u-boot/drivers/spi/spi-aspeed-smc.c
Chin-Ting Kuo 992d02ea73 spi: aspeed: SPI dirmap read support
From the HW point of view, the performance of
command read mode is greater than user mode slightly.
Thus, dirmap read framework is introduced to achieve
this goal. In dirmap_create, command read mode is
configured. Usually, the decoded address area with flash
size is assigned to each CS. CPU can thus access the
SPI flash as normal memory in dirmap_read function.

Signed-off-by: Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>
2022-09-13 12:08:41 -04:00

782 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* ASPEED FMC/SPI Controller driver
*
* Copyright (c) 2022 ASPEED Corporation.
* Copyright (c) 2022 IBM Corporation.
*
* Author:
* Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>
* Cedric Le Goater <clg@kaod.org>
*/
#include <asm/io.h>
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/mtd/spi-nor.h>
#include <linux/sizes.h>
#include <malloc.h>
#include <spi.h>
#include <spi-mem.h>
#define ASPEED_SPI_MAX_CS 5
#define CTRL_IO_SINGLE_DATA 0
#define CTRL_IO_QUAD_DATA BIT(30)
#define CTRL_IO_DUAL_DATA BIT(29)
#define CTRL_IO_MODE_USER GENMASK(1, 0)
#define CTRL_IO_MODE_CMD_READ BIT(0)
#define CTRL_IO_MODE_CMD_WRITE BIT(1)
#define CTRL_STOP_ACTIVE BIT(2)
struct aspeed_spi_regs {
u32 conf; /* 0x00 CE Type Setting */
u32 ctrl; /* 0x04 CE Control */
u32 intr_ctrl; /* 0x08 Interrupt Control and Status */
u32 cmd_ctrl; /* 0x0c Command Control */
u32 ce_ctrl[ASPEED_SPI_MAX_CS]; /* 0x10 .. 0x20 CEx Control */
u32 _reserved0[3]; /* .. */
u32 segment_addr[ASPEED_SPI_MAX_CS]; /* 0x30 .. 0x40 Segment Address */
u32 _reserved1[3]; /* .. */
u32 soft_rst_cmd_ctrl; /* 0x50 Auto Soft-Reset Command Control */
u32 _reserved2[11]; /* .. */
u32 dma_ctrl; /* 0x80 DMA Control/Status */
u32 dma_flash_addr; /* 0x84 DMA Flash Side Address */
u32 dma_dram_addr; /* 0x88 DMA DRAM Side Address */
u32 dma_len; /* 0x8c DMA Length Register */
u32 dma_checksum; /* 0x90 Checksum Calculation Result */
u32 timings[ASPEED_SPI_MAX_CS]; /* 0x94 Read Timing Compensation */
};
struct aspeed_spi_plat {
u8 max_cs;
void __iomem *ahb_base; /* AHB address base for all flash devices. */
fdt_size_t ahb_sz; /* Overall AHB window size for all flash device. */
};
struct aspeed_spi_flash {
void __iomem *ahb_base;
u32 ahb_decoded_sz;
u32 ce_ctrl_user;
u32 ce_ctrl_read;
};
struct aspeed_spi_priv {
u32 num_cs;
struct aspeed_spi_regs *regs;
struct aspeed_spi_info *info;
struct aspeed_spi_flash flashes[ASPEED_SPI_MAX_CS];
};
struct aspeed_spi_info {
u32 io_mode_mask;
u32 max_bus_width;
u32 min_decoded_sz;
void (*set_4byte)(struct udevice *bus, u32 cs);
u32 (*segment_start)(struct udevice *bus, u32 reg);
u32 (*segment_end)(struct udevice *bus, u32 reg);
u32 (*segment_reg)(u32 start, u32 end);
};
static const struct aspeed_spi_info ast2400_spi_info;
static int aspeed_spi_decoded_range_config(struct udevice *bus);
static u32 aspeed_spi_get_io_mode(u32 bus_width)
{
switch (bus_width) {
case 1:
return CTRL_IO_SINGLE_DATA;
case 2:
return CTRL_IO_DUAL_DATA;
case 4:
return CTRL_IO_QUAD_DATA;
default:
/* keep in default value */
return CTRL_IO_SINGLE_DATA;
}
}
static u32 ast2400_spi_segment_start(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 start_offset = ((reg >> 16) & 0xff) << 23;
if (start_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + start_offset;
}
static u32 ast2400_spi_segment_end(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 end_offset = ((reg >> 24) & 0xff) << 23;
/* Meaningless end_offset, set to physical ahb base. */
if (end_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + end_offset;
}
static u32 ast2400_spi_segment_reg(u32 start, u32 end)
{
if (start == end)
return 0;
return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24);
}
static void ast2400_fmc_chip_set_4byte(struct udevice *bus, u32 cs)
{
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 reg_val;
reg_val = readl(&priv->regs->ctrl);
reg_val |= 0x1 << cs;
writel(reg_val, &priv->regs->ctrl);
}
static void ast2400_spi_chip_set_4byte(struct udevice *bus, u32 cs)
{
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct aspeed_spi_flash *flash = &priv->flashes[cs];
flash->ce_ctrl_read |= BIT(13);
writel(flash->ce_ctrl_read, &priv->regs->ctrl);
}
static u32 ast2500_spi_segment_start(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 start_offset = ((reg >> 16) & 0xff) << 23;
if (start_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + start_offset;
}
static u32 ast2500_spi_segment_end(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 end_offset = ((reg >> 24) & 0xff) << 23;
/* Meaningless end_offset, set to physical ahb base. */
if (end_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + end_offset;
}
static u32 ast2500_spi_segment_reg(u32 start, u32 end)
{
if (start == end)
return 0;
return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24);
}
static void ast2500_spi_chip_set_4byte(struct udevice *bus, u32 cs)
{
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 reg_val;
reg_val = readl(&priv->regs->ctrl);
reg_val |= 0x1 << cs;
writel(reg_val, &priv->regs->ctrl);
}
static u32 ast2600_spi_segment_start(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 start_offset = (reg << 16) & 0x0ff00000;
if (start_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + start_offset;
}
static u32 ast2600_spi_segment_end(struct udevice *bus, u32 reg)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
u32 end_offset = reg & 0x0ff00000;
/* Meaningless end_offset, set to physical ahb base. */
if (end_offset == 0)
return (u32)plat->ahb_base;
return (u32)plat->ahb_base + end_offset + 0x100000;
}
static u32 ast2600_spi_segment_reg(u32 start, u32 end)
{
if (start == end)
return 0;
return ((start & 0x0ff00000) >> 16) | ((end - 0x100000) & 0x0ff00000);
}
static void ast2600_spi_chip_set_4byte(struct udevice *bus, u32 cs)
{
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 reg_val;
reg_val = readl(&priv->regs->ctrl);
reg_val |= 0x11 << cs;
writel(reg_val, &priv->regs->ctrl);
}
static int aspeed_spi_read_from_ahb(void __iomem *ahb_base, void *buf,
size_t len)
{
size_t offset = 0;
if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) &&
IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
readsl(ahb_base, buf, len >> 2);
offset = len & ~0x3;
len -= offset;
}
readsb(ahb_base, (u8 *)buf + offset, len);
return 0;
}
static int aspeed_spi_write_to_ahb(void __iomem *ahb_base, const void *buf,
size_t len)
{
size_t offset = 0;
if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) &&
IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
writesl(ahb_base, buf, len >> 2);
offset = len & ~0x3;
len -= offset;
}
writesb(ahb_base, (u8 *)buf + offset, len);
return 0;
}
/*
* Currently, only support 1-1-1, 1-1-2 or 1-1-4
* SPI NOR flash operation format.
*/
static bool aspeed_spi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct udevice *bus = slave->dev->parent;
struct aspeed_spi_priv *priv = dev_get_priv(bus);
if (op->cmd.buswidth > 1)
return false;
if (op->addr.nbytes != 0) {
if (op->addr.buswidth > 1)
return false;
if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
return false;
}
if (op->dummy.nbytes != 0) {
if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
return false;
}
if (op->data.nbytes != 0 &&
op->data.buswidth > priv->info->max_bus_width)
return false;
if (!spi_mem_default_supports_op(slave, op))
return false;
return true;
}
static int aspeed_spi_exec_op_user_mode(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct udevice *dev = slave->dev;
struct udevice *bus = dev->parent;
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(slave->dev);
u32 cs = slave_plat->cs;
u32 ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs];
u32 ce_ctrl_val;
struct aspeed_spi_flash *flash = &priv->flashes[cs];
u8 dummy_data[16] = {0};
u8 addr[4] = {0};
int i;
dev_dbg(dev, "cmd:%x(%d),addr:%llx(%d),dummy:%d(%d),data_len:0x%x(%d)\n",
op->cmd.opcode, op->cmd.buswidth, op->addr.val,
op->addr.buswidth, op->dummy.nbytes, op->dummy.buswidth,
op->data.nbytes, op->data.buswidth);
if (priv->info == &ast2400_spi_info)
ce_ctrl_reg = (u32)&priv->regs->ctrl;
/*
* Set controller to 4-byte address mode
* if flash is in 4-byte address mode.
*/
if (op->cmd.opcode == SPINOR_OP_EN4B)
priv->info->set_4byte(bus, cs);
/* Start user mode */
ce_ctrl_val = flash->ce_ctrl_user;
writel(ce_ctrl_val, ce_ctrl_reg);
ce_ctrl_val &= (~CTRL_STOP_ACTIVE);
writel(ce_ctrl_val, ce_ctrl_reg);
/* Send command */
aspeed_spi_write_to_ahb(flash->ahb_base, &op->cmd.opcode, 1);
/* Send address */
for (i = op->addr.nbytes; i > 0; i--) {
addr[op->addr.nbytes - i] =
((u32)op->addr.val >> ((i - 1) * 8)) & 0xff;
}
/* Change io_mode */
ce_ctrl_val &= ~priv->info->io_mode_mask;
ce_ctrl_val |= aspeed_spi_get_io_mode(op->addr.buswidth);
writel(ce_ctrl_val, ce_ctrl_reg);
aspeed_spi_write_to_ahb(flash->ahb_base, addr, op->addr.nbytes);
/* Send dummy cycles */
aspeed_spi_write_to_ahb(flash->ahb_base, dummy_data, op->dummy.nbytes);
/* Change io_mode */
ce_ctrl_val &= ~priv->info->io_mode_mask;
ce_ctrl_val |= aspeed_spi_get_io_mode(op->data.buswidth);
writel(ce_ctrl_val, ce_ctrl_reg);
/* Send data */
if (op->data.dir == SPI_MEM_DATA_OUT) {
aspeed_spi_write_to_ahb(flash->ahb_base, op->data.buf.out,
op->data.nbytes);
} else {
aspeed_spi_read_from_ahb(flash->ahb_base, op->data.buf.in,
op->data.nbytes);
}
ce_ctrl_val |= CTRL_STOP_ACTIVE;
writel(ce_ctrl_val, ce_ctrl_reg);
/* Restore controller setting. */
writel(flash->ce_ctrl_read, ce_ctrl_reg);
return 0;
}
static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
{
int ret = 0;
struct udevice *dev = desc->slave->dev;
struct udevice *bus = dev->parent;
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
const struct aspeed_spi_info *info = priv->info;
struct spi_mem_op op_tmpl = desc->info.op_tmpl;
u32 i;
u32 cs = slave_plat->cs;
u32 reg_val;
u32 ce_ctrl_reg;
if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT) {
/*
* dirmap_write is not supported currently due to a HW
* limitation for command write mode: The written data
* length should be multiple of 4-byte.
*/
return -EOPNOTSUPP;
}
ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs];
if (info == &ast2400_spi_info)
ce_ctrl_reg = (u32)&priv->regs->ctrl;
if (desc->info.length > 0x1000000)
priv->info->set_4byte(bus, cs);
/* AST2400 SPI1 doesn't have decoded address segment register. */
if (info != &ast2400_spi_info) {
priv->flashes[cs].ahb_decoded_sz = desc->info.length;
for (i = 0; i < priv->num_cs; i++) {
dev_dbg(dev, "cs: %d, sz: 0x%x\n", i,
priv->flashes[cs].ahb_decoded_sz);
}
ret = aspeed_spi_decoded_range_config(bus);
if (ret)
return ret;
}
reg_val = aspeed_spi_get_io_mode(op_tmpl.data.buswidth) |
op_tmpl.cmd.opcode << 16 |
((op_tmpl.dummy.nbytes) & 0x3) << 6 |
((op_tmpl.dummy.nbytes) & 0x4) << 14 |
CTRL_IO_MODE_CMD_READ;
writel(reg_val, ce_ctrl_reg);
priv->flashes[cs].ce_ctrl_read = reg_val;
dev_dbg(dev, "read bus width: %d ce_ctrl_val: 0x%08x\n",
op_tmpl.data.buswidth, priv->flashes[cs].ce_ctrl_read);
return ret;
}
static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct udevice *dev = desc->slave->dev;
struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
u32 cs = slave_plat->cs;
int ret;
dev_dbg(dev, "read op:0x%x, addr:0x%llx, len:0x%x\n",
desc->info.op_tmpl.cmd.opcode, offs, len);
if (priv->flashes[cs].ahb_decoded_sz < offs + len ||
(offs % 4) != 0) {
ret = aspeed_spi_exec_op_user_mode(desc->slave,
&desc->info.op_tmpl);
if (ret != 0)
return 0;
} else {
memcpy_fromio(buf, priv->flashes[cs].ahb_base + offs, len);
}
return len;
}
static struct aspeed_spi_flash *aspeed_spi_get_flash(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 cs = slave_plat->cs;
if (cs >= plat->max_cs) {
dev_err(dev, "invalid CS %u\n", cs);
return NULL;
}
return &priv->flashes[cs];
}
static void aspeed_spi_decoded_base_calculate(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 cs;
priv->flashes[0].ahb_base = plat->ahb_base;
for (cs = 1; cs < plat->max_cs; cs++) {
priv->flashes[cs].ahb_base =
priv->flashes[cs - 1].ahb_base +
priv->flashes[cs - 1].ahb_decoded_sz;
}
}
static void aspeed_spi_decoded_range_set(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 decoded_reg_val;
u32 start_addr, end_addr;
u32 cs;
for (cs = 0; cs < plat->max_cs; cs++) {
start_addr = (u32)priv->flashes[cs].ahb_base;
end_addr = (u32)priv->flashes[cs].ahb_base +
priv->flashes[cs].ahb_decoded_sz;
decoded_reg_val = priv->info->segment_reg(start_addr, end_addr);
writel(decoded_reg_val, &priv->regs->segment_addr[cs]);
dev_dbg(bus, "cs: %d, decoded_reg: 0x%x, start: 0x%x, end: 0x%x\n",
cs, decoded_reg_val, start_addr, end_addr);
}
}
static int aspeed_spi_decoded_range_config(struct udevice *bus)
{
aspeed_spi_decoded_base_calculate(bus);
aspeed_spi_decoded_range_set(bus);
return 0;
}
/*
* Initialize SPI controller for each chip select.
* Here, only the minimum decode range is configured
* in order to get device (SPI NOR flash) information
* at the early stage.
*/
static int aspeed_spi_ctrl_init(struct udevice *bus)
{
int ret;
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
u32 cs;
u32 reg_val;
u32 decoded_sz;
/* Enable write capability for all CS. */
reg_val = readl(&priv->regs->conf);
if (priv->info == &ast2400_spi_info) {
writel(reg_val | BIT(0), &priv->regs->conf);
} else {
writel(reg_val | (GENMASK(plat->max_cs - 1, 0) << 16),
&priv->regs->conf);
}
memset(priv->flashes, 0x0,
sizeof(struct aspeed_spi_flash) * ASPEED_SPI_MAX_CS);
/* Initial user mode. */
for (cs = 0; cs < priv->num_cs; cs++) {
priv->flashes[cs].ce_ctrl_user =
(CTRL_STOP_ACTIVE | CTRL_IO_MODE_USER);
}
/*
* SPI1 on AST2400 only supports CS0.
* It is unnecessary to configure segment address register.
*/
if (priv->info == &ast2400_spi_info) {
priv->flashes[cs].ahb_base = plat->ahb_base;
priv->flashes[cs].ahb_decoded_sz = 0x10000000;
return 0;
}
/* Assign basic AHB decoded size for each CS. */
for (cs = 0; cs < plat->max_cs; cs++) {
reg_val = readl(&priv->regs->segment_addr[cs]);
decoded_sz = priv->info->segment_end(bus, reg_val) -
priv->info->segment_start(bus, reg_val);
if (decoded_sz < priv->info->min_decoded_sz)
decoded_sz = priv->info->min_decoded_sz;
priv->flashes[cs].ahb_decoded_sz = decoded_sz;
}
ret = aspeed_spi_decoded_range_config(bus);
return ret;
}
static const struct aspeed_spi_info ast2400_fmc_info = {
.io_mode_mask = 0x70000000,
.max_bus_width = 2,
.min_decoded_sz = 0x800000,
.set_4byte = ast2400_fmc_chip_set_4byte,
.segment_start = ast2400_spi_segment_start,
.segment_end = ast2400_spi_segment_end,
.segment_reg = ast2400_spi_segment_reg,
};
static const struct aspeed_spi_info ast2400_spi_info = {
.io_mode_mask = 0x70000000,
.max_bus_width = 2,
.min_decoded_sz = 0x800000,
.set_4byte = ast2400_spi_chip_set_4byte,
.segment_start = ast2400_spi_segment_start,
.segment_end = ast2400_spi_segment_end,
.segment_reg = ast2400_spi_segment_reg,
};
static const struct aspeed_spi_info ast2500_fmc_info = {
.io_mode_mask = 0x70000000,
.max_bus_width = 2,
.min_decoded_sz = 0x800000,
.set_4byte = ast2500_spi_chip_set_4byte,
.segment_start = ast2500_spi_segment_start,
.segment_end = ast2500_spi_segment_end,
.segment_reg = ast2500_spi_segment_reg,
};
/*
* There are some different between FMC and SPI controllers.
* For example, DMA operation, but this isn't implemented currently.
*/
static const struct aspeed_spi_info ast2500_spi_info = {
.io_mode_mask = 0x70000000,
.max_bus_width = 2,
.min_decoded_sz = 0x800000,
.set_4byte = ast2500_spi_chip_set_4byte,
.segment_start = ast2500_spi_segment_start,
.segment_end = ast2500_spi_segment_end,
.segment_reg = ast2500_spi_segment_reg,
};
static const struct aspeed_spi_info ast2600_fmc_info = {
.io_mode_mask = 0xf0000000,
.max_bus_width = 4,
.min_decoded_sz = 0x200000,
.set_4byte = ast2600_spi_chip_set_4byte,
.segment_start = ast2600_spi_segment_start,
.segment_end = ast2600_spi_segment_end,
.segment_reg = ast2600_spi_segment_reg,
};
static const struct aspeed_spi_info ast2600_spi_info = {
.io_mode_mask = 0xf0000000,
.max_bus_width = 4,
.min_decoded_sz = 0x200000,
.set_4byte = ast2600_spi_chip_set_4byte,
.segment_start = ast2600_spi_segment_start,
.segment_end = ast2600_spi_segment_end,
.segment_reg = ast2600_spi_segment_reg,
};
static int aspeed_spi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
dev_dbg(bus, "%s: claim bus CS%u\n", bus->name, slave_plat->cs);
return 0;
}
static int aspeed_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
dev_dbg(bus, "%s: release bus CS%u\n", bus->name, slave_plat->cs);
if (!aspeed_spi_get_flash(dev))
return -ENODEV;
return 0;
}
static int aspeed_spi_set_mode(struct udevice *bus, uint mode)
{
dev_dbg(bus, "%s: setting mode to %x\n", bus->name, mode);
return 0;
}
static int aspeed_spi_set_speed(struct udevice *bus, uint hz)
{
dev_dbg(bus, "%s: setting speed to %u\n", bus->name, hz);
/*
* ASPEED SPI controller supports multiple CS with different
* clock frequency. We cannot distinguish which CS here.
* Thus, the related implementation is postponed to claim_bus.
*/
return 0;
}
static int apseed_spi_of_to_plat(struct udevice *bus)
{
struct aspeed_spi_plat *plat = dev_get_plat(bus);
struct aspeed_spi_priv *priv = dev_get_priv(bus);
priv->regs = (void __iomem *)devfdt_get_addr_index(bus, 0);
if ((u32)priv->regs == FDT_ADDR_T_NONE) {
dev_err(bus, "wrong ctrl base\n");
return -ENODEV;
}
plat->ahb_base =
(void __iomem *)devfdt_get_addr_size_index(bus, 1, &plat->ahb_sz);
if ((u32)plat->ahb_base == FDT_ADDR_T_NONE) {
dev_err(bus, "wrong AHB base\n");
return -ENODEV;
}
plat->max_cs = dev_read_u32_default(bus, "num-cs", ASPEED_SPI_MAX_CS);
if (plat->max_cs > ASPEED_SPI_MAX_CS)
return -EINVAL;
dev_dbg(bus, "ctrl_base = 0x%x, ahb_base = 0x%p, size = 0x%lx\n",
(u32)priv->regs, plat->ahb_base, plat->ahb_sz);
dev_dbg(bus, "max_cs = %d\n", plat->max_cs);
return 0;
}
static int aspeed_spi_probe(struct udevice *bus)
{
int ret;
struct aspeed_spi_priv *priv = dev_get_priv(bus);
struct udevice *dev;
priv->info = (struct aspeed_spi_info *)dev_get_driver_data(bus);
priv->num_cs = 0;
for (device_find_first_child(bus, &dev); dev;
device_find_next_child(&dev)) {
priv->num_cs++;
}
if (priv->num_cs > ASPEED_SPI_MAX_CS)
return -EINVAL;
ret = aspeed_spi_ctrl_init(bus);
return ret;
}
static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
.supports_op = aspeed_spi_supports_op,
.exec_op = aspeed_spi_exec_op_user_mode,
.dirmap_create = aspeed_spi_dirmap_create,
.dirmap_read = aspeed_spi_dirmap_read,
};
static const struct dm_spi_ops aspeed_spi_ops = {
.claim_bus = aspeed_spi_claim_bus,
.release_bus = aspeed_spi_release_bus,
.set_speed = aspeed_spi_set_speed,
.set_mode = aspeed_spi_set_mode,
.mem_ops = &aspeed_spi_mem_ops,
};
static const struct udevice_id aspeed_spi_ids[] = {
{ .compatible = "aspeed,ast2400-fmc", .data = (ulong)&ast2400_fmc_info, },
{ .compatible = "aspeed,ast2400-spi", .data = (ulong)&ast2400_spi_info, },
{ .compatible = "aspeed,ast2500-fmc", .data = (ulong)&ast2500_fmc_info, },
{ .compatible = "aspeed,ast2500-spi", .data = (ulong)&ast2500_spi_info, },
{ .compatible = "aspeed,ast2600-fmc", .data = (ulong)&ast2600_fmc_info, },
{ .compatible = "aspeed,ast2600-spi", .data = (ulong)&ast2600_spi_info, },
{ }
};
U_BOOT_DRIVER(aspeed_spi) = {
.name = "aspeed_spi_smc",
.id = UCLASS_SPI,
.of_match = aspeed_spi_ids,
.ops = &aspeed_spi_ops,
.of_to_plat = apseed_spi_of_to_plat,
.plat_auto = sizeof(struct aspeed_spi_plat),
.priv_auto = sizeof(struct aspeed_spi_priv),
.probe = aspeed_spi_probe,
};