL
* value while increasing the Vref training setpoint by the starting
* value+step value.
*/
static u32 dbsc5_read_vref_training(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
u32 best_dvw_min_byte0, best_dvw_min_byte1;
u32 dvw_min_byte0_table[DRAM_CH_CNT][128];
u32 dvw_min_byte1_table[DRAM_CH_CNT][128];
u32 dvw_min_byte0[DRAM_CH_CNT] = { 0 };
u32 dvw_min_byte1[DRAM_CH_CNT] = { 0 };
u32 best_lower_vref, best_upper_vref;
u32 best_vref_byte0, best_vref_byte1;
u32 vref_start, vref_stop, vref_step;
u32 best_vref_byte0_index = 0;
u32 best_vref_byte1_index = 0;
const int retry_max = 0x10000;
u32 win_byte0, win_byte1;
u32 phytrainingok = 0;
u32 vref_stop_index;
u32 temple, tempte;
u32 best_thrshld;
u32 vref_outlier;
u32 outlier_cnt;
u32 curr_rank;
int i, retry;
u32 obs_sel;
u32 ch, reg;
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_EN_F2, 0x3);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_VREF_EN_F0, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_VREF_EN_F1, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_VREF_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_VREF_TRAINING_CTRL, 0x0);
/* ch0 vref_point */
vref_start = dbsc5_ddr_getval(dev, 0, PHY_VREF_INITIAL_START_POINT);
vref_stop = dbsc5_ddr_getval(dev, 0, PHY_VREF_INITIAL_STOP_POINT);
vref_step = dbsc5_ddr_getval(dev, 0, PHY_VREF_INITIAL_STEPSIZE);
vref_stop_index = (vref_stop - vref_start) / vref_step;
if (vref_stop_index > 0x80)
return 0;
for (i = 0; i <= vref_stop_index; i++) {
r_foreach_vch(dev, ch) {
reg = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_PAD_VREF_CTRL_DQ);
reg &= 0xF << 10;
dbsc5_ddr_setval_slice(dev, ch, 0, PHY_PAD_VREF_CTRL_DQ,
reg | BIT(9) | (vref_start + (vref_step * i)));
reg = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_PAD_VREF_CTRL_DQ);
reg &= 0xF << 10;
dbsc5_ddr_setval_slice(dev, ch, 1, PHY_PAD_VREF_CTRL_DQ,
reg | BIT(9) | (vref_start + (vref_step * i)));
}
for (curr_rank = 0; curr_rank < rank; curr_rank++) {
/* All ch Read Training Start */
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_CS_SW, BIT(curr_rank));
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_REQ, 0x1);
phytrainingok = 0;
for (retry = 0; retry < retry_max; retry++) {
r_foreach_vch(dev, ch)
if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(25))
phytrainingok |= BIT(ch);
if (phytrainingok == priv->ddr_phyvalid)
break;
}
/* Read Training End */
dbsc5_ddr_setval_all_ch(dev, PI_INT_ACK_0, BIT(25));
r_foreach_vch(dev, ch) {
/* minimum Data Valid Window for each VREF */
dvw_min_byte0[ch] = 0xFFFFFFFF;
dvw_min_byte1[ch] = 0xFFFFFFFF;
for (obs_sel = 0x0; obs_sel < 0x19; obs_sel++) {
if (!((obs_sel < 0x11) || (obs_sel == 0x18)))
continue;
dbsc5_ddr_setval_slice(dev, ch, 0,
PHY_RDLVL_RDDQS_DQ_OBS_SELECT,
obs_sel);
dbsc5_ddr_setval_slice(dev, ch, 1,
PHY_RDLVL_RDDQS_DQ_OBS_SELECT,
obs_sel);
temple = dbsc5_ddr_getval_slice(dev, ch, 0,
PHY_RDLVL_RDDQS_DQ_LE_DLY_OBS);
tempte = dbsc5_ddr_getval_slice(dev, ch, 0,
PHY_RDLVL_RDDQS_DQ_TE_DLY_OBS);
if (tempte > temple)
win_byte0 = tempte - temple;
else
win_byte0 = 0;
temple = dbsc5_ddr_getval_slice(dev, ch, 1,
PHY_RDLVL_RDDQS_DQ_LE_DLY_OBS);
tempte = dbsc5_ddr_getval_slice(dev, ch, 1,
PHY_RDLVL_RDDQS_DQ_TE_DLY_OBS);
if (tempte > temple)
win_byte1 = tempte - temple;
else
win_byte1 = 0;
if (dvw_min_byte0[ch] > win_byte0)
dvw_min_byte0[ch] = win_byte0;
if (dvw_min_byte1[ch] > win_byte1)
dvw_min_byte1[ch] = win_byte1;
}
}
}
r_foreach_vch(dev, ch) {
dvw_min_byte0_table[ch][i] = dvw_min_byte0[ch];
dvw_min_byte1_table[ch][i] = dvw_min_byte1[ch];
}
}
r_foreach_vch(dev, ch) {
/* Search best VREF byte0 */
best_vref_byte0 = vref_start;
best_vref_byte0_index = 0;
best_dvw_min_byte0 = dvw_min_byte0_table[ch][0];
for (i = 0; i <= vref_stop_index; i++) {
if (best_dvw_min_byte0 >= dvw_min_byte0_table[ch][i])
continue;
best_vref_byte0 = vref_start + (vref_step * i);
best_vref_byte0_index = i;
best_dvw_min_byte0 = dvw_min_byte0_table[ch][i];
}
/* Search best_lower VREF byte0 */
reg = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_RDLVL_DLY_STEP);
if (reg == 0)
reg = 1;
best_thrshld = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_RDLVL_BEST_THRSHLD) * reg;
vref_outlier = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_RDLVL_VREF_OUTLIER);
best_lower_vref = best_vref_byte0;
outlier_cnt = vref_outlier;
for (i = best_vref_byte0_index; i >= 0; i--) {
if (dvw_min_byte0_table[ch][i] <= 0)
break;
if (dvw_min_byte0_table[ch][i] >= (best_dvw_min_byte0 - best_thrshld)) {
best_lower_vref = vref_start + (vref_step * i);
} else {
if (outlier_cnt > 0)
outlier_cnt--;
else
break;
}
if (i == 0)
break;
}
/* Search best_upper VREF byte0 */
vref_outlier = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_RDLVL_VREF_OUTLIER);
best_upper_vref = best_vref_byte0;
outlier_cnt = vref_outlier;
for (i = best_vref_byte0_index; i <= vref_stop_index; i++) {
if (dvw_min_byte0_table[ch][i] <= 0)
break;
if (dvw_min_byte0_table[ch][i] >= (best_dvw_min_byte0 - best_thrshld)) {
best_upper_vref = vref_start + (vref_step * i);
} else {
if (outlier_cnt > 0)
outlier_cnt--;
else
break;
}
}
/* Calculate center of best vref range byte0 */
best_vref_byte0 = (best_lower_vref + best_upper_vref) / 2;
/* Search best VREF byte1 */
best_vref_byte1 = vref_start;
best_vref_byte1_index = 0;
best_dvw_min_byte1 = dvw_min_byte1_table[ch][0];
for (i = 0; i <= vref_stop_index; i++) {
if (best_dvw_min_byte1 >= dvw_min_byte1_table[ch][i])
continue;
best_vref_byte1 = vref_start + (vref_step * i);
best_vref_byte1_index = i;
best_dvw_min_byte1 = dvw_min_byte1_table[ch][i];
}
/* Search best_lower VREF byte1 */
reg = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_RDLVL_DLY_STEP);
if (reg == 0)
reg = 1;
best_thrshld = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_RDLVL_BEST_THRSHLD) * reg;
vref_outlier = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_RDLVL_VREF_OUTLIER);
best_lower_vref = best_vref_byte1;
outlier_cnt = vref_outlier;
for (i = best_vref_byte1_index; i >= 0; i--) {
if (dvw_min_byte1_table[ch][i] <= 0)
break;
if (dvw_min_byte1_table[ch][i] >= (best_dvw_min_byte1 - best_thrshld)) {
best_lower_vref = vref_start + (vref_step * i);
} else {
if (outlier_cnt > 0)
outlier_cnt--;
else
break;
}
if (i == 0)
break;
}
/* Search best_upper VREF byte1 */
vref_outlier = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_RDLVL_VREF_OUTLIER);
best_upper_vref = best_vref_byte1;
outlier_cnt = vref_outlier;
for (i = best_vref_byte1_index; i <= vref_stop_index; i++) {
if (dvw_min_byte1_table[ch][i] <= 0)
break;
if (dvw_min_byte1_table[ch][i] >= (best_dvw_min_byte1 - best_thrshld)) {
best_upper_vref = vref_start + (vref_step * i);
} else {
if (outlier_cnt > 0)
outlier_cnt--;
else
break;
}
}
/* Calculate center of best vref range byte1 */
best_vref_byte1 = (best_lower_vref + best_upper_vref) / 2;
reg = dbsc5_ddr_getval_slice(dev, ch, 0, PHY_PAD_VREF_CTRL_DQ);
reg &= 0xF << 10;
dbsc5_ddr_setval_slice(dev, ch, 0, PHY_PAD_VREF_CTRL_DQ,
reg | BIT(9) | best_vref_byte0);
reg = dbsc5_ddr_getval_slice(dev, ch, 1, PHY_PAD_VREF_CTRL_DQ);
reg &= 0xF << 10;
dbsc5_ddr_setval_slice(dev, ch, 1, PHY_PAD_VREF_CTRL_DQ,
reg | BIT(9) | best_vref_byte1);
}
return phytrainingok;
}
/**
* dbsc5_read_write_training() - Read Data & RDDQ Training with best VREF & Write DQ VREF Training
* @dev: DBSC5 device
*
* Set read DQS/RDQS slave delay setting to 0. Write leveling set to OFF,
* read gate leveling set to OFF. Turn on read and write leveling. Start
* frequency training. Training in high-frequency mode. Wait until training
* is complete. Check for errors in write dq leveling and read leveling.
* If an error is confirmed to have occurred, return the inverted result
* value. Clear the PI status register.
*/
static u32 dbsc5_read_write_training(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const int retry_max = 0x10000;
u32 wdq_training_ng = 0;
u32 rd_training_ng = 0;
u32 phytrainingok = 0;
u32 complete_ng = 0;
int retry, ret;
u32 ch, reg;
/* RDDQ_SLAVE_DELAY Set 0x0050 -> 0x0000 */
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ0_SLAVE_DELAY, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ1_SLAVE_DELAY, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ2_SLAVE_DELAY, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ3_SLAVE_DELAY, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ4_SLAVE_DELAY, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ5_SLAVE_DELAY, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ6_SLAVE_DELAY, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDQ7_SLAVE_DELAY, 0x0);
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_RDDM_SLAVE_DELAY, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_WRLVL_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_GATE_EN_F2, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_EN_F2, 0x3);
dbsc5_ddr_setval_all_ch(dev, PI_WDQLVL_EN_F2, 0x3);
dbsc5_ddr_setval_all_ch(dev, PI_TRAIN_ALL_FREQ_REQ, 0x1);
/* Freq Change High to High*/
ret = dbsc5_clk_pll3_freq(dev);
if (ret)
return ret;
for (retry = 0; retry < retry_max; retry++) {
r_foreach_vch(dev, ch)
if (dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(0))
phytrainingok |= BIT(ch);
if (phytrainingok == priv->ddr_phyvalid)
break;
}
/* Error Check */
r_foreach_vch(dev, ch) {
/* Rdlvl Error Check */
/* PI_RDLVL_ERROR_BIT */
reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(1);
if (reg) {
rd_training_ng |= BIT(ch);
printf("%s read_write_training_error:1\n", __func__);
}
/* Wdqlvl Error Check */
/* PI_WDQLVL_ERROR_BIT */
reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(5);
/* SLICE0 wdqlvl_fail_dqZ */
reg |= dbsc5_ddr_getval_slice(dev, ch, 0, PHY_WDQLVL_STATUS_OBS) & (0x1FF << 18);
/* SLICE1 wdqlvl_fail_dqZ */
reg |= dbsc5_ddr_getval_slice(dev, ch, 1, PHY_WDQLVL_STATUS_OBS) & (0x1FF << 18);
if (reg) {
wdq_training_ng |= BIT(ch);
printf("%s read_write_training_error:2\n", __func__);
}
}
complete_ng = wdq_training_ng | rd_training_ng;
if (complete_ng)
return ~complete_ng;
/* PI_INT_ACK assert */
r_foreach_vch(dev, ch) {
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_0, 0xFFFFFFFF);
dbsc5_ddr_setval(dev, ch, PI_INT_ACK_1, 0x7);
}
return phytrainingok;
}
/**
* dbsc5_read_training() - Correct RDDQ Training result & Re-Run Read Data Training
* @dev: DBSC5 device
*
* Set the Read DQ correction value and its upper limit from the board
* settings. Check DDR memory ranks. Add the offset value to the current
* Read DQ value and write it to the register. Write the setting value
* to PI_RDLVL_TRAIN_SEQ_x. Start the Read training. PI_INT_ACK assert.
* Execute the Rdlvl Error Check. Confirm that training has been successfully
* completed. Return the result of the confirmation as the return value.
*/
static u32 dbsc5_read_training(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
const u32 rank = priv->ch_have_this_cs[1] ? 0x3 : 0x1;
const u32 rddq_delay_offset_ps = 0x19;
const u32 rddq_delay_max_ps = 0x67;
const u32 rddq_delay_addr[] = {
PHY_RDDQ0_SLAVE_DELAY, PHY_RDDQ1_SLAVE_DELAY, PHY_RDDQ2_SLAVE_DELAY,
PHY_RDDQ3_SLAVE_DELAY, PHY_RDDQ4_SLAVE_DELAY, PHY_RDDQ5_SLAVE_DELAY,
PHY_RDDQ6_SLAVE_DELAY, PHY_RDDQ7_SLAVE_DELAY, PHY_RDDM_SLAVE_DELAY
};
const u32 rddq_delay_offset = rddq_delay_offset_ps * priv->ddr_mbps * 256 /
(priv->ddr_mbpsdiv * 2 * 1000000);
const u32 rddq_delay_max = rddq_delay_max_ps * priv->ddr_mbps * 256 /
(priv->ddr_mbpsdiv * 2 * 1000000);
u32 rd_training_ng = 0;
u32 ch, reg, slice;
u32 phytrainingok;
int i;
r_foreach_vch(dev, ch) {
for (slice = 0; slice < SLICE_CNT; slice++) {
for (i = 0; i < 9; i++) {
reg = dbsc5_ddr_getval_slice(dev, ch, slice,
rddq_delay_addr[i]) +
rddq_delay_offset;
if (reg > rddq_delay_max)
reg = rddq_delay_max;
dbsc5_ddr_setval_slice(dev, ch, slice, rddq_delay_addr[i], reg);
}
}
}
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_1, 0x89080);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_2, 0x811C0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_3, 0x40811C0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_4, 0x2000000);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_TRAIN_SEQ_5, 0x0);
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_CS_SW, rank);
/* Read training go */
dbsc5_ddr_setval_all_ch(dev, PI_RDLVL_REQ, 0x1);
/* PI_INT_ACK assert */
phytrainingok = dbsc5_pi_int_ack_0_assert(dev, 25);
if (phytrainingok != priv->ddr_phyvalid)
return phytrainingok;
/* Error Check */
r_foreach_vch(dev, ch) {
/* Rdlvl Error Check */
/* PI_RDLVL_ERROR_BIT */
reg = dbsc5_ddr_getval(dev, ch, PI_INT_STATUS) & BIT(1);
if (reg) {
rd_training_ng |= BIT(ch);
printf("%s read_training_error\n", __func__);
}
}
if (rd_training_ng)
return ~rd_training_ng;
return phytrainingok;
}
/**
* dbsc5_ddr_register_set() - DDR mode register setting
* @dev: DBSC5 device
*
* Set the mode register 28 of the SDRAM.
* ZQ Mode: Command-Based ZQ Calibration
* ZQ interval: Background Cal Interval < 64ms
*/
static void dbsc5_ddr_register_set(struct udevice *dev)
{
dbsc5_send_dbcmd2(dev, 0xE841C24);
}
/**
* dbsc5_ddr_register_read() - DDR mode register read
* @dev: DBSC5 device
*
* Set the mode register 27 and 57 of the SDRAM.
*/
static void dbsc5_ddr_register_read(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
if (!priv->dbsc5_board_config->bdcfg_rfm_chk)
return;
/* MR27 rank0 */
dbsc5_send_dbcmd2(dev, 0xF801B00);
/* MR57 rank0 */
dbsc5_send_dbcmd2(dev, 0xF803900);
if (!priv->ch_have_this_cs[1])
return;
/* MR27 rank1 */
dbsc5_send_dbcmd2(dev, 0xF811B00);
/* MR57 rank1 */
dbsc5_send_dbcmd2(dev, 0xF813900);
}
/**
* dbsc5_init_ddr() - Initialize DDR
* @dev: DBSC5 device
*
* Status monitor and perform reset and software reset for DDR.
* Disable DDRPHY software reset. Unprotect the DDRPHY register.
* Perform pre-setting of DBSC registers. Configure the ddrphy
* registers. Process ddr backup. Set DBSC registers.
*
* Initialize DFI and perform PI training. Setup DDR mode registers
* pre-traning. Adjust number of write leveling cycles. Perform PI
* training in manual mode. Perform DRAM DCA training. Perform write
* leveling. Execute phydca training. Execute read gate training.
*
* Perform Vref training on read gate. Read DQ Write DQ Execute.
* Frequency selection change (F1->F2). Disable the FREQ_SEL_MULTICAST &
* PER_CS_TRAINING_MULTICAST. Start setting DDR mode registers. Set DBSC
* registers after training is completed. Set write protection for PHY
* registers.
*/
static u32 dbsc5_init_ddr(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
u32 phytrainingok;
u32 ch, val;
int ret;
/* PLL3 initialization setting */
/* Reset Status Monitor clear */
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FSRCHKCLRR4, 0x600);
/* Reset Status Monitor set */
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FSRCHKSETR4, 0x600);
/* ddrphy soft reset assert */
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_SRCR4, readl(priv->cpg_regs + CPG_SRCR4) | 0x600);
/* Wait reset FB */
ret = readl_poll_timeout(priv->cpg_regs + CPG_FSRCHKRA4, val, ((val & 0x600) == 0), 1000000);
if (ret < 0) {
printf("%s CPG_FSRCHKRA4 Wait reset FB timeout\n", __func__);
hang();
}
/* Reset Status Monitor clear */
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_FSRCHKCLRR4, 0x600);
/* Initialize PLL3 setting */
dbsc5_clk_pll3_control(dev, PLL3_HIGH_FREQUENCY_MODE_LOAD_REGISTER);
/* DDRPHY soft reset negate */
dbsc5_clk_cpg_write_32(dev, priv->cpg_regs + CPG_SRSTCLR4, 0x600);
ret = readl_poll_timeout(priv->cpg_regs + CPG_SRCR4, val, ((val & 0x600) == 0), 1000000);
if (ret < 0) {
printf("%s CPG_SRCR4 DDRPHY soft reset negate timeout\n", __func__);
hang();
}
/* Unlock PHY */
/* Unlock DDRPHY register */
r_foreach_vch(dev, ch)
writel(0xA55A, regs_dbsc_d + DBSC_DBPDLK(ch));
/* DBSC register pre-setting */
dbsc5_dbsc_regset_pre(dev);
/* Load DDRPHY registers */
dbsc5_ddrtbl_calc(priv);
dbsc5_ddrtbl_load(dev);
/* Configure ddrphy registers */
dbsc5_ddr_config(dev);
/* DDR backupmode end */
/* DBSC register set */
dbsc5_dbsc_regset(dev);
/* Frequency selection change (F1->F2) */
dbsc5_ddr_setval_all_ch(dev, PHY_FREQ_SEL_INDEX, 0x1);
dbsc5_ddr_setval_all_ch(dev, PHY_FREQ_SEL_MULTICAST_EN, 0x0);
/* dfi_init_start (start ddrphy) & execute pi_training */
phytrainingok = dbsc5_pi_training(dev);
if (priv->ddr_phyvalid != phytrainingok) {
printf("%s init_ddr_error:1\n", __func__);
return phytrainingok;
}
/* Write leveling cycle adjust */
dbsc5_write_leveling_adjust(dev);
/* Execute write leveling & read gate training */
phytrainingok = dbsc5_wl_gt_training(dev);
if (priv->ddr_phyvalid != phytrainingok) {
printf("%s init_ddr_error:2\n", __func__);
return phytrainingok;
}
/* Execute write dca training */
dbsc5_write_dca(dev);
/* Execute dram dca training */
phytrainingok = dbsc5_dramdca_training(dev);
if (priv->ddr_phyvalid != phytrainingok) {
printf("%s init_ddr_error:3\n", __func__);
return phytrainingok;
}
/* Execute write leveling */
phytrainingok = dbsc5_write_leveling(dev);
if (priv->ddr_phyvalid != phytrainingok) {
printf("%s init_ddr_error:4\n", __func__);
return phytrainingok;
}
/* Execute manual write dca training */
dbsc5_manual_write_dca(dev);
/* Execute read gate training */
phytrainingok = dbsc5_read_gate_training(dev);
if (priv->ddr_phyvalid != phytrainingok) {
printf("%s init_ddr_error:5\n", __func__);
return phytrainingok;
}
/* Execute read vref training */
phytrainingok = dbsc5_read_vref_training(dev);
if (priv->ddr_phyvalid != phytrainingok) {
printf("%s init_ddr_error:6\n", __func__);
return phytrainingok;
}
/* Execute read dq & write dq training with best vref */
phytrainingok = dbsc5_read_write_training(dev);
if (priv->ddr_phyvalid != phytrainingok) {
printf("%s init_ddr_error:7\n", __func__);
return phytrainingok;
}
/* correct rddq training result & Execute read dq training */
phytrainingok = dbsc5_read_training(dev);
if (priv->ddr_phyvalid != phytrainingok) {
printf("%s init_ddr_error:8\n", __func__);
return phytrainingok;
}
/* PER_CS_TRAINING_MULTICAST SET (disable) */
dbsc5_ddr_setval_all_ch_all_slice(dev, PHY_PER_CS_TRAINING_MULTICAST_EN, 0x0);
/* setup DDR mode registers */
/* MRS */
dbsc5_ddr_register_set(dev);
/* MRR */
dbsc5_ddr_register_read(dev);
/* training complete, setup DBSC */
dbsc5_dbsc_regset_post(dev);
/* Lock PHY */
/* Lock DDRPHY register */
r_foreach_vch(dev, ch)
writel(0x0, regs_dbsc_d + DBSC_DBPDLK(ch));
return phytrainingok;
}
/**
* dbsc5_get_board_data() - Obtain board specific DRAM configuration
*
* Return board specific DRAM configuration structure pointer.
*/
__weak const struct renesas_dbsc5_board_config *dbsc5_get_board_data(void)
{
return &renesas_v4h_dbsc5_board_config;
}
/**
* renesas_dbsc5_dram_probe() - DDR Initialize entry
* @dev: DBSC5 device
*
* Remove write protection on DBSC register. Read DDR configuration
* information from driver data. Calculate board clock frequency and
* operating frequency from DDR configuration information. Call the
* main function of DDR initialization. Perform DBSC write protection
* after initialization is complete.
*/
static int renesas_dbsc5_dram_probe(struct udevice *dev)
{
#define RST_MODEMR0 0x0
#define RST_MODEMR1 0x4
struct renesas_dbsc5_data *data = (struct renesas_dbsc5_data *)dev_get_driver_data(dev);
ofnode cnode = ofnode_by_compatible(ofnode_null(), data->clock_node);
ofnode rnode = ofnode_by_compatible(ofnode_null(), data->reset_node);
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
void __iomem *regs_dbsc_a = priv->regs + DBSC5_DBSC_A_OFFSET;
void __iomem *regs_dbsc_d = priv->regs + DBSC5_DBSC_D_OFFSET;
phys_addr_t rregs = ofnode_get_addr(rnode);
const u32 modemr0 = readl(rregs + RST_MODEMR0);
const u32 modemr1 = readl(rregs + RST_MODEMR1);
u32 breg, reg, md, sscg;
u32 ch, cs;
/* Get board data */
priv->dbsc5_board_config = dbsc5_get_board_data();
priv->ddr_phyvalid = (u32)(priv->dbsc5_board_config->bdcfg_phyvalid);
priv->max_density = 0;
priv->cpg_regs = (void __iomem *)ofnode_get_addr(cnode);
for (cs = 0; cs < CS_CNT; cs++)
priv->ch_have_this_cs[cs] = 0;
r_foreach_ech(ch)
for (cs = 0; cs < CS_CNT; cs++)
priv->ddr_density[ch][cs] = 0xFF;
r_foreach_vch(dev, ch) {
for (cs = 0; cs < CS_CNT; cs++) {
priv->ddr_density[ch][cs] = priv->dbsc5_board_config->ch[ch].bdcfg_ddr_density[cs];
if (priv->ddr_density[ch][cs] == 0xFF)
continue;
if (priv->ddr_density[ch][cs] > priv->max_density)
priv->max_density = priv->ddr_density[ch][cs];
priv->ch_have_this_cs[cs] |= BIT(ch);
}
}
/* Decode board clock frequency from MD[14:13] pins */
priv->brd_clkdiv = 3;
breg = (modemr0 >> 13) & 0x3;
if (breg == 0) {
priv->brd_clk = 50; /* 16.66 MHz */
priv->bus_clk = priv->brd_clk * 0x18;
priv->bus_clkdiv = priv->brd_clkdiv;
} else if (breg == 1) {
priv->brd_clk = 60; /* 20 MHz */
priv->bus_clk = priv->brd_clk * 0x14;
priv->bus_clkdiv = priv->brd_clkdiv;
} else if (breg == 3) {
priv->brd_clk = 100; /* 33.33 MHz */
priv->bus_clk = priv->brd_clk * 0x18;
priv->bus_clkdiv = priv->brd_clkdiv * 2;
} else {
printf("MD[14:13] setting 0x%x not supported!", breg);
hang();
}
priv->brd_clkdiva = !!(modemr0 & BIT(14)); /* MD14 */
/* Decode DDR operating frequency from MD[37:36,19,17] pins */
md = ((modemr0 & BIT(19)) >> 18) | ((modemr0 & BIT(17)) >> 17);
sscg = (modemr1 >> 4) & 0x03;
if (sscg == 2) {
printf("MD[37:36] setting 0x%x not supported!", sscg);
hang();
}
if (md == 0) {
if (sscg == 0) {
priv->ddr_mbps = 6400;
priv->ddr_mbpsdiv = 1;
} else {
priv->ddr_mbps = 19000;
priv->ddr_mbpsdiv = 3;
}
} else if (md == 1) {
priv->ddr_mbps = 6000;
priv->ddr_mbpsdiv = 1;
} else if (md == 2) {
priv->ddr_mbps = 5500;
priv->ddr_mbpsdiv = 1;
} else if (md == 3) {
priv->ddr_mbps = 4800;
priv->ddr_mbpsdiv = 1;
}
priv->ddr_mul = CLK_DIV(priv->ddr_mbps, priv->ddr_mbpsdiv * 2,
priv->brd_clk, priv->brd_clkdiv * (priv->brd_clkdiva + 1));
priv->ddr_mul_low = CLK_DIV(6400, 2, priv->brd_clk,
priv->brd_clkdiv * (priv->brd_clkdiva + 1));
priv->ddr_mul_reg = priv->ddr_mul_low;
if (sscg != 0)
priv->ddr_mul_reg -= 2;
priv->ddr_mul_nf = ((8 * priv->ddr_mbps * priv->brd_clkdiv * (priv->brd_clkdiva + 1)) /
(priv->ddr_mbpsdiv * priv->brd_clk * 2)) - (8 * (priv->ddr_mul / 2) * 2);
/* Adjust tccd */
priv->ddr_tccd = 2;
/* Initialize DDR */
dbsc5_reg_write(regs_dbsc_d + DBSC_DBSYSCNT0, 0x1234);
dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCNT0A, 0x1234);
reg = dbsc5_init_ddr(dev);
dbsc5_reg_write(regs_dbsc_d + DBSC_DBSYSCNT0, 0x0);
dbsc5_reg_write(regs_dbsc_a + DBSC_DBSYSCNT0A, 0x0);
return reg != priv->ddr_phyvalid;
}
/**
* renesas_dbsc5_dram_of_to_plat() - Convert OF data to plat data
* @dev: DBSC5 device
*
* Extract DBSC5 address from DT and store it in driver data.
*/
static int renesas_dbsc5_dram_of_to_plat(struct udevice *dev)
{
struct renesas_dbsc5_dram_priv *priv = dev_get_priv(dev);
priv->regs = dev_read_addr_ptr(dev);
if (!priv->regs)
return -EINVAL;
return 0;
}
/**
* renesas_dbsc5_dram_get_info() - Return RAM size
* @dev: DBSC5 device
* @info: Output RAM info
*
* Return size of the RAM managed by this RAM driver.
*/
static int renesas_dbsc5_dram_get_info(struct udevice *dev,
struct ram_info *info)
{
info->base = 0x40000000;
info->size = 0;
return 0;
}
static const struct ram_ops renesas_dbsc5_dram_ops = {
.get_info = renesas_dbsc5_dram_get_info,
};
U_BOOT_DRIVER(renesas_dbsc5_dram) = {
.name = "dbsc5_dram",
.id = UCLASS_RAM,
.of_to_plat = renesas_dbsc5_dram_of_to_plat,
.ops = &renesas_dbsc5_dram_ops,
.probe = renesas_dbsc5_dram_probe,
.priv_auto = sizeof(struct renesas_dbsc5_dram_priv),
};