mirror of
https://github.com/u-boot/u-boot.git
synced 2025-04-24 06:24:17 +00:00

Enable nand to use bounce buffer. In bounce buffer, read/write buf will use cadence->buf which has been allocated using malloc. This will align the memory and avoid memory to be allocated in different addresses. Signed-off-by: Dinesh Maniyam <dinesh.maniyam@intel.com>
2423 lines
63 KiB
C
2423 lines
63 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Cadence NAND flash controller driver
|
|
*
|
|
* Copyright (C) 2019 Cadence
|
|
*
|
|
* Author: Piotr Sroka <piotrs@cadence.com>
|
|
*
|
|
*/
|
|
|
|
#include <cadence-nand.h>
|
|
#include <clk.h>
|
|
#include <dm.h>
|
|
#include <hang.h>
|
|
#include <malloc.h>
|
|
#include <memalign.h>
|
|
#include <nand.h>
|
|
#include <reset.h>
|
|
#include <wait_bit.h>
|
|
#include <dm/device_compat.h>
|
|
#include <dm/devres.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/sizes.h>
|
|
|
|
static inline struct
|
|
cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct cdns_nand_chip, chip);
|
|
}
|
|
|
|
static inline struct
|
|
cadence_nand_info *to_cadence_nand_info(struct nand_hw_control *controller)
|
|
{
|
|
return container_of(controller, struct cadence_nand_info, controller);
|
|
}
|
|
|
|
static bool
|
|
cadence_nand_dma_buf_ok(struct cadence_nand_info *cadence, const void *buf,
|
|
u32 buf_len)
|
|
{
|
|
u8 data_dma_width = cadence->caps2.data_dma_width;
|
|
|
|
return buf &&
|
|
likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
|
|
likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
|
|
}
|
|
|
|
static int cadence_nand_wait_for_value(struct cadence_nand_info *cadence,
|
|
u32 reg_offset, u32 timeout_us,
|
|
u32 mask, bool is_clear)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
ret = readl_poll_sleep_timeout(cadence->reg + reg_offset,
|
|
val, !(val & mask) == is_clear,
|
|
10, timeout_us);
|
|
|
|
if (ret < 0) {
|
|
dev_err(cadence->dev,
|
|
"Timeout while waiting for reg %x with mask %x is clear %d\n",
|
|
reg_offset, mask, is_clear);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_set_ecc_enable(struct cadence_nand_info *cadence,
|
|
bool enable)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
|
|
TIMEOUT_US,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
|
|
|
|
if (enable)
|
|
reg |= ECC_CONFIG_0_ECC_EN;
|
|
else
|
|
reg &= ~ECC_CONFIG_0_ECC_EN;
|
|
|
|
writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cadence_nand_set_ecc_strength(struct cadence_nand_info *cadence,
|
|
u8 corr_str_idx)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence->curr_corr_str_idx == corr_str_idx)
|
|
return;
|
|
|
|
reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
|
|
reg &= ~ECC_CONFIG_0_CORR_STR;
|
|
reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
|
|
writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
|
|
|
|
cadence->curr_corr_str_idx = corr_str_idx;
|
|
}
|
|
|
|
static int cadence_nand_get_ecc_strength_idx(struct cadence_nand_info *cadence,
|
|
u8 strength)
|
|
{
|
|
int i, corr_str_idx = -1;
|
|
|
|
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
|
|
if (cadence->ecc_strengths[i] == strength) {
|
|
corr_str_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return corr_str_idx;
|
|
}
|
|
|
|
static int cadence_nand_set_skip_marker_val(struct cadence_nand_info *cadence,
|
|
u16 marker_value)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
|
|
TIMEOUT_US,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
|
|
reg &= ~SKIP_BYTES_MARKER_VALUE;
|
|
reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
|
|
marker_value);
|
|
|
|
writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_set_skip_bytes_conf(struct cadence_nand_info *cadence,
|
|
u8 num_of_bytes,
|
|
u32 offset_value,
|
|
int enable)
|
|
{
|
|
u32 reg, skip_bytes_offset;
|
|
|
|
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
|
|
TIMEOUT_US,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
if (!enable) {
|
|
num_of_bytes = 0;
|
|
offset_value = 0;
|
|
}
|
|
|
|
reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
|
|
reg &= ~SKIP_BYTES_NUM_OF_BYTES;
|
|
reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
|
|
num_of_bytes);
|
|
skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
|
|
offset_value);
|
|
|
|
writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
|
|
writel_relaxed(skip_bytes_offset, cadence->reg + SKIP_BYTES_OFFSET);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Functions enables/disables hardware detection of erased data */
|
|
static void cadence_nand_set_erase_detection(struct cadence_nand_info *cadence,
|
|
bool enable,
|
|
u8 bitflips_threshold)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
|
|
|
|
if (enable)
|
|
reg |= ECC_CONFIG_0_ERASE_DET_EN;
|
|
else
|
|
reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
|
|
|
|
writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
|
|
writel_relaxed(bitflips_threshold, cadence->reg + ECC_CONFIG_1);
|
|
}
|
|
|
|
static int cadence_nand_set_access_width16(struct cadence_nand_info *cadence,
|
|
bool bit_bus16)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
|
|
TIMEOUT_US,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
reg = readl_relaxed(cadence->reg + COMMON_SET);
|
|
if (!bit_bus16)
|
|
reg &= ~COMMON_SET_DEVICE_16BIT;
|
|
else
|
|
reg |= COMMON_SET_DEVICE_16BIT;
|
|
writel_relaxed(reg, cadence->reg + COMMON_SET);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cadence_nand_clear_interrupt(struct cadence_nand_info *cadence,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
writel_relaxed(irq_status->status, cadence->reg + INTR_STATUS);
|
|
writel_relaxed(irq_status->trd_status,
|
|
cadence->reg + TRD_COMP_INT_STATUS);
|
|
writel_relaxed(irq_status->trd_error,
|
|
cadence->reg + TRD_ERR_INT_STATUS);
|
|
}
|
|
|
|
static void
|
|
cadence_nand_read_int_status(struct cadence_nand_info *cadence,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
irq_status->status = readl_relaxed(cadence->reg + INTR_STATUS);
|
|
irq_status->trd_status = readl_relaxed(cadence->reg
|
|
+ TRD_COMP_INT_STATUS);
|
|
irq_status->trd_error = readl_relaxed(cadence->reg
|
|
+ TRD_ERR_INT_STATUS);
|
|
}
|
|
|
|
static u32 irq_detected(struct cadence_nand_info *cadence,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
cadence_nand_read_int_status(cadence, irq_status);
|
|
|
|
return irq_status->status || irq_status->trd_status ||
|
|
irq_status->trd_error;
|
|
}
|
|
|
|
static void cadence_nand_reset_irq(struct cadence_nand_info *cadence)
|
|
{
|
|
memset(&cadence->irq_status, 0, sizeof(cadence->irq_status));
|
|
memset(&cadence->irq_mask, 0, sizeof(cadence->irq_mask));
|
|
}
|
|
|
|
/*
|
|
* This is the interrupt service routine. It handles all interrupts
|
|
* sent to this device.
|
|
*/
|
|
static irqreturn_t cadence_nand_isr(struct cadence_nand_info *cadence)
|
|
{
|
|
struct cadence_nand_irq_status irq_status;
|
|
irqreturn_t result = IRQ_NONE;
|
|
|
|
if (irq_detected(cadence, &irq_status)) {
|
|
/* Handle interrupt. */
|
|
/* First acknowledge it. */
|
|
cadence_nand_clear_interrupt(cadence, &irq_status);
|
|
/* Status in the device context for someone to read. */
|
|
cadence->irq_status.status |= irq_status.status;
|
|
cadence->irq_status.trd_status |= irq_status.trd_status;
|
|
cadence->irq_status.trd_error |= irq_status.trd_error;
|
|
/* Tell the OS that we've handled this. */
|
|
result = IRQ_HANDLED;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void cadence_nand_set_irq_mask(struct cadence_nand_info *cadence,
|
|
struct cadence_nand_irq_status *irq_mask)
|
|
{
|
|
writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
|
|
cadence->reg + INTR_ENABLE);
|
|
|
|
writel_relaxed(irq_mask->trd_error,
|
|
cadence->reg + TRD_ERR_INT_STATUS_EN);
|
|
}
|
|
|
|
static void
|
|
cadence_nand_wait_for_irq(struct cadence_nand_info *cadence,
|
|
struct cadence_nand_irq_status *irq_mask,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
irqreturn_t result = IRQ_NONE;
|
|
u32 start = get_timer(0);
|
|
|
|
while (get_timer(start) < TIMEOUT_US) {
|
|
result = cadence_nand_isr(cadence);
|
|
|
|
if (result == IRQ_HANDLED) {
|
|
*irq_status = cadence->irq_status;
|
|
break;
|
|
}
|
|
udelay(1);
|
|
}
|
|
|
|
if (!result) {
|
|
/* Timeout error. */
|
|
dev_err(cadence->dev, "timeout occurred:\n");
|
|
dev_err(cadence->dev, "\tstatus = 0x%x, mask = 0x%x\n",
|
|
irq_status->status, irq_mask->status);
|
|
dev_err(cadence->dev,
|
|
"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
|
|
irq_status->trd_status, irq_mask->trd_status);
|
|
dev_err(cadence->dev,
|
|
"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
|
|
irq_status->trd_error, irq_mask->trd_error);
|
|
}
|
|
}
|
|
|
|
/* Execute generic command on NAND controller. */
|
|
static int cadence_nand_generic_cmd_send(struct cadence_nand_info *cadence,
|
|
u8 chip_nr,
|
|
u64 mini_ctrl_cmd)
|
|
{
|
|
u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
|
|
mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
|
|
mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
|
|
|
|
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
|
|
TIMEOUT_US,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
cadence_nand_reset_irq(cadence);
|
|
|
|
writel_relaxed(mini_ctrl_cmd_l, cadence->reg + CMD_REG2);
|
|
writel_relaxed(mini_ctrl_cmd_h, cadence->reg + CMD_REG3);
|
|
|
|
/* Select generic command. */
|
|
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
|
|
/* Thread number. */
|
|
reg |= FIELD_PREP(CMD_REG0_TN, 0);
|
|
|
|
/* Issue command. */
|
|
writel_relaxed(reg, cadence->reg + CMD_REG0);
|
|
cadence->buf_index = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Wait for data on slave DMA interface. */
|
|
static int cadence_nand_wait_on_sdma(struct cadence_nand_info *cadence, u8 *out_sdma_trd,
|
|
u32 *out_sdma_size)
|
|
{
|
|
struct cadence_nand_irq_status irq_mask, irq_status;
|
|
|
|
irq_mask.trd_status = 0;
|
|
irq_mask.trd_error = 0;
|
|
irq_mask.status = INTR_STATUS_SDMA_TRIGG
|
|
| INTR_STATUS_SDMA_ERR
|
|
| INTR_STATUS_UNSUPP_CMD;
|
|
|
|
cadence_nand_set_irq_mask(cadence, &irq_mask);
|
|
cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
|
|
if (irq_status.status == 0) {
|
|
dev_err(cadence->dev, "Timeout while waiting for SDMA\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
|
|
*out_sdma_size = readl_relaxed(cadence->reg + SDMA_SIZE);
|
|
*out_sdma_trd = readl_relaxed(cadence->reg + SDMA_TRD_NUM);
|
|
*out_sdma_trd =
|
|
FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
|
|
} else {
|
|
dev_err(cadence->dev, "SDMA error - irq_status %x\n",
|
|
irq_status.status);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cadence_nand_get_caps(struct cadence_nand_info *cadence)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(cadence->reg + CTRL_FEATURES);
|
|
|
|
cadence->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
|
|
|
|
if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
|
|
cadence->caps2.data_dma_width = 8;
|
|
else
|
|
cadence->caps2.data_dma_width = 4;
|
|
|
|
if (reg & CTRL_FEATURES_CONTROL_DATA)
|
|
cadence->caps2.data_control_supp = true;
|
|
|
|
if (reg & (CTRL_FEATURES_NVDDR_2_3
|
|
| CTRL_FEATURES_NVDDR))
|
|
cadence->caps2.is_phy_type_dll = true;
|
|
}
|
|
|
|
/* Prepare CDMA descriptor. */
|
|
static void
|
|
cadence_nand_cdma_desc_prepare(struct cadence_nand_info *cadence,
|
|
char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
|
|
dma_addr_t ctrl_data_ptr, u16 ctype)
|
|
{
|
|
struct cadence_nand_cdma_desc *cdma_desc = cadence->cdma_desc;
|
|
|
|
memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
|
|
|
|
/* Set fields for one descriptor. */
|
|
cdma_desc->flash_pointer = flash_ptr;
|
|
if (cadence->ctrl_rev >= 13)
|
|
cdma_desc->bank = nf_mem;
|
|
else
|
|
cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
|
|
|
|
cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
|
|
cdma_desc->command_flags |= CDMA_CF_INT;
|
|
|
|
cdma_desc->memory_pointer = mem_ptr;
|
|
cdma_desc->status = 0;
|
|
cdma_desc->sync_flag_pointer = 0;
|
|
cdma_desc->sync_arguments = 0;
|
|
|
|
cdma_desc->command_type = ctype;
|
|
cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
|
|
|
|
flush_cache((dma_addr_t)cadence->cdma_desc,
|
|
ROUND(sizeof(struct cadence_nand_cdma_desc),
|
|
ARCH_DMA_MINALIGN));
|
|
}
|
|
|
|
static u8 cadence_nand_check_desc_error(struct cadence_nand_info *cadence,
|
|
u32 desc_status)
|
|
{
|
|
if (desc_status & CDMA_CS_ERP)
|
|
return STAT_ERASED;
|
|
|
|
if (desc_status & CDMA_CS_UNCE)
|
|
return STAT_ECC_UNCORR;
|
|
|
|
if (desc_status & CDMA_CS_ERR) {
|
|
dev_err(cadence->dev, ":CDMA desc error flag detected.\n");
|
|
return STAT_FAIL;
|
|
}
|
|
|
|
if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
|
|
return STAT_ECC_CORR;
|
|
|
|
return STAT_FAIL;
|
|
}
|
|
|
|
static int cadence_nand_cdma_finish(struct cadence_nand_info *cadence)
|
|
{
|
|
struct cadence_nand_cdma_desc *desc_ptr = cadence->cdma_desc;
|
|
u8 status = STAT_BUSY;
|
|
|
|
invalidate_dcache_range((dma_addr_t)cadence->cdma_desc,
|
|
(dma_addr_t)cadence->cdma_desc +
|
|
ROUND(sizeof(struct cadence_nand_cdma_desc),
|
|
ARCH_DMA_MINALIGN));
|
|
|
|
if (desc_ptr->status & CDMA_CS_FAIL) {
|
|
status = cadence_nand_check_desc_error(cadence,
|
|
desc_ptr->status);
|
|
dev_err(cadence->dev, ":CDMA error %x\n", desc_ptr->status);
|
|
} else if (desc_ptr->status & CDMA_CS_COMP) {
|
|
/* Descriptor finished with no errors. */
|
|
if (desc_ptr->command_flags & CDMA_CF_CONT) {
|
|
dev_info(cadence->dev, "DMA unsupported flag is set");
|
|
status = STAT_UNKNOWN;
|
|
} else {
|
|
/* Last descriptor. */
|
|
status = STAT_OK;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int cadence_nand_cdma_send(struct cadence_nand_info *cadence,
|
|
u8 thread)
|
|
{
|
|
u32 reg;
|
|
int status;
|
|
|
|
/* Wait for thread ready. */
|
|
status = cadence_nand_wait_for_value(cadence, TRD_STATUS,
|
|
TIMEOUT_US,
|
|
BIT(thread), true);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_reset_irq(cadence);
|
|
|
|
writel_relaxed((u32)cadence->dma_cdma_desc,
|
|
cadence->reg + CMD_REG2);
|
|
writel_relaxed(0, cadence->reg + CMD_REG3);
|
|
|
|
/* Select CDMA mode. */
|
|
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
|
|
/* Thread number. */
|
|
reg |= FIELD_PREP(CMD_REG0_TN, thread);
|
|
/* Issue command. */
|
|
writel_relaxed(reg, cadence->reg + CMD_REG0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Send SDMA command and wait for finish. */
|
|
static u32
|
|
cadence_nand_cdma_send_and_wait(struct cadence_nand_info *cadence,
|
|
u8 thread)
|
|
{
|
|
struct cadence_nand_irq_status irq_mask, irq_status = {0};
|
|
int status;
|
|
u32 val;
|
|
|
|
irq_mask.trd_status = BIT(thread);
|
|
irq_mask.trd_error = BIT(thread);
|
|
irq_mask.status = INTR_STATUS_CDMA_TERR;
|
|
|
|
cadence_nand_set_irq_mask(cadence, &irq_mask);
|
|
|
|
status = cadence_nand_cdma_send(cadence, thread);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Make sure the descriptor processing is complete */
|
|
status = readl_poll_timeout(cadence->reg + TRD_COMP_INT_STATUS, val,
|
|
(val & BIT(thread)), TIMEOUT_US);
|
|
if (status) {
|
|
pr_err("cmd thread completion timeout!\n");
|
|
return status;
|
|
}
|
|
|
|
cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
|
|
|
|
if (irq_status.status == 0 && irq_status.trd_status == 0 &&
|
|
irq_status.trd_error == 0) {
|
|
dev_err(cadence->dev, "CDMA command timeout\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
if (irq_status.status & irq_mask.status) {
|
|
dev_err(cadence->dev, "CDMA command failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ECC size depends on configured ECC strength and on maximum supported
|
|
* ECC step size.
|
|
*/
|
|
static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
|
|
{
|
|
int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
|
|
|
|
return ALIGN(nbytes, 2);
|
|
}
|
|
|
|
#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
|
|
static int \
|
|
cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
|
|
int strength)\
|
|
{\
|
|
return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
|
|
}
|
|
|
|
CADENCE_NAND_CALC_ECC_BYTES(256)
|
|
CADENCE_NAND_CALC_ECC_BYTES(512)
|
|
CADENCE_NAND_CALC_ECC_BYTES(1024)
|
|
CADENCE_NAND_CALC_ECC_BYTES(2048)
|
|
CADENCE_NAND_CALC_ECC_BYTES(4096)
|
|
|
|
/* Function reads BCH capabilities. */
|
|
static int cadence_nand_read_bch_caps(struct cadence_nand_info *cadence)
|
|
{
|
|
struct nand_ecc_caps *ecc_caps = &cadence->ecc_caps;
|
|
int max_step_size = 0, nstrengths, i;
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(cadence->reg + BCH_CFG_3);
|
|
cadence->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
|
|
if (cadence->bch_metadata_size < 4) {
|
|
dev_err(cadence->dev,
|
|
"Driver needs at least 4 bytes of BCH meta data\n");
|
|
return -EIO;
|
|
}
|
|
|
|
reg = readl_relaxed(cadence->reg + BCH_CFG_0);
|
|
cadence->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
|
|
cadence->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
|
|
cadence->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
|
|
cadence->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
|
|
|
|
reg = readl_relaxed(cadence->reg + BCH_CFG_1);
|
|
cadence->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
|
|
cadence->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
|
|
cadence->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
|
|
cadence->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
|
|
|
|
reg = readl_relaxed(cadence->reg + BCH_CFG_2);
|
|
cadence->ecc_stepinfos[0].stepsize =
|
|
FIELD_GET(BCH_CFG_2_SECT_0, reg);
|
|
|
|
cadence->ecc_stepinfos[1].stepsize =
|
|
FIELD_GET(BCH_CFG_2_SECT_1, reg);
|
|
|
|
nstrengths = 0;
|
|
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
|
|
if (cadence->ecc_strengths[i] != 0)
|
|
nstrengths++;
|
|
}
|
|
|
|
ecc_caps->nstepinfos = 0;
|
|
for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
|
|
/* ECC strengths are common for all step infos. */
|
|
cadence->ecc_stepinfos[i].nstrengths = nstrengths;
|
|
cadence->ecc_stepinfos[i].strengths =
|
|
cadence->ecc_strengths;
|
|
|
|
if (cadence->ecc_stepinfos[i].stepsize != 0)
|
|
ecc_caps->nstepinfos++;
|
|
|
|
if (cadence->ecc_stepinfos[i].stepsize > max_step_size)
|
|
max_step_size = cadence->ecc_stepinfos[i].stepsize;
|
|
}
|
|
ecc_caps->stepinfos = &cadence->ecc_stepinfos[0];
|
|
|
|
switch (max_step_size) {
|
|
case 256:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
|
|
break;
|
|
case 512:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
|
|
break;
|
|
case 1024:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
|
|
break;
|
|
case 2048:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
|
|
break;
|
|
case 4096:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
|
|
break;
|
|
default:
|
|
dev_err(cadence->dev,
|
|
"Unsupported sector size(ecc step size) %d\n",
|
|
max_step_size);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Hardware initialization. */
|
|
static int cadence_nand_hw_init(struct cadence_nand_info *cadence)
|
|
{
|
|
int status;
|
|
u32 reg;
|
|
|
|
status = cadence_nand_wait_for_value(cadence, CTRL_STATUS,
|
|
TIMEOUT_US,
|
|
CTRL_STATUS_INIT_COMP, false);
|
|
if (status)
|
|
return status;
|
|
|
|
reg = readl_relaxed(cadence->reg + CTRL_VERSION);
|
|
cadence->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
|
|
|
|
dev_info(cadence->dev,
|
|
"%s: cadence nand controller version reg %x\n",
|
|
__func__, reg);
|
|
|
|
/* Disable cache and multiplane. */
|
|
writel_relaxed(0, cadence->reg + MULTIPLANE_CFG);
|
|
writel_relaxed(0, cadence->reg + CACHE_CFG);
|
|
|
|
/* Clear all interrupts. */
|
|
writel_relaxed(0xFFFFFFFF, cadence->reg + INTR_STATUS);
|
|
|
|
cadence_nand_get_caps(cadence);
|
|
if (cadence_nand_read_bch_caps(cadence))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Set IO width access to 8.
|
|
* It is because during SW device discovering width access
|
|
* is expected to be 8.
|
|
*/
|
|
status = cadence_nand_set_access_width16(cadence, false);
|
|
|
|
return status;
|
|
}
|
|
|
|
#define TT_MAIN_OOB_AREAS 2
|
|
#define TT_RAW_PAGE 3
|
|
#define TT_BBM 4
|
|
#define TT_MAIN_OOB_AREA_EXT 5
|
|
|
|
/* Prepare size of data to transfer. */
|
|
static void
|
|
cadence_nand_prepare_data_size(struct mtd_info *mtd,
|
|
int transfer_type)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
u32 sec_size = 0, offset = 0, sec_cnt = 1;
|
|
u32 last_sec_size = cdns_chip->sector_size;
|
|
u32 data_ctrl_size = 0;
|
|
u32 reg = 0;
|
|
|
|
if (cadence->curr_trans_type == transfer_type)
|
|
return;
|
|
|
|
switch (transfer_type) {
|
|
case TT_MAIN_OOB_AREA_EXT:
|
|
sec_cnt = cdns_chip->sector_count;
|
|
sec_size = cdns_chip->sector_size;
|
|
data_ctrl_size = cdns_chip->avail_oob_size;
|
|
break;
|
|
case TT_MAIN_OOB_AREAS:
|
|
sec_cnt = cdns_chip->sector_count;
|
|
last_sec_size = cdns_chip->sector_size
|
|
+ cdns_chip->avail_oob_size;
|
|
sec_size = cdns_chip->sector_size;
|
|
break;
|
|
case TT_RAW_PAGE:
|
|
last_sec_size = mtd->writesize + mtd->oobsize;
|
|
break;
|
|
case TT_BBM:
|
|
offset = mtd->writesize + cdns_chip->bbm_offs;
|
|
last_sec_size = 8;
|
|
break;
|
|
}
|
|
|
|
reg = 0;
|
|
reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
|
|
reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
|
|
writel_relaxed(reg, cadence->reg + TRAN_CFG_0);
|
|
|
|
reg = 0;
|
|
reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
|
|
reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
|
|
writel_relaxed(reg, cadence->reg + TRAN_CFG_1);
|
|
|
|
if (cadence->caps2.data_control_supp) {
|
|
reg = readl_relaxed(cadence->reg + CONTROL_DATA_CTRL);
|
|
reg &= ~CONTROL_DATA_CTRL_SIZE;
|
|
reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
|
|
writel_relaxed(reg, cadence->reg + CONTROL_DATA_CTRL);
|
|
}
|
|
|
|
cadence->curr_trans_type = transfer_type;
|
|
}
|
|
|
|
static int
|
|
cadence_nand_cdma_transfer(struct cadence_nand_info *cadence, u8 chip_nr,
|
|
int page, void *buf, void *ctrl_dat, u32 buf_size,
|
|
u32 ctrl_dat_size, enum dma_data_direction dir,
|
|
bool with_ecc)
|
|
{
|
|
dma_addr_t dma_buf, dma_ctrl_dat = 0;
|
|
u8 thread_nr = chip_nr;
|
|
int status;
|
|
u16 ctype;
|
|
|
|
if (dir == DMA_FROM_DEVICE)
|
|
ctype = CDMA_CT_RD;
|
|
else
|
|
ctype = CDMA_CT_WR;
|
|
|
|
cadence_nand_set_ecc_enable(cadence, with_ecc);
|
|
|
|
dma_buf = dma_map_single(buf, buf_size, dir);
|
|
if (dma_mapping_error(cadence->dev, dma_buf)) {
|
|
dev_err(cadence->dev, "Failed to map DMA buffer\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (ctrl_dat && ctrl_dat_size) {
|
|
dma_ctrl_dat = dma_map_single(ctrl_dat,
|
|
ctrl_dat_size, dir);
|
|
if (dma_mapping_error(cadence->dev, dma_ctrl_dat)) {
|
|
dma_unmap_single(dma_buf,
|
|
buf_size, dir);
|
|
dev_err(cadence->dev, "Failed to map DMA buffer\n");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
cadence_nand_cdma_desc_prepare(cadence, chip_nr, page,
|
|
dma_buf, dma_ctrl_dat, ctype);
|
|
|
|
status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
|
|
|
|
dma_unmap_single(dma_buf,
|
|
buf_size, dir);
|
|
|
|
if (ctrl_dat && ctrl_dat_size)
|
|
dma_unmap_single(dma_ctrl_dat,
|
|
ctrl_dat_size, dir);
|
|
if (status)
|
|
return status;
|
|
|
|
return cadence_nand_cdma_finish(cadence);
|
|
}
|
|
|
|
static void cadence_nand_set_timings(struct cadence_nand_info *cadence,
|
|
struct cadence_nand_timings *t)
|
|
{
|
|
writel_relaxed(t->async_toggle_timings,
|
|
cadence->reg + ASYNC_TOGGLE_TIMINGS);
|
|
writel_relaxed(t->timings0, cadence->reg + TIMINGS0);
|
|
writel_relaxed(t->timings1, cadence->reg + TIMINGS1);
|
|
writel_relaxed(t->timings2, cadence->reg + TIMINGS2);
|
|
|
|
if (cadence->caps2.is_phy_type_dll)
|
|
writel_relaxed(t->dll_phy_ctrl, cadence->reg + DLL_PHY_CTRL);
|
|
|
|
writel_relaxed(t->phy_ctrl, cadence->reg + PHY_CTRL);
|
|
|
|
if (cadence->caps2.is_phy_type_dll) {
|
|
writel_relaxed(0, cadence->reg + PHY_TSEL);
|
|
writel_relaxed(2, cadence->reg + PHY_DQ_TIMING);
|
|
writel_relaxed(t->phy_dqs_timing,
|
|
cadence->reg + PHY_DQS_TIMING);
|
|
writel_relaxed(t->phy_gate_lpbk_ctrl,
|
|
cadence->reg + PHY_GATE_LPBK_CTRL);
|
|
writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
|
|
cadence->reg + PHY_DLL_MASTER_CTRL);
|
|
writel_relaxed(0, cadence->reg + PHY_DLL_SLAVE_CTRL);
|
|
}
|
|
}
|
|
|
|
static int cadence_nand_select_target(struct nand_chip *chip)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
if (chip == cadence->selected_chip)
|
|
return 0;
|
|
|
|
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
|
|
TIMEOUT_US,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
cadence_nand_set_timings(cadence, &cdns_chip->timings);
|
|
|
|
cadence_nand_set_ecc_strength(cadence,
|
|
cdns_chip->corr_str_idx);
|
|
|
|
cadence_nand_set_erase_detection(cadence, true,
|
|
chip->ecc.strength);
|
|
|
|
cadence->curr_trans_type = -1;
|
|
cadence->selected_chip = chip;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_erase(struct mtd_info *mtd, int page)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
int status;
|
|
u8 thread_nr = cdns_chip->cs[chip->cur_cs];
|
|
|
|
cadence_nand_cdma_desc_prepare(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, 0, 0,
|
|
CDMA_CT_ERASE);
|
|
status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
|
|
if (status) {
|
|
dev_err(cadence->dev, "erase operation failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
status = cadence_nand_cdma_finish(cadence);
|
|
if (status)
|
|
return status;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip, int oobavail)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
int ret;
|
|
|
|
/*
|
|
* If .size and .strength are already set (usually by DT),
|
|
* check if they are supported by this controller.
|
|
*/
|
|
if (chip->ecc.size && chip->ecc.strength)
|
|
return nand_check_ecc_caps(chip, &cadence->ecc_caps, oobavail);
|
|
|
|
/*
|
|
* We want .size and .strength closest to the chip's requirement
|
|
* unless NAND_ECC_MAXIMIZE is requested.
|
|
*/
|
|
if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
|
|
ret = nand_match_ecc_req(chip, &cadence->ecc_caps, oobavail);
|
|
if (!ret)
|
|
return 0;
|
|
}
|
|
|
|
/* Max ECC strength is the last thing we can do */
|
|
return nand_maximize_ecc(chip, &cadence->ecc_caps, oobavail);
|
|
}
|
|
|
|
static int cadence_nand_read_bbm(struct mtd_info *mtd, struct nand_chip *chip, int page, u8 *buf)
|
|
{
|
|
int status;
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
cadence_nand_prepare_data_size(mtd, TT_BBM);
|
|
|
|
cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
|
|
|
|
/*
|
|
* Read only bad block marker from offset
|
|
* defined by a memory manufacturer.
|
|
*/
|
|
status = cadence_nand_cdma_transfer(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cadence->buf, NULL,
|
|
mtd->oobsize,
|
|
0, DMA_FROM_DEVICE, false);
|
|
if (status) {
|
|
dev_err(cadence->dev, "read BBM failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
memcpy(buf + cdns_chip->bbm_offs, cadence->buf, cdns_chip->bbm_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const u8 *buf, int oob_required, int page)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
int status;
|
|
u16 marker_val = 0xFFFF;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
|
|
mtd->writesize
|
|
+ cdns_chip->bbm_offs,
|
|
1);
|
|
|
|
if (oob_required) {
|
|
marker_val = *(u16 *)(chip->oob_poi
|
|
+ cdns_chip->bbm_offs);
|
|
} else {
|
|
/* Set oob data to 0xFF. */
|
|
memset(cadence->buf + mtd->writesize, 0xFF,
|
|
cdns_chip->avail_oob_size);
|
|
}
|
|
|
|
cadence_nand_set_skip_marker_val(cadence, marker_val);
|
|
|
|
cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
|
|
|
|
if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
|
|
cadence->caps2.data_control_supp && !(chip->options & NAND_USE_BOUNCE_BUFFER)) {
|
|
u8 *oob;
|
|
|
|
if (oob_required)
|
|
oob = chip->oob_poi;
|
|
else
|
|
oob = cadence->buf + mtd->writesize;
|
|
|
|
status = cadence_nand_cdma_transfer(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, (void *)buf, oob,
|
|
mtd->writesize,
|
|
cdns_chip->avail_oob_size,
|
|
DMA_TO_DEVICE, true);
|
|
if (status) {
|
|
dev_err(cadence->dev, "write page failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (oob_required) {
|
|
/* Transfer the data to the oob area. */
|
|
memcpy(cadence->buf + mtd->writesize, chip->oob_poi,
|
|
cdns_chip->avail_oob_size);
|
|
}
|
|
|
|
memcpy(cadence->buf, buf, mtd->writesize);
|
|
|
|
cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
|
|
|
|
return cadence_nand_cdma_transfer(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cadence->buf, NULL,
|
|
mtd->writesize
|
|
+ cdns_chip->avail_oob_size,
|
|
0, DMA_TO_DEVICE, true);
|
|
}
|
|
|
|
static int cadence_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
|
|
memset(cadence->buf, 0xFF, mtd->writesize);
|
|
|
|
return cadence_nand_write_page(mtd, chip, cadence->buf, 1, page);
|
|
}
|
|
|
|
static int cadence_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const u8 *buf, int oob_required, int page)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
int writesize = mtd->writesize;
|
|
int oobsize = mtd->oobsize;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
void *tmp_buf = cadence->buf;
|
|
int oob_skip = cdns_chip->bbm_len;
|
|
size_t size = writesize + oobsize;
|
|
int i, pos, len;
|
|
int status;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Fill the buffer with 0xff first except the full page transfer.
|
|
* This simplifies the logic.
|
|
*/
|
|
if (!buf || !oob_required)
|
|
memset(tmp_buf, 0xff, size);
|
|
|
|
cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
|
|
|
|
/* Arrange the buffer for syndrome payload/ecc layout. */
|
|
if (buf) {
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = i * (ecc_size + ecc_bytes);
|
|
len = ecc_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(tmp_buf + pos, buf, len);
|
|
buf += len;
|
|
if (len < ecc_size) {
|
|
len = ecc_size - len;
|
|
memcpy(tmp_buf + writesize + oob_skip, buf,
|
|
len);
|
|
buf += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (oob_required) {
|
|
const u8 *oob = chip->oob_poi;
|
|
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
|
|
(cdns_chip->sector_size + chip->ecc.bytes)
|
|
+ cdns_chip->sector_size + oob_skip;
|
|
|
|
/* BBM at the beginning of the OOB area. */
|
|
memcpy(tmp_buf + writesize, oob, oob_skip);
|
|
|
|
/* OOB free. */
|
|
memcpy(tmp_buf + oob_data_offset, oob,
|
|
cdns_chip->avail_oob_size);
|
|
oob += cdns_chip->avail_oob_size;
|
|
|
|
/* OOB ECC. */
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = ecc_size + i * (ecc_size + ecc_bytes);
|
|
if (i == (ecc_steps - 1))
|
|
pos += cdns_chip->avail_oob_size;
|
|
|
|
len = ecc_bytes;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(tmp_buf + pos, oob, len);
|
|
oob += len;
|
|
if (len < ecc_bytes) {
|
|
len = ecc_bytes - len;
|
|
memcpy(tmp_buf + writesize + oob_skip, oob,
|
|
len);
|
|
oob += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
|
|
|
|
return cadence_nand_cdma_transfer(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cadence->buf, NULL,
|
|
mtd->writesize +
|
|
mtd->oobsize,
|
|
0, DMA_TO_DEVICE, false);
|
|
}
|
|
|
|
static int cadence_nand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return cadence_nand_write_page_raw(mtd, chip, NULL, true, page);
|
|
}
|
|
|
|
static int cadence_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
u8 *buf, int oob_required, int page)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
int status;
|
|
int ecc_err_count = 0;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
|
|
mtd->writesize
|
|
+ cdns_chip->bbm_offs, 1);
|
|
|
|
/*
|
|
* If data buffer can be accessed by DMA and data_control feature
|
|
* is supported then transfer data and oob directly.
|
|
*/
|
|
if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
|
|
cadence->caps2.data_control_supp && !(chip->options & NAND_USE_BOUNCE_BUFFER)) {
|
|
u8 *oob;
|
|
|
|
if (oob_required)
|
|
oob = chip->oob_poi;
|
|
else
|
|
oob = cadence->buf + mtd->writesize;
|
|
|
|
cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
|
|
status = cadence_nand_cdma_transfer(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, buf, oob,
|
|
mtd->writesize,
|
|
cdns_chip->avail_oob_size,
|
|
DMA_FROM_DEVICE, true);
|
|
/* Otherwise use bounce buffer. */
|
|
} else {
|
|
cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
|
|
status = cadence_nand_cdma_transfer(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cadence->buf,
|
|
NULL, mtd->writesize
|
|
+ cdns_chip->avail_oob_size,
|
|
0, DMA_FROM_DEVICE, true);
|
|
|
|
memcpy(buf, cadence->buf, mtd->writesize);
|
|
if (oob_required)
|
|
memcpy(chip->oob_poi,
|
|
cadence->buf + mtd->writesize,
|
|
mtd->oobsize);
|
|
}
|
|
|
|
switch (status) {
|
|
case STAT_ECC_UNCORR:
|
|
mtd->ecc_stats.failed++;
|
|
ecc_err_count++;
|
|
break;
|
|
case STAT_ECC_CORR:
|
|
ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
|
|
cadence->cdma_desc->status);
|
|
mtd->ecc_stats.corrected += ecc_err_count;
|
|
break;
|
|
case STAT_ERASED:
|
|
case STAT_OK:
|
|
break;
|
|
default:
|
|
dev_err(cadence->dev, "read page failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (oob_required)
|
|
if (cadence_nand_read_bbm(mtd, chip, page, chip->oob_poi))
|
|
return -EIO;
|
|
|
|
return ecc_err_count;
|
|
}
|
|
|
|
static int cadence_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
|
|
return cadence_nand_read_page(mtd, chip, cadence->buf, 1, page);
|
|
}
|
|
|
|
static int cadence_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
u8 *buf, int oob_required, int page)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
int oob_skip = cdns_chip->bbm_len;
|
|
int writesize = mtd->writesize;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
void *tmp_buf = cadence->buf;
|
|
int i, pos, len;
|
|
int status;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
|
|
|
|
cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
|
|
status = cadence_nand_cdma_transfer(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cadence->buf, NULL,
|
|
mtd->writesize
|
|
+ mtd->oobsize,
|
|
0, DMA_FROM_DEVICE, false);
|
|
|
|
switch (status) {
|
|
case STAT_ERASED:
|
|
case STAT_OK:
|
|
break;
|
|
default:
|
|
dev_err(cadence->dev, "read raw page failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Arrange the buffer for syndrome payload/ecc layout. */
|
|
if (buf) {
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = i * (ecc_size + ecc_bytes);
|
|
len = ecc_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(buf, tmp_buf + pos, len);
|
|
buf += len;
|
|
if (len < ecc_size) {
|
|
len = ecc_size - len;
|
|
memcpy(buf, tmp_buf + writesize + oob_skip,
|
|
len);
|
|
buf += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (oob_required) {
|
|
u8 *oob = chip->oob_poi;
|
|
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
|
|
(cdns_chip->sector_size + chip->ecc.bytes)
|
|
+ cdns_chip->sector_size + oob_skip;
|
|
|
|
/* OOB free. */
|
|
memcpy(oob, tmp_buf + oob_data_offset,
|
|
cdns_chip->avail_oob_size);
|
|
|
|
/* BBM at the beginning of the OOB area. */
|
|
memcpy(oob, tmp_buf + writesize, oob_skip);
|
|
|
|
oob += cdns_chip->avail_oob_size;
|
|
|
|
/* OOB ECC */
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = ecc_size + i * (ecc_size + ecc_bytes);
|
|
len = ecc_bytes;
|
|
|
|
if (i == (ecc_steps - 1))
|
|
pos += cdns_chip->avail_oob_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(oob, tmp_buf + pos, len);
|
|
oob += len;
|
|
if (len < ecc_bytes) {
|
|
len = ecc_bytes - len;
|
|
memcpy(oob, tmp_buf + writesize + oob_skip,
|
|
len);
|
|
oob += len;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return cadence_nand_read_page_raw(mtd, chip, NULL, true, page);
|
|
}
|
|
|
|
static void cadence_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
u8 thread_nr = 0;
|
|
u32 sdma_size;
|
|
int status;
|
|
int len_in_words = len >> 2;
|
|
|
|
/* Wait until slave DMA interface is ready to data transfer. */
|
|
status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
|
|
if (status) {
|
|
pr_err("Wait on sdma failed:%x\n", status);
|
|
hang();
|
|
}
|
|
|
|
if (!cadence->caps1->has_dma) {
|
|
readsq(cadence->io.virt, buf, len_in_words);
|
|
|
|
if (sdma_size > len) {
|
|
memcpy(cadence->buf, buf + (len_in_words << 2),
|
|
len - (len_in_words << 2));
|
|
readsl(cadence->io.virt, cadence->buf,
|
|
sdma_size / 4 - len_in_words);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cadence_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
u8 thread_nr = 0;
|
|
u32 sdma_size;
|
|
int status;
|
|
int len_in_words = len >> 2;
|
|
|
|
/* Wait until slave DMA interface is ready to data transfer. */
|
|
status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
|
|
if (status) {
|
|
pr_err("Wait on sdma failed:%x\n", status);
|
|
hang();
|
|
}
|
|
|
|
if (!cadence->caps1->has_dma) {
|
|
writesq(cadence->io.virt, buf, len_in_words);
|
|
|
|
if (sdma_size > len) {
|
|
memcpy(cadence->buf, buf + (len_in_words << 2),
|
|
len - (len_in_words << 2));
|
|
writesl(cadence->io.virt, cadence->buf,
|
|
sdma_size / 4 - len_in_words);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cadence_nand_cmd_opcode(struct nand_chip *chip, unsigned int op_id)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
u64 mini_ctrl_cmd = 0;
|
|
int ret;
|
|
|
|
mini_ctrl_cmd |= GCMD_LAY_TWB;
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, GCMD_LAY_INSTR_CMD);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, op_id);
|
|
|
|
ret = cadence_nand_generic_cmd_send(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
mini_ctrl_cmd);
|
|
|
|
if (ret)
|
|
dev_err(cadence->dev, "send cmd %x failed\n",
|
|
op_id);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_cmd_address(struct nand_chip *chip,
|
|
unsigned int naddrs, const u8 *addrs)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
u64 address = 0;
|
|
u64 mini_ctrl_cmd = 0;
|
|
int ret;
|
|
int i;
|
|
|
|
mini_ctrl_cmd |= GCMD_LAY_TWB;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
|
|
GCMD_LAY_INSTR_ADDR);
|
|
|
|
for (i = 0; i < naddrs; i++)
|
|
address |= (u64)addrs[i] << (8 * i);
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
|
|
address);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
|
|
naddrs - 1);
|
|
|
|
ret = cadence_nand_generic_cmd_send(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
mini_ctrl_cmd);
|
|
|
|
if (ret)
|
|
pr_err("send address %llx failed\n", address);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_cmd_data(struct nand_chip *chip,
|
|
unsigned int len, u8 mode)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
u64 mini_ctrl_cmd = 0;
|
|
int ret;
|
|
|
|
mini_ctrl_cmd |= GCMD_LAY_TWB;
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
|
|
GCMD_LAY_INSTR_DATA);
|
|
|
|
if (mode)
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, GCMD_DIR_WRITE);
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
|
|
|
|
ret = cadence_nand_generic_cmd_send(cadence,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
mini_ctrl_cmd);
|
|
|
|
if (ret) {
|
|
pr_err("send generic data cmd failed\n");
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
int status;
|
|
|
|
status = cadence_nand_wait_for_value(cadence, RBN_SETINGS,
|
|
TIMEOUT_US,
|
|
BIT(cdns_chip->cs[chip->cur_cs]),
|
|
false);
|
|
return status;
|
|
}
|
|
|
|
static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = cdns_chip->bbm_len;
|
|
oobregion->length = cdns_chip->avail_oob_size
|
|
- cdns_chip->bbm_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = cdns_chip->avail_oob_size;
|
|
oobregion->length = chip->ecc.total;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
|
|
.rfree = cadence_nand_ooblayout_free,
|
|
.ecc = cadence_nand_ooblayout_ecc,
|
|
};
|
|
|
|
static int calc_cycl(u32 timing, u32 clock)
|
|
{
|
|
if (timing == 0 || clock == 0)
|
|
return 0;
|
|
|
|
if ((timing % clock) > 0)
|
|
return timing / clock;
|
|
else
|
|
return timing / clock - 1;
|
|
}
|
|
|
|
/* Calculate max data valid window. */
|
|
static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
|
|
u32 board_delay_skew_min, u32 ext_mode)
|
|
{
|
|
if (ext_mode == 0)
|
|
clk_period /= 2;
|
|
|
|
return (trp_cnt + 1) * clk_period + trhoh_min +
|
|
board_delay_skew_min;
|
|
}
|
|
|
|
/* Calculate data valid window. */
|
|
static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
|
|
u32 trea_max, u32 ext_mode)
|
|
{
|
|
if (ext_mode == 0)
|
|
clk_period /= 2;
|
|
|
|
return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
|
|
}
|
|
|
|
static inline int of_get_child_count(const ofnode node)
|
|
{
|
|
return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node));
|
|
}
|
|
|
|
static int cadence_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(mtd_to_nand(mtd));
|
|
const struct nand_sdr_timings *sdr;
|
|
struct cadence_nand_timings *t = &cdns_chip->timings;
|
|
u32 reg;
|
|
u32 board_delay = cadence->board_delay;
|
|
u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
|
|
cadence->nf_clk_rate);
|
|
u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
|
|
u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
|
|
u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
|
|
u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
|
|
u32 if_skew = cadence->caps1->if_skew;
|
|
u32 board_delay_skew_min = board_delay - if_skew;
|
|
u32 board_delay_skew_max = board_delay + if_skew;
|
|
u32 dqs_sampl_res, phony_dqs_mod;
|
|
u32 tdvw, tdvw_min, tdvw_max;
|
|
u32 ext_rd_mode, ext_wr_mode;
|
|
u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
|
|
u32 sampling_point;
|
|
|
|
sdr = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(sdr))
|
|
return PTR_ERR(sdr);
|
|
|
|
memset(t, 0, sizeof(*t));
|
|
/* Sampling point calculation. */
|
|
if (cadence->caps2.is_phy_type_dll)
|
|
phony_dqs_mod = 2;
|
|
else
|
|
phony_dqs_mod = 1;
|
|
|
|
dqs_sampl_res = clk_period / phony_dqs_mod;
|
|
|
|
tdvw_min = sdr->tREA_max + board_delay_skew_max;
|
|
/*
|
|
* The idea of those calculation is to get the optimum value
|
|
* for tRP and tRH timings. If it is NOT possible to sample data
|
|
* with optimal tRP/tRH settings, the parameters will be extended.
|
|
* If clk_period is 50ns (the lowest value) this condition is met
|
|
* for SDR timing modes 1, 2, 3, 4 and 5.
|
|
* If clk_period is 20ns the condition is met only for SDR timing
|
|
* mode 5.
|
|
*/
|
|
if (sdr->tRC_min <= clk_period &&
|
|
sdr->tRP_min <= (clk_period / 2) &&
|
|
sdr->tREH_min <= (clk_period / 2)) {
|
|
/* Performance mode. */
|
|
ext_rd_mode = 0;
|
|
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
|
|
sdr->tREA_max, ext_rd_mode);
|
|
tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
|
|
board_delay_skew_min,
|
|
ext_rd_mode);
|
|
/*
|
|
* Check if data valid window and sampling point can be found
|
|
* and is not on the edge (ie. we have hold margin).
|
|
* If not extend the tRP timings.
|
|
*/
|
|
if (tdvw > 0) {
|
|
if (tdvw_max <= tdvw_min ||
|
|
(tdvw_max % dqs_sampl_res) == 0) {
|
|
/*
|
|
* No valid sampling point so the RE pulse need
|
|
* to be widen widening by half clock cycle.
|
|
*/
|
|
ext_rd_mode = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* There is no valid window
|
|
* to be able to sample data the tRP need to be widen.
|
|
* Very safe calculations are performed here.
|
|
*/
|
|
trp_cnt = (sdr->tREA_max + board_delay_skew_max
|
|
+ dqs_sampl_res) / clk_period;
|
|
ext_rd_mode = 1;
|
|
}
|
|
|
|
} else {
|
|
/* Extended read mode. */
|
|
u32 trh;
|
|
|
|
ext_rd_mode = 1;
|
|
trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
|
|
trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
|
|
if (sdr->tREH_min >= trh)
|
|
trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
|
|
else
|
|
trh_cnt = calc_cycl(trh, clk_period);
|
|
|
|
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
|
|
sdr->tREA_max, ext_rd_mode);
|
|
/*
|
|
* Check if data valid window and sampling point can be found
|
|
* or if it is at the edge check if previous is valid
|
|
* - if not extend the tRP timings.
|
|
*/
|
|
if (tdvw > 0) {
|
|
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
|
|
sdr->tRHOH_min,
|
|
board_delay_skew_min,
|
|
ext_rd_mode);
|
|
|
|
if ((((tdvw_max / dqs_sampl_res)
|
|
* dqs_sampl_res) <= tdvw_min) ||
|
|
(((tdvw_max % dqs_sampl_res) == 0) &&
|
|
(((tdvw_max / dqs_sampl_res - 1)
|
|
* dqs_sampl_res) <= tdvw_min))) {
|
|
/*
|
|
* Data valid window width is lower than
|
|
* sampling resolution and do not hit any
|
|
* sampling point to be sure the sampling point
|
|
* will be found the RE low pulse width will be
|
|
* extended by one clock cycle.
|
|
*/
|
|
trp_cnt = trp_cnt + 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* There is no valid window to be able to sample data.
|
|
* The tRP need to be widen.
|
|
* Very safe calculations are performed here.
|
|
*/
|
|
trp_cnt = (sdr->tREA_max + board_delay_skew_max
|
|
+ dqs_sampl_res) / clk_period;
|
|
}
|
|
}
|
|
|
|
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
|
|
sdr->tRHOH_min,
|
|
board_delay_skew_min, ext_rd_mode);
|
|
|
|
if (sdr->tWC_min <= clk_period &&
|
|
(sdr->tWP_min + if_skew) <= (clk_period / 2) &&
|
|
(sdr->tWH_min + if_skew) <= (clk_period / 2)) {
|
|
ext_wr_mode = 0;
|
|
} else {
|
|
u32 twh;
|
|
|
|
ext_wr_mode = 1;
|
|
twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
|
|
if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
|
|
twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
|
|
clk_period);
|
|
|
|
twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
|
|
if (sdr->tWH_min >= twh)
|
|
twh = sdr->tWH_min;
|
|
|
|
twh_cnt = calc_cycl(twh + if_skew, clk_period);
|
|
}
|
|
|
|
reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
|
|
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
|
|
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
|
|
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
|
|
t->async_toggle_timings = reg;
|
|
dev_dbg(cadence->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
|
|
|
|
tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
|
|
tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
|
|
twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
|
|
trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
|
|
reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
|
|
|
|
/*
|
|
* If timing exceeds delay field in timing register
|
|
* then use maximum value.
|
|
*/
|
|
if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
|
|
reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
|
|
else
|
|
reg |= TIMINGS0_TCCS;
|
|
|
|
reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
|
|
reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
|
|
t->timings0 = reg;
|
|
dev_dbg(cadence->dev, "TIMINGS0_SDR\t%x\n", reg);
|
|
|
|
/* The following is related to single signal so skew is not needed. */
|
|
trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
|
|
trhz_cnt = trhz_cnt + 1;
|
|
twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
|
|
/*
|
|
* Because of the two stage syncflop the value must be increased by 3
|
|
* first value is related with sync, second value is related
|
|
* with output if delay.
|
|
*/
|
|
twb_cnt = twb_cnt + 3 + 5;
|
|
/*
|
|
* The following is related to the we edge of the random data input
|
|
* sequence so skew is not needed.
|
|
*/
|
|
tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
|
|
reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
|
|
reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
|
|
reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
|
|
t->timings1 = reg;
|
|
dev_dbg(cadence->dev, "TIMINGS1_SDR\t%x\n", reg);
|
|
|
|
tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
|
|
if (tfeat_cnt < twb_cnt)
|
|
tfeat_cnt = twb_cnt;
|
|
|
|
tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
|
|
tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
|
|
|
|
reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
|
|
reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
|
|
reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
|
|
t->timings2 = reg;
|
|
dev_dbg(cadence->dev, "TIMINGS2_SDR\t%x\n", reg);
|
|
|
|
if (cadence->caps2.is_phy_type_dll) {
|
|
reg = DLL_PHY_CTRL_DLL_RST_N;
|
|
if (ext_wr_mode)
|
|
reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
|
|
if (ext_rd_mode)
|
|
reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
|
|
|
|
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
|
|
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
|
|
t->dll_phy_ctrl = reg;
|
|
dev_dbg(cadence->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
|
|
}
|
|
|
|
/* Sampling point calculation. */
|
|
if ((tdvw_max % dqs_sampl_res) > 0)
|
|
sampling_point = tdvw_max / dqs_sampl_res;
|
|
else
|
|
sampling_point = (tdvw_max / dqs_sampl_res - 1);
|
|
|
|
if (sampling_point * dqs_sampl_res > tdvw_min) {
|
|
dll_phy_dqs_timing =
|
|
FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
|
|
dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
|
|
phony_dqs_timing = sampling_point / phony_dqs_mod;
|
|
|
|
if ((sampling_point % 2) > 0) {
|
|
dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
|
|
if ((tdvw_max % dqs_sampl_res) == 0)
|
|
/*
|
|
* Calculation for sampling point at the edge
|
|
* of data and being odd number.
|
|
*/
|
|
phony_dqs_timing = (tdvw_max / dqs_sampl_res)
|
|
/ phony_dqs_mod - 1;
|
|
|
|
if (!cadence->caps2.is_phy_type_dll)
|
|
phony_dqs_timing--;
|
|
|
|
} else {
|
|
phony_dqs_timing--;
|
|
}
|
|
rd_del_sel = phony_dqs_timing + 3;
|
|
} else {
|
|
dev_warn(cadence->dev,
|
|
"ERROR : cannot find valid sampling point\n");
|
|
}
|
|
|
|
reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
|
|
if (cadence->caps2.is_phy_type_dll)
|
|
reg |= PHY_CTRL_SDR_DQS;
|
|
t->phy_ctrl = reg;
|
|
dev_dbg(cadence->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
|
|
|
|
if (cadence->caps2.is_phy_type_dll) {
|
|
dev_dbg(cadence->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
|
|
dev_dbg(cadence->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
|
|
dev_dbg(cadence->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
|
|
dll_phy_dqs_timing);
|
|
t->phy_dqs_timing = dll_phy_dqs_timing;
|
|
|
|
reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
|
|
dev_dbg(cadence->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
|
|
reg);
|
|
t->phy_gate_lpbk_ctrl = reg;
|
|
|
|
dev_dbg(cadence->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
|
|
PHY_DLL_MASTER_CTRL_BYPASS_MODE);
|
|
dev_dbg(cadence->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
static struct nand_ecclayout nand_oob;
|
|
u32 ecc_size;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
ret = cadence_nand_set_access_width16(cadence, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
chip->options |= NAND_USE_BOUNCE_BUFFER;
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
chip->ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
cdns_chip->bbm_offs = chip->badblockpos;
|
|
cdns_chip->bbm_offs &= ~0x01;
|
|
/* this value should be even number */
|
|
cdns_chip->bbm_len = 2;
|
|
|
|
ret = cadence_ecc_setup(mtd, chip, mtd->oobsize - cdns_chip->bbm_len);
|
|
if (ret) {
|
|
dev_err(cadence->dev, "ECC configuration failed\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(cadence->dev,
|
|
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
|
|
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
|
|
|
|
/* Error correction configuration. */
|
|
cdns_chip->sector_size = chip->ecc.size;
|
|
cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
|
|
ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
|
|
|
|
cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
|
|
|
|
if (cdns_chip->avail_oob_size > cadence->bch_metadata_size)
|
|
cdns_chip->avail_oob_size = cadence->bch_metadata_size;
|
|
|
|
if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
|
|
> mtd->oobsize)
|
|
cdns_chip->avail_oob_size -= 4;
|
|
|
|
ret = cadence_nand_get_ecc_strength_idx(cadence, chip->ecc.strength);
|
|
if (ret < 0)
|
|
return -EINVAL;
|
|
|
|
cdns_chip->corr_str_idx = (u8)ret;
|
|
|
|
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
|
|
TIMEOUT_US,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
cadence_nand_set_ecc_strength(cadence,
|
|
cdns_chip->corr_str_idx);
|
|
|
|
cadence_nand_set_erase_detection(cadence, true,
|
|
chip->ecc.strength);
|
|
|
|
dev_dbg(cadence->dev,
|
|
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
|
|
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
|
|
|
|
/* Override the default read operations. */
|
|
chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
|
|
chip->ecc.read_page = cadence_nand_read_page;
|
|
chip->ecc.read_page_raw = cadence_nand_read_page_raw;
|
|
chip->ecc.write_page = cadence_nand_write_page;
|
|
chip->ecc.write_page_raw = cadence_nand_write_page_raw;
|
|
chip->ecc.read_oob = cadence_nand_read_oob;
|
|
chip->ecc.write_oob = cadence_nand_write_oob;
|
|
chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
|
|
chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
|
|
chip->erase = cadence_nand_erase;
|
|
|
|
if ((mtd->writesize + mtd->oobsize) > cadence->buf_size)
|
|
cadence->buf_size = mtd->writesize + mtd->oobsize;
|
|
|
|
mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
|
|
|
|
nand_oob.eccbytes = cdns_chip->chip.ecc.bytes;
|
|
cdns_chip->chip.ecc.layout = &nand_oob;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Dummy implementation: we don't support multiple chips */
|
|
static void cadence_nand_select_chip(struct mtd_info *mtd, int chipnr)
|
|
{
|
|
switch (chipnr) {
|
|
case -1:
|
|
case 0:
|
|
break;
|
|
|
|
default:
|
|
WARN_ON(chipnr);
|
|
}
|
|
}
|
|
|
|
static int cadence_nand_status(struct mtd_info *mtd, unsigned int command)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret = 0;
|
|
|
|
ret = cadence_nand_cmd_opcode(chip, command);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_nand_cmd_data(chip, 1, GCMD_DIR_READ);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_readid(struct mtd_info *mtd, int offset_in_page, unsigned int command)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
u8 addrs = (u8)offset_in_page;
|
|
int ret = 0;
|
|
|
|
ret = cadence_nand_cmd_opcode(chip, command);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &addrs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_nand_cmd_data(chip, 8, GCMD_DIR_READ);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_param(struct mtd_info *mtd, u8 offset_in_page, unsigned int command)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret = 0;
|
|
|
|
ret = cadence_nand_cmd_opcode(chip, command);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &offset_in_page);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_nand_waitfunc(mtd, chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_nand_cmd_data(chip, sizeof(struct nand_jedec_params), GCMD_DIR_READ);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_reset(struct mtd_info *mtd, unsigned int command)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret = 0;
|
|
|
|
ret = cadence_nand_cmd_opcode(chip, command);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_nand_waitfunc(mtd, chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_features(struct mtd_info *mtd, u8 offset_in_page, u32 command)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret = 0;
|
|
|
|
ret = cadence_nand_cmd_opcode(chip, command);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &offset_in_page);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (command == NAND_CMD_GET_FEATURES)
|
|
ret = cadence_nand_cmd_data(chip, ONFI_SUBFEATURE_PARAM_LEN,
|
|
GCMD_DIR_READ);
|
|
else
|
|
ret = cadence_nand_cmd_data(chip, ONFI_SUBFEATURE_PARAM_LEN,
|
|
GCMD_DIR_WRITE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cadence_nand_cmdfunc(struct mtd_info *mtd, unsigned int command,
|
|
int offset_in_page, int page)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
int ret = 0;
|
|
|
|
cadence->cmd = command;
|
|
switch (command) {
|
|
case NAND_CMD_STATUS:
|
|
ret = cadence_nand_status(mtd, command);
|
|
break;
|
|
|
|
case NAND_CMD_READID:
|
|
ret = cadence_nand_readid(mtd, offset_in_page, command);
|
|
break;
|
|
|
|
case NAND_CMD_PARAM:
|
|
ret = cadence_nand_param(mtd, offset_in_page, command);
|
|
break;
|
|
|
|
case NAND_CMD_RESET:
|
|
ret = cadence_nand_reset(mtd, command);
|
|
break;
|
|
|
|
case NAND_CMD_SET_FEATURES:
|
|
case NAND_CMD_GET_FEATURES:
|
|
ret = cadence_nand_features(mtd, offset_in_page, command);
|
|
break;
|
|
/*
|
|
* ecc will override other command for read, write and erase
|
|
*/
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (cadence->cmd == NAND_CMD_RESET) {
|
|
ret = cadence_nand_select_target(chip);
|
|
if (ret)
|
|
dev_err(cadence->dev, "Chip select failure after reset\n");
|
|
}
|
|
|
|
if (ret != 0)
|
|
printf("ERROR:%s:command:0x%x\n", __func__, cadence->cmd);
|
|
}
|
|
|
|
static int cadence_nand_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
|
|
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
|
|
TIMEOUT_US,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u8 cadence_nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
|
|
u32 size = 1;
|
|
u8 val;
|
|
|
|
if (cadence->buf_index == 0) {
|
|
if (cadence->cmd == NAND_CMD_READID)
|
|
size = 8;
|
|
else if (cadence->cmd == NAND_CMD_PARAM)
|
|
size = sizeof(struct nand_jedec_params);
|
|
else if (cadence->cmd == NAND_CMD_GET_FEATURES)
|
|
size = ONFI_SUBFEATURE_PARAM_LEN;
|
|
|
|
cadence_nand_read_buf(mtd, &cadence->buf[0], size);
|
|
}
|
|
|
|
val = *(&cadence->buf[0] + cadence->buf_index);
|
|
cadence->buf_index++;
|
|
|
|
return val;
|
|
}
|
|
|
|
static void cadence_nand_write_byte(struct mtd_info *mtd, u8 byte)
|
|
{
|
|
cadence_nand_write_buf(mtd, &byte, 1);
|
|
}
|
|
|
|
static int cadence_nand_chip_init(struct cadence_nand_info *cadence, ofnode node)
|
|
{
|
|
struct cdns_nand_chip *cdns_chip;
|
|
struct nand_chip *chip;
|
|
struct mtd_info *mtd;
|
|
int ret, i;
|
|
int nsels;
|
|
u32 cs;
|
|
|
|
if (!ofnode_get_property(node, "reg", &nsels))
|
|
return -ENODEV;
|
|
|
|
nsels /= sizeof(u32);
|
|
if (nsels <= 0) {
|
|
dev_err(cadence->dev, "invalid reg property size %d\n", nsels);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cdns_chip = devm_kzalloc(cadence->dev, sizeof(*cdns_chip) +
|
|
(nsels * sizeof(u8)), GFP_KERNEL);
|
|
if (!cdns_chip)
|
|
return -ENODEV;
|
|
|
|
cdns_chip->nsels = nsels;
|
|
for (i = 0; i < nsels; i++) {
|
|
/* Retrieve CS id. */
|
|
ret = ofnode_read_u32_index(node, "reg", i, &cs);
|
|
if (ret) {
|
|
dev_err(cadence->dev,
|
|
"could not retrieve reg property: %d\n",
|
|
ret);
|
|
goto free_buf;
|
|
}
|
|
|
|
if (cs >= cadence->caps2.max_banks) {
|
|
dev_err(cadence->dev,
|
|
"invalid reg value: %u (max CS = %d)\n",
|
|
cs, cadence->caps2.max_banks);
|
|
ret = -EINVAL;
|
|
goto free_buf;
|
|
}
|
|
|
|
if (test_and_set_bit(cs, &cadence->assigned_cs)) {
|
|
dev_err(cadence->dev,
|
|
"CS %d already assigned\n", cs);
|
|
ret = -EINVAL;
|
|
goto free_buf;
|
|
}
|
|
|
|
cdns_chip->cs[i] = cs;
|
|
}
|
|
|
|
chip = &cdns_chip->chip;
|
|
chip->controller = &cadence->controller;
|
|
nand_set_flash_node(chip, node);
|
|
mtd = nand_to_mtd(chip);
|
|
mtd->dev->parent = cadence->dev;
|
|
|
|
chip->options |= NAND_BUSWIDTH_AUTO;
|
|
chip->select_chip = cadence_nand_select_chip;
|
|
chip->cmdfunc = cadence_nand_cmdfunc;
|
|
chip->dev_ready = cadence_nand_dev_ready;
|
|
chip->read_byte = cadence_nand_read_byte;
|
|
chip->write_byte = cadence_nand_write_byte;
|
|
chip->waitfunc = cadence_nand_waitfunc;
|
|
chip->read_buf = cadence_nand_read_buf;
|
|
chip->write_buf = cadence_nand_write_buf;
|
|
chip->setup_data_interface = cadence_setup_data_interface;
|
|
|
|
ret = nand_scan_ident(mtd, 1, NULL);
|
|
if (ret) {
|
|
dev_err(cadence->dev, "Chip identification failure\n");
|
|
goto free_buf;
|
|
}
|
|
|
|
ret = cadence_nand_attach_chip(chip);
|
|
if (ret) {
|
|
dev_err(cadence->dev, "Chip not able to attached\n");
|
|
goto free_buf;
|
|
}
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret) {
|
|
dev_err(cadence->dev, "could not scan the nand chip\n");
|
|
goto free_buf;
|
|
}
|
|
|
|
ret = nand_register(0, mtd);
|
|
if (ret) {
|
|
dev_err(cadence->dev, "Failed to register MTD: %d\n", ret);
|
|
goto free_buf;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_buf:
|
|
devm_kfree(cadence->dev, cdns_chip);
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_chips_init(struct cadence_nand_info *cadence)
|
|
{
|
|
struct udevice *dev = cadence->dev;
|
|
ofnode node = dev_ofnode(dev);
|
|
ofnode nand_node;
|
|
int max_cs = cadence->caps2.max_banks;
|
|
int nchips, ret;
|
|
|
|
nchips = of_get_child_count(node);
|
|
|
|
if (nchips > max_cs) {
|
|
dev_err(cadence->dev,
|
|
"too many NAND chips: %d (max = %d CS)\n",
|
|
nchips, max_cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ofnode_for_each_subnode(nand_node, node) {
|
|
ret = cadence_nand_chip_init(cadence, nand_node);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_init(struct cadence_nand_info *cadence)
|
|
{
|
|
int ret;
|
|
|
|
cadence->cdma_desc = dma_alloc_coherent(sizeof(*cadence->cdma_desc),
|
|
(unsigned long *)&cadence->dma_cdma_desc);
|
|
if (!cadence->cdma_desc)
|
|
return -ENOMEM;
|
|
|
|
cadence->buf_size = SZ_16K;
|
|
cadence->buf = kmalloc(cadence->buf_size, GFP_KERNEL);
|
|
if (!cadence->buf) {
|
|
ret = -ENOMEM;
|
|
goto free_buf_desc;
|
|
}
|
|
|
|
//Hardware initialization
|
|
ret = cadence_nand_hw_init(cadence);
|
|
if (ret)
|
|
goto free_buf;
|
|
|
|
cadence->curr_corr_str_idx = 0xFF;
|
|
|
|
ret = cadence_nand_chips_init(cadence);
|
|
if (ret) {
|
|
dev_err(cadence->dev, "Failed to register MTD: %d\n",
|
|
ret);
|
|
goto free_buf;
|
|
}
|
|
|
|
kfree(cadence->buf);
|
|
cadence->buf = kzalloc(cadence->buf_size, GFP_KERNEL);
|
|
if (!cadence->buf) {
|
|
ret = -ENOMEM;
|
|
goto free_buf_desc;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_buf:
|
|
kfree(cadence->buf);
|
|
|
|
free_buf_desc:
|
|
dma_free_coherent(cadence->cdma_desc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct cadence_nand_dt_devdata cadence_nand_default = {
|
|
.if_skew = 0,
|
|
.has_dma = 0,
|
|
};
|
|
|
|
static const struct udevice_id cadence_nand_dt_ids[] = {
|
|
{
|
|
.compatible = "cdns,nand",
|
|
.data = (unsigned long)&cadence_nand_default
|
|
}, {}
|
|
};
|
|
|
|
static int cadence_nand_dt_probe(struct udevice *dev)
|
|
{
|
|
struct cadence_nand_info *cadence = dev_get_priv(dev);
|
|
const struct udevice_id *of_id;
|
|
const struct cadence_nand_dt_devdata *devdata;
|
|
struct resource res;
|
|
int ret;
|
|
u32 val;
|
|
|
|
if (!dev) {
|
|
dev_warn(dev, "Device ptr null\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
of_id = &cadence_nand_dt_ids[0];
|
|
devdata = (struct cadence_nand_dt_devdata *)of_id->data;
|
|
|
|
cadence->caps1 = devdata;
|
|
cadence->dev = dev;
|
|
|
|
ret = clk_get_by_index(dev, 0, &cadence->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = clk_enable(&cadence->clk);
|
|
if (ret && ret != -ENOSYS && ret != -ENOMEM) {
|
|
dev_err(dev, "failed to enable clock\n");
|
|
return ret;
|
|
}
|
|
cadence->nf_clk_rate = clk_get_rate(&cadence->clk);
|
|
|
|
ret = reset_get_by_index(dev, 1, &cadence->softphy_reset);
|
|
if (ret) {
|
|
if (ret != -ENOMEM)
|
|
dev_warn(dev, "Can't get softphy_reset: %d\n", ret);
|
|
} else {
|
|
reset_deassert(&cadence->softphy_reset);
|
|
}
|
|
|
|
ret = reset_get_by_index(dev, 0, &cadence->nand_reset);
|
|
if (ret) {
|
|
if (ret != -ENOMEM)
|
|
dev_warn(dev, "Can't get nand_reset: %d\n", ret);
|
|
} else {
|
|
reset_deassert(&cadence->nand_reset);
|
|
}
|
|
|
|
ret = dev_read_resource_byname(dev, "reg", &res);
|
|
if (ret)
|
|
return ret;
|
|
cadence->reg = devm_ioremap(dev, res.start, resource_size(&res));
|
|
|
|
ret = dev_read_resource_byname(dev, "sdma", &res);
|
|
if (ret)
|
|
return ret;
|
|
cadence->io.dma = res.start;
|
|
cadence->io.virt = devm_ioremap(dev, res.start, resource_size(&res));
|
|
|
|
ret = ofnode_read_u32(dev_ofnode(dev->parent),
|
|
"cdns,board-delay-ps", &val);
|
|
if (ret) {
|
|
val = 4830;
|
|
dev_info(cadence->dev,
|
|
"missing cdns,board-delay-ps property, %d was set\n",
|
|
val);
|
|
}
|
|
cadence->board_delay = val;
|
|
|
|
ret = cadence_nand_init(cadence);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
U_BOOT_DRIVER(cadence_nand_dt) = {
|
|
.name = "cadence-nand-dt",
|
|
.id = UCLASS_MTD,
|
|
.of_match = cadence_nand_dt_ids,
|
|
.probe = cadence_nand_dt_probe,
|
|
.priv_auto = sizeof(struct cadence_nand_info),
|
|
};
|
|
|
|
void board_nand_init(void)
|
|
{
|
|
struct udevice *dev;
|
|
int ret;
|
|
|
|
ret = uclass_get_device_by_driver(UCLASS_MTD,
|
|
DM_DRIVER_GET(cadence_nand_dt),
|
|
&dev);
|
|
if (ret && ret != -ENODEV)
|
|
pr_err("Failed to initialize Cadence NAND controller. (error %d)\n",
|
|
ret);
|
|
}
|