u-boot/drivers/spi/adi_spi3.c
Nathan Barrett-Morrison 7535a9280b spi: Add support for ADI SC5XX-family processor SPI peripherals
This adds support for the ADI-specific SPI driver present in the ADI
SC5xx line of SoCs. This IP block is distinct from the QSPI/OSPI block
that uses the Cadence driver. Both may be used at once with appropriate
pin muxing configuration.

Co-developed-by: Greg Malysa <malysagreg@gmail.com>
Signed-off-by: Greg Malysa <malysagreg@gmail.com>
Co-developed-by: Angelo Dureghello <angelo.dureghello@timesys.com>
Signed-off-by: Angelo Dureghello <angelo.dureghello@timesys.com>
Co-developed-by: Ian Roberts <ian.roberts@timesys.com>
Signed-off-by: Ian Roberts <ian.roberts@timesys.com>
Co-developed-by: Piotr Wojtaszczyk <piotr.wojtaszczyk@timesys.com>
Signed-off-by: Piotr Wojtaszczyk <piotr.wojtaszczyk@timesys.com>
Signed-off-by: Vasileios Bimpikas <vasileios.bimpikas@analog.com>
Signed-off-by: Utsav Agarwal <utsav.agarwal@analog.com>
Signed-off-by: Arturs Artamonovs <arturs.artamonovs@analog.com>
Signed-off-by: Oliver Gaskell <Oliver.Gaskell@analog.com>
Signed-off-by: Nathan Barrett-Morrison <nathan.morrison@timesys.com>
2025-03-12 10:24:58 -06:00

679 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* (C) Copyright 2022 - Analog Devices, Inc.
*
* Written and/or maintained by Timesys Corporation
*
* Converted to driver model by Nathan Barrett-Morrison
*
* Contact: Nathan Barrett-Morrison <nathan.morrison@timesys.com>
* Contact: Greg Malysa <greg.malysa@timesys.com>
* Contact: Ian Roberts <ian.roberts@timesys.com>
* Contact: Piotr Wojtaszczyk <piotr.wojtaszczyk@timesys.com>
*
*/
#include <clk.h>
#include <dm.h>
#include <mapmem.h>
#include <spi.h>
#include <spi-mem.h>
#include <dm/device_compat.h>
#include <linux/io.h>
#define SPI_IDLE_VAL 0xff
#define MAX_CTRL_CS 7
/* SPI_CONTROL */
#define SPI_CTL_EN 0x00000001 /* Enable */
#define SPI_CTL_MSTR 0x00000002 /* Master/Slave */
#define SPI_CTL_PSSE 0x00000004 /* controls modf error in master mode */
#define SPI_CTL_ODM 0x00000008 /* Open Drain Mode */
#define SPI_CTL_CPHA 0x00000010 /* Clock Phase */
#define SPI_CTL_CPOL 0x00000020 /* Clock Polarity */
#define SPI_CTL_ASSEL 0x00000040 /* Slave Select Pin Control */
#define SPI_CTL_SELST 0x00000080 /* Slave Select Polarity in transfers */
#define SPI_CTL_EMISO 0x00000100 /*Enable MISO */
#define SPI_CTL_SIZE 0x00000600 /*Word Transfer Size */
#define SPI_CTL_SIZE08 0x00000000 /*SIZE: 8 bits */
#define SPI_CTL_SIZE16 0x00000200 /*SIZE: 16 bits */
#define SPI_CTL_SIZE32 0x00000400 /*SIZE: 32 bits */
#define SPI_CTL_LSBF 0x00001000 /*LSB First */
#define SPI_CTL_FCEN 0x00002000 /*Flow-Control Enable */
#define SPI_CTL_FCCH 0x00004000 /*Flow-Control Channel Selection */
#define SPI_CTL_FCPL 0x00008000 /*Flow-Control Polarity */
#define SPI_CTL_FCWM 0x00030000 /*Flow-Control Water-Mark */
#define SPI_CTL_FIFO0 0x00000000 /*FCWM: Tx empty or Rx Full */
#define SPI_CTL_FIFO1 0x00010000 /*FCWM: Tx empty or Rx full (>=75%) */
#define SPI_CTL_FIFO2 0x00020000 /*FCWM: Tx empty or Rx full (>=50%) */
#define SPI_CTL_FMODE 0x00040000 /*Fast-mode Enable */
#define SPI_CTL_MIOM 0x00300000 /*Multiple I/O Mode */
#define SPI_CTL_MIO_DIS 0x00000000 /*MIOM: Disable */
#define SPI_CTL_MIO_DUAL 0x00100000 /*MIOM: Enable DIOM (Dual I/O Mode) */
#define SPI_CTL_MIO_QUAD 0x00200000 /*MIOM: Enable QUAD (Quad SPI Mode) */
#define SPI_CTL_SOSI 0x00400000 /*Start on MOSI */
#define SPI_CTL_MMWEM 0x40000000 /*Start on MMWEM */
#define SPI_CTL_MMSE 0x80000000 /*Start on MMSE */
/* SPI_RX_CONTROL */
#define SPI_RXCTL_REN 0x00000001 /*Receive Channel Enable */
#define SPI_RXCTL_RTI 0x00000004 /*Receive Transfer Initiate */
#define SPI_RXCTL_RWCEN 0x00000008 /*Receive Word Counter Enable */
#define SPI_RXCTL_RDR 0x00000070 /*Receive Data Request */
#define SPI_RXCTL_RDR_DIS 0x00000000 /*RDR: Disabled */
#define SPI_RXCTL_RDR_NE 0x00000010 /*RDR: RFIFO not empty */
#define SPI_RXCTL_RDR_25 0x00000020 /*RDR: RFIFO 25% full */
#define SPI_RXCTL_RDR_50 0x00000030 /*RDR: RFIFO 50% full */
#define SPI_RXCTL_RDR_75 0x00000040 /*RDR: RFIFO 75% full */
#define SPI_RXCTL_RDR_FULL 0x00000050 /*RDR: RFIFO full */
#define SPI_RXCTL_RDO 0x00000100 /*Receive Data Over-Run */
#define SPI_RXCTL_RRWM 0x00003000 /*FIFO Regular Water-Mark */
#define SPI_RXCTL_RWM_0 0x00000000 /*RRWM: RFIFO Empty */
#define SPI_RXCTL_RWM_25 0x00001000 /*RRWM: RFIFO 25% full */
#define SPI_RXCTL_RWM_50 0x00002000 /*RRWM: RFIFO 50% full */
#define SPI_RXCTL_RWM_75 0x00003000 /*RRWM: RFIFO 75% full */
#define SPI_RXCTL_RUWM 0x00070000 /*FIFO Urgent Water-Mark */
#define SPI_RXCTL_UWM_DIS 0x00000000 /*RUWM: Disabled */
#define SPI_RXCTL_UWM_25 0x00010000 /*RUWM: RFIFO 25% full */
#define SPI_RXCTL_UWM_50 0x00020000 /*RUWM: RFIFO 50% full */
#define SPI_RXCTL_UWM_75 0x00030000 /*RUWM: RFIFO 75% full */
#define SPI_RXCTL_UWM_FULL 0x00040000 /*RUWM: RFIFO full */
/* SPI_TX_CONTROL */
#define SPI_TXCTL_TEN 0x00000001 /*Transmit Channel Enable */
#define SPI_TXCTL_TTI 0x00000004 /*Transmit Transfer Initiate */
#define SPI_TXCTL_TWCEN 0x00000008 /*Transmit Word Counter Enable */
#define SPI_TXCTL_TDR 0x00000070 /*Transmit Data Request */
#define SPI_TXCTL_TDR_DIS 0x00000000 /*TDR: Disabled */
#define SPI_TXCTL_TDR_NF 0x00000010 /*TDR: TFIFO not full */
#define SPI_TXCTL_TDR_25 0x00000020 /*TDR: TFIFO 25% empty */
#define SPI_TXCTL_TDR_50 0x00000030 /*TDR: TFIFO 50% empty */
#define SPI_TXCTL_TDR_75 0x00000040 /*TDR: TFIFO 75% empty */
#define SPI_TXCTL_TDR_EMPTY 0x00000050 /*TDR: TFIFO empty */
#define SPI_TXCTL_TDU 0x00000100 /*Transmit Data Under-Run */
#define SPI_TXCTL_TRWM 0x00003000 /*FIFO Regular Water-Mark */
#define SPI_TXCTL_RWM_FULL 0x00000000 /*TRWM: TFIFO full */
#define SPI_TXCTL_RWM_25 0x00001000 /*TRWM: TFIFO 25% empty */
#define SPI_TXCTL_RWM_50 0x00002000 /*TRWM: TFIFO 50% empty */
#define SPI_TXCTL_RWM_75 0x00003000 /*TRWM: TFIFO 75% empty */
#define SPI_TXCTL_TUWM 0x00070000 /*FIFO Urgent Water-Mark */
#define SPI_TXCTL_UWM_DIS 0x00000000 /*TUWM: Disabled */
#define SPI_TXCTL_UWM_25 0x00010000 /*TUWM: TFIFO 25% empty */
#define SPI_TXCTL_UWM_50 0x00020000 /*TUWM: TFIFO 50% empty */
#define SPI_TXCTL_UWM_75 0x00030000 /*TUWM: TFIFO 75% empty */
#define SPI_TXCTL_UWM_EMPTY 0x00040000 /*TUWM: TFIFO empty */
/* SPI_CLOCK */
#define SPI_CLK_BAUD 0x0000FFFF /*Baud Rate */
/* SPI_DELAY */
#define SPI_DLY_STOP 0x000000FF /*Transfer delay time */
#define SPI_DLY_LEADX 0x00000100 /*Extended (1 SCK) LEAD Control */
#define SPI_DLY_LAGX 0x00000200 /*Extended (1 SCK) LAG control */
/* SPI_SSEL */
#define SPI_SLVSEL_SSE1 0x00000002 /*SPISSEL1 Enable */
#define SPI_SLVSEL_SSE2 0x00000004 /*SPISSEL2 Enable */
#define SPI_SLVSEL_SSE3 0x00000008 /*SPISSEL3 Enable */
#define SPI_SLVSEL_SSE4 0x00000010 /*SPISSEL4 Enable */
#define SPI_SLVSEL_SSE5 0x00000020 /*SPISSEL5 Enable */
#define SPI_SLVSEL_SSE6 0x00000040 /*SPISSEL6 Enable */
#define SPI_SLVSEL_SSE7 0x00000080 /*SPISSEL7 Enable */
#define SPI_SLVSEL_SSEL1 0x00000200 /*SPISSEL1 Value */
#define SPI_SLVSEL_SSEL2 0x00000400 /*SPISSEL2 Value */
#define SPI_SLVSEL_SSEL3 0x00000800 /*SPISSEL3 Value */
#define SPI_SLVSEL_SSEL4 0x00001000 /*SPISSEL4 Value */
#define SPI_SLVSEL_SSEL5 0x00002000 /*SPISSEL5 Value */
#define SPI_SLVSEL_SSEL6 0x00004000 /*SPISSEL6 Value */
#define SPI_SLVSEL_SSEL7 0x00008000 /*SPISSEL7 Value */
/* SPI_RWC */
#define SPI_RWC_VALUE 0x0000FFFF /*Received Word-Count */
/* SPI_RWCR */
#define SPI_RWCR_VALUE 0x0000FFFF /*Received Word-Count Reload */
/* SPI_TWC */
#define SPI_TWC_VALUE 0x0000FFFF /*Transmitted Word-Count */
/* SPI_TWCR */
#define SPI_TWCR_VALUE 0x0000FFFF /*Transmitted Word-Count Reload */
/* SPI_IMASK */
#define SPI_IMSK_RUWM 0x00000002 /*Receive Water-Mark Interrupt Mask */
#define SPI_IMSK_TUWM 0x00000004 /*Transmit Water-Mark Interrupt Mask */
#define SPI_IMSK_ROM 0x00000010 /*Receive Over-Run Interrupt Mask */
#define SPI_IMSK_TUM 0x00000020 /*Transmit Under-Run Interrupt Mask */
#define SPI_IMSK_TCM 0x00000040 /*Transmit Collision Interrupt Mask */
#define SPI_IMSK_MFM 0x00000080 /*Mode Fault Interrupt Mask */
#define SPI_IMSK_RSM 0x00000100 /*Receive Start Interrupt Mask */
#define SPI_IMSK_TSM 0x00000200 /*Transmit Start Interrupt Mask */
#define SPI_IMSK_RFM 0x00000400 /*Receive Finish Interrupt Mask */
#define SPI_IMSK_TFM 0x00000800 /*Transmit Finish Interrupt Mask */
/* SPI_IMASKCL */
#define SPI_IMSK_CLR_RUW 0x00000002 /*Receive Water-Mark Interrupt Mask */
#define SPI_IMSK_CLR_TUWM 0x00000004 /*Transmit Water-Mark Interrupt Mask */
#define SPI_IMSK_CLR_ROM 0x00000010 /*Receive Over-Run Interrupt Mask */
#define SPI_IMSK_CLR_TUM 0x00000020 /*Transmit Under-Run Interrupt Mask */
#define SPI_IMSK_CLR_TCM 0x00000040 /*Transmit Collision Interrupt Mask */
#define SPI_IMSK_CLR_MFM 0x00000080 /*Mode Fault Interrupt Mask */
#define SPI_IMSK_CLR_RSM 0x00000100 /*Receive Start Interrupt Mask */
#define SPI_IMSK_CLR_TSM 0x00000200 /*Transmit Start Interrupt Mask */
#define SPI_IMSK_CLR_RFM 0x00000400 /*Receive Finish Interrupt Mask */
#define SPI_IMSK_CLR_TFM 0x00000800 /*Transmit Finish Interrupt Mask */
/* SPI_IMASKST */
#define SPI_IMSK_SET_RUWM 0x00000002 /*Receive Water-Mark Interrupt Mask */
#define SPI_IMSK_SET_TUWM 0x00000004 /*Transmit Water-Mark Interrupt Mask */
#define SPI_IMSK_SET_ROM 0x00000010 /*Receive Over-Run Interrupt Mask */
#define SPI_IMSK_SET_TUM 0x00000020 /*Transmit Under-Run Interrupt Mask */
#define SPI_IMSK_SET_TCM 0x00000040 /*Transmit Collision Interrupt Mask */
#define SPI_IMSK_SET_MFM 0x00000080 /*Mode Fault Interrupt Mask */
#define SPI_IMSK_SET_RSM 0x00000100 /*Receive Start Interrupt Mask */
#define SPI_IMSK_SET_TSM 0x00000200 /*Transmit Start Interrupt Mask */
#define SPI_IMSK_SET_RFM 0x00000400 /*Receive Finish Interrupt Mask */
#define SPI_IMSK_SET_TFM 0x00000800 /*Transmit Finish Interrupt Mask */
/* SPI_STATUS */
#define SPI_STAT_SPIF 0x00000001 /*SPI Finished */
#define SPI_STAT_RUWM 0x00000002 /*Receive Water-Mark Breached */
#define SPI_STAT_TUWM 0x00000004 /*Transmit Water-Mark Breached */
#define SPI_STAT_ROE 0x00000010 /*Receive Over-Run Indication */
#define SPI_STAT_TUE 0x00000020 /*Transmit Under-Run Indication */
#define SPI_STAT_TCE 0x00000040 /*Transmit Collision Indication */
#define SPI_STAT_MODF 0x00000080 /*Mode Fault Indication */
#define SPI_STAT_RS 0x00000100 /*Receive Start Indication */
#define SPI_STAT_TS 0x00000200 /*Transmit Start Indication */
#define SPI_STAT_RF 0x00000400 /*Receive Finish Indication */
#define SPI_STAT_TF 0x00000800 /*Transmit Finish Indication */
#define SPI_STAT_RFS 0x00007000 /*SPI_RFIFO status */
#define SPI_STAT_RFIFO_EMPTY 0x00000000 /*RFS: RFIFO Empty */
#define SPI_STAT_RFIFO_25 0x00001000 /*RFS: RFIFO 25% Full */
#define SPI_STAT_RFIFO_50 0x00002000 /*RFS: RFIFO 50% Full */
#define SPI_STAT_RFIFO_75 0x00003000 /*RFS: RFIFO 75% Full */
#define SPI_STAT_RFIFO_FULL 0x00004000 /*RFS: RFIFO Full */
#define SPI_STAT_TFS 0x00070000 /*SPI_TFIFO status */
#define SPI_STAT_TFIFO_FULL 0x00000000 /*TFS: TFIFO full */
#define SPI_STAT_TFIFO_25 0x00010000 /*TFS: TFIFO 25% empty */
#define SPI_STAT_TFIFO_50 0x00020000 /*TFS: TFIFO 50% empty */
#define SPI_STAT_TFIFO_75 0x00030000 /*TFS: TFIFO 75% empty */
#define SPI_STAT_TFIFO_EMPTY 0x00040000 /*TFS: TFIFO empty */
#define SPI_STAT_FCS 0x00100000 /*Flow-Control Stall Indication */
#define SPI_STAT_RFE 0x00400000 /*SPI_RFIFO Empty */
#define SPI_STAT_TFF 0x00800000 /*SPI_TFIFO Full */
/* SPI_ILAT */
#define SPI_ILAT_RUWMI 0x00000002 /*Receive Water Mark Interrupt */
#define SPI_ILAT_TUWMI 0x00000004 /*Transmit Water Mark Interrupt */
#define SPI_ILAT_ROI 0x00000010 /*Receive Over-Run Indication */
#define SPI_ILAT_TUI 0x00000020 /*Transmit Under-Run Indication */
#define SPI_ILAT_TCI 0x00000040 /*Transmit Collision Indication */
#define SPI_ILAT_MFI 0x00000080 /*Mode Fault Indication */
#define SPI_ILAT_RSI 0x00000100 /*Receive Start Indication */
#define SPI_ILAT_TSI 0x00000200 /*Transmit Start Indication */
#define SPI_ILAT_RFI 0x00000400 /*Receive Finish Indication */
#define SPI_ILAT_TFI 0x00000800 /*Transmit Finish Indication */
/* SPI_ILATCL */
#define SPI_ILAT_CLR_RUWMI 0x00000002 /*Receive Water Mark Interrupt */
#define SPI_ILAT_CLR_TUWMI 0x00000004 /*Transmit Water Mark Interrupt */
#define SPI_ILAT_CLR_ROI 0x00000010 /*Receive Over-Run Indication */
#define SPI_ILAT_CLR_TUI 0x00000020 /*Transmit Under-Run Indication */
#define SPI_ILAT_CLR_TCI 0x00000040 /*Transmit Collision Indication */
#define SPI_ILAT_CLR_MFI 0x00000080 /*Mode Fault Indication */
#define SPI_ILAT_CLR_RSI 0x00000100 /*Receive Start Indication */
#define SPI_ILAT_CLR_TSI 0x00000200 /*Transmit Start Indication */
#define SPI_ILAT_CLR_RFI 0x00000400 /*Receive Finish Indication */
#define SPI_ILAT_CLR_TFI 0x00000800 /*Transmit Finish Indication */
/* SPI_MMRDH */
#define SPI_MMRDH_MERGE 0x04000000 /*Merge Enable */
#define SPI_MMRDH_DMY_SZ 0x00007000 /*Bytes of Dummy */
#define SPI_MMRDH_ADDR_PINS 0x00000800 /*Pins used for Address */
#define SPI_MMRDH_ADDR_SZ 0x00000700 /*Bytes of Read Address */
#define SPI_MMRDH_OPCODE 0x000000FF /*Read Opcode */
#define SPI_MMRDH_TRIDMY_OFF 24 /*Bytes of Dummy offset */
#define SPI_MMRDH_DMY_SZ_OFF 12 /*Bytes of Dummy offset */
#define SPI_MMRDH_ADDR_SZ_OFF 8 /*Bytes of Read Address offset */
#define BIT_SSEL_VAL(x) ((1 << 8) << (x)) /* Slave Select input value bit */
#define BIT_SSEL_EN(x) (1 << (x)) /* Slave Select enable bit*/
struct adi_spi_regs {
u32 revid;
u32 control;
u32 rx_control;
u32 tx_control;
u32 clock;
u32 delay;
u32 ssel;
u32 rwc;
u32 rwcr;
u32 twc;
u32 twcr;
u32 reserved0;
u32 emask;
u32 emaskcl;
u32 emaskst;
u32 reserved1;
u32 status;
u32 elat;
u32 elatcl;
u32 reserved2;
u32 rfifo;
u32 reserved3;
u32 tfifo;
u32 reserved4;
u32 mmrdh;
u32 mmtop;
};
struct adi_spi_platdata {
u32 max_hz;
u32 bus_num;
struct adi_spi_regs __iomem *regs;
};
struct adi_spi_priv {
u32 control;
u32 clock;
u32 bus_num;
u32 max_cs;
struct adi_spi_regs __iomem *regs;
};
/**
* By convention, this driver uses the same CS numbering that is used with the SSEL bit
* definitions (both here and in the TRM on which this is based), which are 1-indexed not
* 0-indexed. The valid CS range is therefore [1,max_cs], in contrast with other drivers
* where it is [0,max_cs-1].
*/
static int adi_spi_cs_info(struct udevice *bus, uint cs,
struct spi_cs_info *info)
{
struct adi_spi_priv *priv = dev_get_priv(bus);
if (cs == 0 || cs > priv->max_cs) {
dev_err(bus, "invalid chipselect %u\n", cs);
return -EINVAL;
}
return 0;
}
static int adi_spi_of_to_plat(struct udevice *bus)
{
struct adi_spi_platdata *plat = dev_get_plat(bus);
fdt_addr_t addr;
plat->max_hz = dev_read_u32_default(bus, "spi-max-frequency", 500000);
plat->bus_num = dev_read_u32_default(bus, "bus-num", 0);
addr = dev_read_addr(bus);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->regs = map_sysmem(addr, sizeof(*plat->regs));
return 0;
}
static int adi_spi_probe(struct udevice *bus)
{
struct adi_spi_platdata *plat = dev_get_plat(bus);
struct adi_spi_priv *priv = dev_get_priv(bus);
priv->bus_num = plat->bus_num;
priv->regs = plat->regs;
priv->max_cs = dev_read_u32_default(bus, "num-cs", MAX_CTRL_CS);
iowrite32(0x0, &plat->regs->control);
iowrite32(0x0, &plat->regs->rx_control);
iowrite32(0x0, &plat->regs->tx_control);
return 0;
}
static int adi_spi_remove(struct udevice *dev)
{
return -ENODEV;
}
static int adi_spi_claim_bus(struct udevice *dev)
{
struct adi_spi_priv *priv;
struct udevice *bus = dev->parent;
priv = dev_get_priv(bus);
debug("%s: control:%i clock:%i\n",
__func__, priv->control, priv->clock);
iowrite32(priv->control, &priv->regs->control);
iowrite32(priv->clock, &priv->regs->clock);
iowrite32(0x0, &priv->regs->delay);
return 0;
}
static int adi_spi_release_bus(struct udevice *dev)
{
struct adi_spi_priv *priv;
struct udevice *bus = dev->parent;
priv = dev_get_priv(bus);
debug("%s: control:%i clock:%i\n",
__func__, priv->control, priv->clock);
iowrite32(0x0, &priv->regs->rx_control);
iowrite32(0x0, &priv->regs->tx_control);
iowrite32(0x0, &priv->regs->control);
return 0;
}
void adi_spi_enable_ssel(struct adi_spi_priv *priv, int cs)
{
setbits_32(&priv->regs->ssel, BIT_SSEL_EN(cs));
}
void adi_spi_set_ssel(struct adi_spi_priv *priv, int cs, int high)
{
if (high)
setbits_32(&priv->regs->ssel, BIT_SSEL_VAL(cs));
else
clrbits_32(&priv->regs->ssel, BIT_SSEL_VAL(cs));
}
void adi_spi_cs_activate(struct adi_spi_priv *priv, struct dm_spi_slave_plat *slave_plat)
{
bool high = slave_plat->mode & SPI_CS_HIGH;
adi_spi_set_ssel(priv, slave_plat->cs[0], high);
adi_spi_enable_ssel(priv, slave_plat->cs[0]);
}
void adi_spi_cs_deactivate(struct adi_spi_priv *priv, struct dm_spi_slave_plat *slave_plat)
{
bool high = slave_plat->mode & SPI_CS_HIGH;
/* invert CS for matching SSEL to deactivate */
adi_spi_set_ssel(priv, slave_plat->cs[0], !high);
}
static void discard_rx_fifo_contents(struct adi_spi_regs *regs)
{
while (!(ioread32(&regs->status) & SPI_STAT_RFE))
ioread32(&regs->rfifo);
}
static int adi_spi_fifo_mio_xfer(struct adi_spi_priv *priv, const u8 *tx, u8 *rx,
uint bytes, uint32_t mio_mode)
{
u8 value;
/* switch current SPI transfer to mio SPI mode */
clrsetbits_32(&priv->regs->control, SPI_CTL_SOSI, mio_mode);
/*
* Data can only be transferred in one direction in multi-io SPI
* modes, trigger the transfer in respective direction.
*/
if (rx) {
iowrite32(0x0, &priv->regs->tx_control);
iowrite32(SPI_RXCTL_REN | SPI_RXCTL_RTI, &priv->regs->rx_control);
while (bytes--) {
while (ioread32(&priv->regs->status) &
SPI_STAT_RFE)
if (ctrlc())
return -1;
value = ioread32(&priv->regs->rfifo);
*rx++ = value;
}
} else if (tx) {
iowrite32(0x0, &priv->regs->rx_control);
iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &priv->regs->tx_control);
while (bytes--) {
value = *tx++;
iowrite32(value, &priv->regs->tfifo);
while (ioread32(&priv->regs->status) &
SPI_STAT_TFF)
if (ctrlc())
return -1;
}
/* Wait till the tfifo is empty */
while ((ioread32(&priv->regs->status) & SPI_STAT_TFS) != SPI_STAT_TFIFO_EMPTY)
if (ctrlc())
return -1;
} else {
return -1;
}
return 0;
}
static int adi_spi_fifo_1x_xfer(struct adi_spi_priv *priv, const u8 *tx, u8 *rx,
uint bytes)
{
u8 value;
/*
* Set current SPI transfer in normal mode and trigger
* the bi-direction transfer by tx write operation.
*/
iowrite32(priv->control, &priv->regs->control);
iowrite32(SPI_RXCTL_REN, &priv->regs->rx_control);
iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &priv->regs->tx_control);
while (bytes--) {
value = (tx ? *tx++ : SPI_IDLE_VAL);
debug("%s: tx:%x ", __func__, value);
iowrite32(value, &priv->regs->tfifo);
while (ioread32(&priv->regs->status) & SPI_STAT_RFE)
if (ctrlc())
return -1;
value = ioread32(&priv->regs->rfifo);
if (rx)
*rx++ = value;
debug("rx:%x\n", value);
}
return 0;
}
static int adi_spi_fifo_xfer(struct adi_spi_priv *priv, int buswidth,
const u8 *tx, u8 *rx, uint bytes)
{
switch (buswidth) {
case 1:
return adi_spi_fifo_1x_xfer(priv, tx, rx, bytes);
case 2:
return adi_spi_fifo_mio_xfer(priv, tx, rx, bytes, SPI_CTL_MIO_DUAL);
case 4:
return adi_spi_fifo_mio_xfer(priv, tx, rx, bytes, SPI_CTL_MIO_QUAD);
default:
return -ENOTSUPP;
}
}
static int adi_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct adi_spi_priv *priv = dev_get_priv(bus);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
const u8 *tx = dout;
u8 *rx = din;
uint bytes = bitlen / 8;
int ret = 0;
debug("%s: bus_num:%i cs:%i bitlen:%i bytes:%i flags:%lx\n", __func__,
priv->bus_num, slave_plat->cs[0], bitlen, bytes, flags);
if (flags & SPI_XFER_BEGIN)
adi_spi_cs_activate(priv, slave_plat);
if (bitlen == 0)
goto done;
/* we can only do 8 bit transfers */
if (bitlen % 8) {
flags |= SPI_XFER_END;
goto done;
}
/* Discard invalid rx data and empty rfifo */
discard_rx_fifo_contents(priv->regs);
ret = adi_spi_fifo_1x_xfer(priv, tx, rx, bytes);
done:
if (flags & SPI_XFER_END)
adi_spi_cs_deactivate(priv, slave_plat);
return ret;
}
static int adi_spi_set_speed(struct udevice *bus, uint speed)
{
struct adi_spi_platdata *plat = dev_get_plat(bus);
struct adi_spi_priv *priv = dev_get_priv(bus);
int ret;
u32 clock, spi_base_clk;
struct clk spi_clk;
ret = clk_get_by_name(bus, "spi", &spi_clk);
if (ret < 0) {
dev_err(bus, "Can't get SPI clk: %d\n", ret);
return ret;
}
spi_base_clk = clk_get_rate(&spi_clk);
if (speed > plat->max_hz)
speed = plat->max_hz;
if (speed > spi_base_clk)
return -ENODEV;
clock = spi_base_clk / speed;
if (clock)
clock--;
priv->clock = clock;
debug("%s: priv->clock: %x, speed: %x, get_spi_clk(): %x\n",
__func__, clock, speed, spi_base_clk);
return 0;
}
static int adi_spi_set_mode(struct udevice *bus, uint mode)
{
struct adi_spi_priv *priv = dev_get_priv(bus);
u32 reg;
reg = SPI_CTL_EN | SPI_CTL_MSTR;
if (mode & SPI_CPHA)
reg |= SPI_CTL_CPHA;
if (mode & SPI_CPOL)
reg |= SPI_CTL_CPOL;
if (mode & SPI_LSB_FIRST)
reg |= SPI_CTL_LSBF;
reg &= ~SPI_CTL_ASSEL;
priv->control = reg;
debug("%s: control=%d, cs_pol=%d\n", __func__, reg, mode & SPI_CS_HIGH ? 1 : 0);
return 0;
}
/**
* U-boot's version of spi-mem does not support mixed bus-width
* commands nor anything more than 1x mode.
* Using a custom exec_op implementation, we can support it.
*/
static int adi_spi_mem_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
int rv = 0;
struct udevice *bus = slave->dev->parent;
struct adi_spi_priv *priv = dev_get_priv(bus);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(slave->dev);
u8 tmpbuf[64];
int i;
if ((op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes) >
sizeof(tmpbuf))
return -ENOMEM;
for (i = 0; i < op->cmd.nbytes; i++)
tmpbuf[i] = op->cmd.opcode >>
(8 * (op->cmd.nbytes - i - 1));
for (i = 0; i < op->addr.nbytes; i++)
tmpbuf[i + op->cmd.nbytes] = op->addr.val >>
(8 * (op->addr.nbytes - i - 1));
memset(tmpbuf + op->addr.nbytes + op->cmd.nbytes, 0xff,
op->dummy.nbytes);
adi_spi_cs_activate(priv, slave_plat);
discard_rx_fifo_contents(priv->regs);
if (op->cmd.nbytes) {
rv = adi_spi_fifo_xfer(priv, op->cmd.buswidth,
tmpbuf, NULL, op->cmd.nbytes);
if (rv != 0)
goto cleanup;
}
if (op->addr.nbytes) {
rv = adi_spi_fifo_xfer(priv, op->addr.buswidth,
tmpbuf + op->cmd.nbytes, NULL,
op->addr.nbytes);
if (rv != 0)
goto cleanup;
}
if (op->dummy.nbytes) {
rv = adi_spi_fifo_xfer(priv, op->dummy.buswidth,
tmpbuf + op->cmd.nbytes +
op->addr.nbytes,
NULL, op->dummy.nbytes);
if (rv != 0)
goto cleanup;
}
if (op->data.dir == SPI_MEM_DATA_IN)
rv = adi_spi_fifo_xfer(priv, op->data.buswidth,
NULL, op->data.buf.in,
op->data.nbytes);
else if (op->data.dir == SPI_MEM_DATA_OUT)
rv = adi_spi_fifo_xfer(priv, op->data.buswidth,
op->data.buf.out, NULL,
op->data.nbytes);
cleanup:
adi_spi_cs_deactivate(priv, slave_plat);
return rv;
}
static const struct spi_controller_mem_ops adi_spi_mem_ops = {
.exec_op = adi_spi_mem_exec_op,
};
static const struct dm_spi_ops adi_spi_ops = {
.claim_bus = adi_spi_claim_bus,
.release_bus = adi_spi_release_bus,
.xfer = adi_spi_xfer,
.set_speed = adi_spi_set_speed,
.set_mode = adi_spi_set_mode,
.cs_info = adi_spi_cs_info,
.mem_ops = &adi_spi_mem_ops,
};
static const struct udevice_id adi_spi_ids[] = {
{ .compatible = "adi,spi3" },
{ }
};
U_BOOT_DRIVER(adi_spi3) = {
.name = "adi_spi3",
.id = UCLASS_SPI,
.of_match = adi_spi_ids,
.ops = &adi_spi_ops,
.of_to_plat = adi_spi_of_to_plat,
.probe = adi_spi_probe,
.remove = adi_spi_remove,
.plat_auto = sizeof(struct adi_spi_platdata),
.priv_auto = sizeof(struct adi_spi_priv),
.per_child_auto = sizeof(struct spi_slave),
};