u-boot/drivers/mtd/nand/raw/cadence_nand.c
Dinesh Maniyam 2b2745b189 drivers: mtd: nand: cadence: Use bounce buffer
Enable nand to use bounce buffer. In bounce buffer,
read/write buf will use cadence->buf which has been allocated
using malloc. This will align the memory and avoid memory to be
allocated in different addresses.

Signed-off-by: Dinesh Maniyam <dinesh.maniyam@intel.com>
2025-03-15 10:35:01 +01:00

2423 lines
63 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Cadence NAND flash controller driver
*
* Copyright (C) 2019 Cadence
*
* Author: Piotr Sroka <piotrs@cadence.com>
*
*/
#include <cadence-nand.h>
#include <clk.h>
#include <dm.h>
#include <hang.h>
#include <malloc.h>
#include <memalign.h>
#include <nand.h>
#include <reset.h>
#include <wait_bit.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <linux/bitfield.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/printk.h>
#include <linux/sizes.h>
static inline struct
cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
{
return container_of(chip, struct cdns_nand_chip, chip);
}
static inline struct
cadence_nand_info *to_cadence_nand_info(struct nand_hw_control *controller)
{
return container_of(controller, struct cadence_nand_info, controller);
}
static bool
cadence_nand_dma_buf_ok(struct cadence_nand_info *cadence, const void *buf,
u32 buf_len)
{
u8 data_dma_width = cadence->caps2.data_dma_width;
return buf &&
likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
}
static int cadence_nand_wait_for_value(struct cadence_nand_info *cadence,
u32 reg_offset, u32 timeout_us,
u32 mask, bool is_clear)
{
u32 val;
int ret;
ret = readl_poll_sleep_timeout(cadence->reg + reg_offset,
val, !(val & mask) == is_clear,
10, timeout_us);
if (ret < 0) {
dev_err(cadence->dev,
"Timeout while waiting for reg %x with mask %x is clear %d\n",
reg_offset, mask, is_clear);
}
return ret;
}
static int cadence_nand_set_ecc_enable(struct cadence_nand_info *cadence,
bool enable)
{
u32 reg;
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
TIMEOUT_US,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
if (enable)
reg |= ECC_CONFIG_0_ECC_EN;
else
reg &= ~ECC_CONFIG_0_ECC_EN;
writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
return 0;
}
static void cadence_nand_set_ecc_strength(struct cadence_nand_info *cadence,
u8 corr_str_idx)
{
u32 reg;
if (cadence->curr_corr_str_idx == corr_str_idx)
return;
reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
reg &= ~ECC_CONFIG_0_CORR_STR;
reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
cadence->curr_corr_str_idx = corr_str_idx;
}
static int cadence_nand_get_ecc_strength_idx(struct cadence_nand_info *cadence,
u8 strength)
{
int i, corr_str_idx = -1;
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
if (cadence->ecc_strengths[i] == strength) {
corr_str_idx = i;
break;
}
}
return corr_str_idx;
}
static int cadence_nand_set_skip_marker_val(struct cadence_nand_info *cadence,
u16 marker_value)
{
u32 reg;
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
TIMEOUT_US,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
reg &= ~SKIP_BYTES_MARKER_VALUE;
reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
marker_value);
writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
return 0;
}
static int cadence_nand_set_skip_bytes_conf(struct cadence_nand_info *cadence,
u8 num_of_bytes,
u32 offset_value,
int enable)
{
u32 reg, skip_bytes_offset;
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
TIMEOUT_US,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
if (!enable) {
num_of_bytes = 0;
offset_value = 0;
}
reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
reg &= ~SKIP_BYTES_NUM_OF_BYTES;
reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
num_of_bytes);
skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
offset_value);
writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
writel_relaxed(skip_bytes_offset, cadence->reg + SKIP_BYTES_OFFSET);
return 0;
}
/* Functions enables/disables hardware detection of erased data */
static void cadence_nand_set_erase_detection(struct cadence_nand_info *cadence,
bool enable,
u8 bitflips_threshold)
{
u32 reg;
reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
if (enable)
reg |= ECC_CONFIG_0_ERASE_DET_EN;
else
reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
writel_relaxed(bitflips_threshold, cadence->reg + ECC_CONFIG_1);
}
static int cadence_nand_set_access_width16(struct cadence_nand_info *cadence,
bool bit_bus16)
{
u32 reg;
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
TIMEOUT_US,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
reg = readl_relaxed(cadence->reg + COMMON_SET);
if (!bit_bus16)
reg &= ~COMMON_SET_DEVICE_16BIT;
else
reg |= COMMON_SET_DEVICE_16BIT;
writel_relaxed(reg, cadence->reg + COMMON_SET);
return 0;
}
static void
cadence_nand_clear_interrupt(struct cadence_nand_info *cadence,
struct cadence_nand_irq_status *irq_status)
{
writel_relaxed(irq_status->status, cadence->reg + INTR_STATUS);
writel_relaxed(irq_status->trd_status,
cadence->reg + TRD_COMP_INT_STATUS);
writel_relaxed(irq_status->trd_error,
cadence->reg + TRD_ERR_INT_STATUS);
}
static void
cadence_nand_read_int_status(struct cadence_nand_info *cadence,
struct cadence_nand_irq_status *irq_status)
{
irq_status->status = readl_relaxed(cadence->reg + INTR_STATUS);
irq_status->trd_status = readl_relaxed(cadence->reg
+ TRD_COMP_INT_STATUS);
irq_status->trd_error = readl_relaxed(cadence->reg
+ TRD_ERR_INT_STATUS);
}
static u32 irq_detected(struct cadence_nand_info *cadence,
struct cadence_nand_irq_status *irq_status)
{
cadence_nand_read_int_status(cadence, irq_status);
return irq_status->status || irq_status->trd_status ||
irq_status->trd_error;
}
static void cadence_nand_reset_irq(struct cadence_nand_info *cadence)
{
memset(&cadence->irq_status, 0, sizeof(cadence->irq_status));
memset(&cadence->irq_mask, 0, sizeof(cadence->irq_mask));
}
/*
* This is the interrupt service routine. It handles all interrupts
* sent to this device.
*/
static irqreturn_t cadence_nand_isr(struct cadence_nand_info *cadence)
{
struct cadence_nand_irq_status irq_status;
irqreturn_t result = IRQ_NONE;
if (irq_detected(cadence, &irq_status)) {
/* Handle interrupt. */
/* First acknowledge it. */
cadence_nand_clear_interrupt(cadence, &irq_status);
/* Status in the device context for someone to read. */
cadence->irq_status.status |= irq_status.status;
cadence->irq_status.trd_status |= irq_status.trd_status;
cadence->irq_status.trd_error |= irq_status.trd_error;
/* Tell the OS that we've handled this. */
result = IRQ_HANDLED;
}
return result;
}
static void cadence_nand_set_irq_mask(struct cadence_nand_info *cadence,
struct cadence_nand_irq_status *irq_mask)
{
writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
cadence->reg + INTR_ENABLE);
writel_relaxed(irq_mask->trd_error,
cadence->reg + TRD_ERR_INT_STATUS_EN);
}
static void
cadence_nand_wait_for_irq(struct cadence_nand_info *cadence,
struct cadence_nand_irq_status *irq_mask,
struct cadence_nand_irq_status *irq_status)
{
irqreturn_t result = IRQ_NONE;
u32 start = get_timer(0);
while (get_timer(start) < TIMEOUT_US) {
result = cadence_nand_isr(cadence);
if (result == IRQ_HANDLED) {
*irq_status = cadence->irq_status;
break;
}
udelay(1);
}
if (!result) {
/* Timeout error. */
dev_err(cadence->dev, "timeout occurred:\n");
dev_err(cadence->dev, "\tstatus = 0x%x, mask = 0x%x\n",
irq_status->status, irq_mask->status);
dev_err(cadence->dev,
"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
irq_status->trd_status, irq_mask->trd_status);
dev_err(cadence->dev,
"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
irq_status->trd_error, irq_mask->trd_error);
}
}
/* Execute generic command on NAND controller. */
static int cadence_nand_generic_cmd_send(struct cadence_nand_info *cadence,
u8 chip_nr,
u64 mini_ctrl_cmd)
{
u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
TIMEOUT_US,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
cadence_nand_reset_irq(cadence);
writel_relaxed(mini_ctrl_cmd_l, cadence->reg + CMD_REG2);
writel_relaxed(mini_ctrl_cmd_h, cadence->reg + CMD_REG3);
/* Select generic command. */
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
/* Thread number. */
reg |= FIELD_PREP(CMD_REG0_TN, 0);
/* Issue command. */
writel_relaxed(reg, cadence->reg + CMD_REG0);
cadence->buf_index = 0;
return 0;
}
/* Wait for data on slave DMA interface. */
static int cadence_nand_wait_on_sdma(struct cadence_nand_info *cadence, u8 *out_sdma_trd,
u32 *out_sdma_size)
{
struct cadence_nand_irq_status irq_mask, irq_status;
irq_mask.trd_status = 0;
irq_mask.trd_error = 0;
irq_mask.status = INTR_STATUS_SDMA_TRIGG
| INTR_STATUS_SDMA_ERR
| INTR_STATUS_UNSUPP_CMD;
cadence_nand_set_irq_mask(cadence, &irq_mask);
cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
if (irq_status.status == 0) {
dev_err(cadence->dev, "Timeout while waiting for SDMA\n");
return -ETIMEDOUT;
}
if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
*out_sdma_size = readl_relaxed(cadence->reg + SDMA_SIZE);
*out_sdma_trd = readl_relaxed(cadence->reg + SDMA_TRD_NUM);
*out_sdma_trd =
FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
} else {
dev_err(cadence->dev, "SDMA error - irq_status %x\n",
irq_status.status);
return -EIO;
}
return 0;
}
static void cadence_nand_get_caps(struct cadence_nand_info *cadence)
{
u32 reg;
reg = readl_relaxed(cadence->reg + CTRL_FEATURES);
cadence->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
cadence->caps2.data_dma_width = 8;
else
cadence->caps2.data_dma_width = 4;
if (reg & CTRL_FEATURES_CONTROL_DATA)
cadence->caps2.data_control_supp = true;
if (reg & (CTRL_FEATURES_NVDDR_2_3
| CTRL_FEATURES_NVDDR))
cadence->caps2.is_phy_type_dll = true;
}
/* Prepare CDMA descriptor. */
static void
cadence_nand_cdma_desc_prepare(struct cadence_nand_info *cadence,
char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
dma_addr_t ctrl_data_ptr, u16 ctype)
{
struct cadence_nand_cdma_desc *cdma_desc = cadence->cdma_desc;
memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
/* Set fields for one descriptor. */
cdma_desc->flash_pointer = flash_ptr;
if (cadence->ctrl_rev >= 13)
cdma_desc->bank = nf_mem;
else
cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
cdma_desc->command_flags |= CDMA_CF_INT;
cdma_desc->memory_pointer = mem_ptr;
cdma_desc->status = 0;
cdma_desc->sync_flag_pointer = 0;
cdma_desc->sync_arguments = 0;
cdma_desc->command_type = ctype;
cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
flush_cache((dma_addr_t)cadence->cdma_desc,
ROUND(sizeof(struct cadence_nand_cdma_desc),
ARCH_DMA_MINALIGN));
}
static u8 cadence_nand_check_desc_error(struct cadence_nand_info *cadence,
u32 desc_status)
{
if (desc_status & CDMA_CS_ERP)
return STAT_ERASED;
if (desc_status & CDMA_CS_UNCE)
return STAT_ECC_UNCORR;
if (desc_status & CDMA_CS_ERR) {
dev_err(cadence->dev, ":CDMA desc error flag detected.\n");
return STAT_FAIL;
}
if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
return STAT_ECC_CORR;
return STAT_FAIL;
}
static int cadence_nand_cdma_finish(struct cadence_nand_info *cadence)
{
struct cadence_nand_cdma_desc *desc_ptr = cadence->cdma_desc;
u8 status = STAT_BUSY;
invalidate_dcache_range((dma_addr_t)cadence->cdma_desc,
(dma_addr_t)cadence->cdma_desc +
ROUND(sizeof(struct cadence_nand_cdma_desc),
ARCH_DMA_MINALIGN));
if (desc_ptr->status & CDMA_CS_FAIL) {
status = cadence_nand_check_desc_error(cadence,
desc_ptr->status);
dev_err(cadence->dev, ":CDMA error %x\n", desc_ptr->status);
} else if (desc_ptr->status & CDMA_CS_COMP) {
/* Descriptor finished with no errors. */
if (desc_ptr->command_flags & CDMA_CF_CONT) {
dev_info(cadence->dev, "DMA unsupported flag is set");
status = STAT_UNKNOWN;
} else {
/* Last descriptor. */
status = STAT_OK;
}
}
return status;
}
static int cadence_nand_cdma_send(struct cadence_nand_info *cadence,
u8 thread)
{
u32 reg;
int status;
/* Wait for thread ready. */
status = cadence_nand_wait_for_value(cadence, TRD_STATUS,
TIMEOUT_US,
BIT(thread), true);
if (status)
return status;
cadence_nand_reset_irq(cadence);
writel_relaxed((u32)cadence->dma_cdma_desc,
cadence->reg + CMD_REG2);
writel_relaxed(0, cadence->reg + CMD_REG3);
/* Select CDMA mode. */
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
/* Thread number. */
reg |= FIELD_PREP(CMD_REG0_TN, thread);
/* Issue command. */
writel_relaxed(reg, cadence->reg + CMD_REG0);
return 0;
}
/* Send SDMA command and wait for finish. */
static u32
cadence_nand_cdma_send_and_wait(struct cadence_nand_info *cadence,
u8 thread)
{
struct cadence_nand_irq_status irq_mask, irq_status = {0};
int status;
u32 val;
irq_mask.trd_status = BIT(thread);
irq_mask.trd_error = BIT(thread);
irq_mask.status = INTR_STATUS_CDMA_TERR;
cadence_nand_set_irq_mask(cadence, &irq_mask);
status = cadence_nand_cdma_send(cadence, thread);
if (status)
return status;
/* Make sure the descriptor processing is complete */
status = readl_poll_timeout(cadence->reg + TRD_COMP_INT_STATUS, val,
(val & BIT(thread)), TIMEOUT_US);
if (status) {
pr_err("cmd thread completion timeout!\n");
return status;
}
cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
if (irq_status.status == 0 && irq_status.trd_status == 0 &&
irq_status.trd_error == 0) {
dev_err(cadence->dev, "CDMA command timeout\n");
return -ETIMEDOUT;
}
if (irq_status.status & irq_mask.status) {
dev_err(cadence->dev, "CDMA command failed\n");
return -EIO;
}
return 0;
}
/*
* ECC size depends on configured ECC strength and on maximum supported
* ECC step size.
*/
static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
{
int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
return ALIGN(nbytes, 2);
}
#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
static int \
cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
int strength)\
{\
return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
}
CADENCE_NAND_CALC_ECC_BYTES(256)
CADENCE_NAND_CALC_ECC_BYTES(512)
CADENCE_NAND_CALC_ECC_BYTES(1024)
CADENCE_NAND_CALC_ECC_BYTES(2048)
CADENCE_NAND_CALC_ECC_BYTES(4096)
/* Function reads BCH capabilities. */
static int cadence_nand_read_bch_caps(struct cadence_nand_info *cadence)
{
struct nand_ecc_caps *ecc_caps = &cadence->ecc_caps;
int max_step_size = 0, nstrengths, i;
u32 reg;
reg = readl_relaxed(cadence->reg + BCH_CFG_3);
cadence->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
if (cadence->bch_metadata_size < 4) {
dev_err(cadence->dev,
"Driver needs at least 4 bytes of BCH meta data\n");
return -EIO;
}
reg = readl_relaxed(cadence->reg + BCH_CFG_0);
cadence->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
cadence->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
cadence->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
cadence->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
reg = readl_relaxed(cadence->reg + BCH_CFG_1);
cadence->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
cadence->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
cadence->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
cadence->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
reg = readl_relaxed(cadence->reg + BCH_CFG_2);
cadence->ecc_stepinfos[0].stepsize =
FIELD_GET(BCH_CFG_2_SECT_0, reg);
cadence->ecc_stepinfos[1].stepsize =
FIELD_GET(BCH_CFG_2_SECT_1, reg);
nstrengths = 0;
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
if (cadence->ecc_strengths[i] != 0)
nstrengths++;
}
ecc_caps->nstepinfos = 0;
for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
/* ECC strengths are common for all step infos. */
cadence->ecc_stepinfos[i].nstrengths = nstrengths;
cadence->ecc_stepinfos[i].strengths =
cadence->ecc_strengths;
if (cadence->ecc_stepinfos[i].stepsize != 0)
ecc_caps->nstepinfos++;
if (cadence->ecc_stepinfos[i].stepsize > max_step_size)
max_step_size = cadence->ecc_stepinfos[i].stepsize;
}
ecc_caps->stepinfos = &cadence->ecc_stepinfos[0];
switch (max_step_size) {
case 256:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
break;
case 512:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
break;
case 1024:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
break;
case 2048:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
break;
case 4096:
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
break;
default:
dev_err(cadence->dev,
"Unsupported sector size(ecc step size) %d\n",
max_step_size);
return -EIO;
}
return 0;
}
/* Hardware initialization. */
static int cadence_nand_hw_init(struct cadence_nand_info *cadence)
{
int status;
u32 reg;
status = cadence_nand_wait_for_value(cadence, CTRL_STATUS,
TIMEOUT_US,
CTRL_STATUS_INIT_COMP, false);
if (status)
return status;
reg = readl_relaxed(cadence->reg + CTRL_VERSION);
cadence->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
dev_info(cadence->dev,
"%s: cadence nand controller version reg %x\n",
__func__, reg);
/* Disable cache and multiplane. */
writel_relaxed(0, cadence->reg + MULTIPLANE_CFG);
writel_relaxed(0, cadence->reg + CACHE_CFG);
/* Clear all interrupts. */
writel_relaxed(0xFFFFFFFF, cadence->reg + INTR_STATUS);
cadence_nand_get_caps(cadence);
if (cadence_nand_read_bch_caps(cadence))
return -EIO;
/*
* Set IO width access to 8.
* It is because during SW device discovering width access
* is expected to be 8.
*/
status = cadence_nand_set_access_width16(cadence, false);
return status;
}
#define TT_MAIN_OOB_AREAS 2
#define TT_RAW_PAGE 3
#define TT_BBM 4
#define TT_MAIN_OOB_AREA_EXT 5
/* Prepare size of data to transfer. */
static void
cadence_nand_prepare_data_size(struct mtd_info *mtd,
int transfer_type)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
u32 sec_size = 0, offset = 0, sec_cnt = 1;
u32 last_sec_size = cdns_chip->sector_size;
u32 data_ctrl_size = 0;
u32 reg = 0;
if (cadence->curr_trans_type == transfer_type)
return;
switch (transfer_type) {
case TT_MAIN_OOB_AREA_EXT:
sec_cnt = cdns_chip->sector_count;
sec_size = cdns_chip->sector_size;
data_ctrl_size = cdns_chip->avail_oob_size;
break;
case TT_MAIN_OOB_AREAS:
sec_cnt = cdns_chip->sector_count;
last_sec_size = cdns_chip->sector_size
+ cdns_chip->avail_oob_size;
sec_size = cdns_chip->sector_size;
break;
case TT_RAW_PAGE:
last_sec_size = mtd->writesize + mtd->oobsize;
break;
case TT_BBM:
offset = mtd->writesize + cdns_chip->bbm_offs;
last_sec_size = 8;
break;
}
reg = 0;
reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
writel_relaxed(reg, cadence->reg + TRAN_CFG_0);
reg = 0;
reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
writel_relaxed(reg, cadence->reg + TRAN_CFG_1);
if (cadence->caps2.data_control_supp) {
reg = readl_relaxed(cadence->reg + CONTROL_DATA_CTRL);
reg &= ~CONTROL_DATA_CTRL_SIZE;
reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
writel_relaxed(reg, cadence->reg + CONTROL_DATA_CTRL);
}
cadence->curr_trans_type = transfer_type;
}
static int
cadence_nand_cdma_transfer(struct cadence_nand_info *cadence, u8 chip_nr,
int page, void *buf, void *ctrl_dat, u32 buf_size,
u32 ctrl_dat_size, enum dma_data_direction dir,
bool with_ecc)
{
dma_addr_t dma_buf, dma_ctrl_dat = 0;
u8 thread_nr = chip_nr;
int status;
u16 ctype;
if (dir == DMA_FROM_DEVICE)
ctype = CDMA_CT_RD;
else
ctype = CDMA_CT_WR;
cadence_nand_set_ecc_enable(cadence, with_ecc);
dma_buf = dma_map_single(buf, buf_size, dir);
if (dma_mapping_error(cadence->dev, dma_buf)) {
dev_err(cadence->dev, "Failed to map DMA buffer\n");
return -EIO;
}
if (ctrl_dat && ctrl_dat_size) {
dma_ctrl_dat = dma_map_single(ctrl_dat,
ctrl_dat_size, dir);
if (dma_mapping_error(cadence->dev, dma_ctrl_dat)) {
dma_unmap_single(dma_buf,
buf_size, dir);
dev_err(cadence->dev, "Failed to map DMA buffer\n");
return -EIO;
}
}
cadence_nand_cdma_desc_prepare(cadence, chip_nr, page,
dma_buf, dma_ctrl_dat, ctype);
status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
dma_unmap_single(dma_buf,
buf_size, dir);
if (ctrl_dat && ctrl_dat_size)
dma_unmap_single(dma_ctrl_dat,
ctrl_dat_size, dir);
if (status)
return status;
return cadence_nand_cdma_finish(cadence);
}
static void cadence_nand_set_timings(struct cadence_nand_info *cadence,
struct cadence_nand_timings *t)
{
writel_relaxed(t->async_toggle_timings,
cadence->reg + ASYNC_TOGGLE_TIMINGS);
writel_relaxed(t->timings0, cadence->reg + TIMINGS0);
writel_relaxed(t->timings1, cadence->reg + TIMINGS1);
writel_relaxed(t->timings2, cadence->reg + TIMINGS2);
if (cadence->caps2.is_phy_type_dll)
writel_relaxed(t->dll_phy_ctrl, cadence->reg + DLL_PHY_CTRL);
writel_relaxed(t->phy_ctrl, cadence->reg + PHY_CTRL);
if (cadence->caps2.is_phy_type_dll) {
writel_relaxed(0, cadence->reg + PHY_TSEL);
writel_relaxed(2, cadence->reg + PHY_DQ_TIMING);
writel_relaxed(t->phy_dqs_timing,
cadence->reg + PHY_DQS_TIMING);
writel_relaxed(t->phy_gate_lpbk_ctrl,
cadence->reg + PHY_GATE_LPBK_CTRL);
writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
cadence->reg + PHY_DLL_MASTER_CTRL);
writel_relaxed(0, cadence->reg + PHY_DLL_SLAVE_CTRL);
}
}
static int cadence_nand_select_target(struct nand_chip *chip)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
if (chip == cadence->selected_chip)
return 0;
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
TIMEOUT_US,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
cadence_nand_set_timings(cadence, &cdns_chip->timings);
cadence_nand_set_ecc_strength(cadence,
cdns_chip->corr_str_idx);
cadence_nand_set_erase_detection(cadence, true,
chip->ecc.strength);
cadence->curr_trans_type = -1;
cadence->selected_chip = chip;
return 0;
}
static int cadence_nand_erase(struct mtd_info *mtd, int page)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
int status;
u8 thread_nr = cdns_chip->cs[chip->cur_cs];
cadence_nand_cdma_desc_prepare(cadence,
cdns_chip->cs[chip->cur_cs],
page, 0, 0,
CDMA_CT_ERASE);
status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
if (status) {
dev_err(cadence->dev, "erase operation failed\n");
return -EIO;
}
status = cadence_nand_cdma_finish(cadence);
if (status)
return status;
return 0;
}
static int cadence_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip, int oobavail)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
int ret;
/*
* If .size and .strength are already set (usually by DT),
* check if they are supported by this controller.
*/
if (chip->ecc.size && chip->ecc.strength)
return nand_check_ecc_caps(chip, &cadence->ecc_caps, oobavail);
/*
* We want .size and .strength closest to the chip's requirement
* unless NAND_ECC_MAXIMIZE is requested.
*/
if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
ret = nand_match_ecc_req(chip, &cadence->ecc_caps, oobavail);
if (!ret)
return 0;
}
/* Max ECC strength is the last thing we can do */
return nand_maximize_ecc(chip, &cadence->ecc_caps, oobavail);
}
static int cadence_nand_read_bbm(struct mtd_info *mtd, struct nand_chip *chip, int page, u8 *buf)
{
int status;
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
cadence_nand_prepare_data_size(mtd, TT_BBM);
cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
/*
* Read only bad block marker from offset
* defined by a memory manufacturer.
*/
status = cadence_nand_cdma_transfer(cadence,
cdns_chip->cs[chip->cur_cs],
page, cadence->buf, NULL,
mtd->oobsize,
0, DMA_FROM_DEVICE, false);
if (status) {
dev_err(cadence->dev, "read BBM failed\n");
return -EIO;
}
memcpy(buf + cdns_chip->bbm_offs, cadence->buf, cdns_chip->bbm_len);
return 0;
}
static int cadence_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const u8 *buf, int oob_required, int page)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
int status;
u16 marker_val = 0xFFFF;
status = cadence_nand_select_target(chip);
if (status)
return status;
cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
mtd->writesize
+ cdns_chip->bbm_offs,
1);
if (oob_required) {
marker_val = *(u16 *)(chip->oob_poi
+ cdns_chip->bbm_offs);
} else {
/* Set oob data to 0xFF. */
memset(cadence->buf + mtd->writesize, 0xFF,
cdns_chip->avail_oob_size);
}
cadence_nand_set_skip_marker_val(cadence, marker_val);
cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
cadence->caps2.data_control_supp && !(chip->options & NAND_USE_BOUNCE_BUFFER)) {
u8 *oob;
if (oob_required)
oob = chip->oob_poi;
else
oob = cadence->buf + mtd->writesize;
status = cadence_nand_cdma_transfer(cadence,
cdns_chip->cs[chip->cur_cs],
page, (void *)buf, oob,
mtd->writesize,
cdns_chip->avail_oob_size,
DMA_TO_DEVICE, true);
if (status) {
dev_err(cadence->dev, "write page failed\n");
return -EIO;
}
return 0;
}
if (oob_required) {
/* Transfer the data to the oob area. */
memcpy(cadence->buf + mtd->writesize, chip->oob_poi,
cdns_chip->avail_oob_size);
}
memcpy(cadence->buf, buf, mtd->writesize);
cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
return cadence_nand_cdma_transfer(cadence,
cdns_chip->cs[chip->cur_cs],
page, cadence->buf, NULL,
mtd->writesize
+ cdns_chip->avail_oob_size,
0, DMA_TO_DEVICE, true);
}
static int cadence_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
memset(cadence->buf, 0xFF, mtd->writesize);
return cadence_nand_write_page(mtd, chip, cadence->buf, 1, page);
}
static int cadence_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const u8 *buf, int oob_required, int page)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
int writesize = mtd->writesize;
int oobsize = mtd->oobsize;
int ecc_steps = chip->ecc.steps;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
void *tmp_buf = cadence->buf;
int oob_skip = cdns_chip->bbm_len;
size_t size = writesize + oobsize;
int i, pos, len;
int status;
status = cadence_nand_select_target(chip);
if (status)
return status;
/*
* Fill the buffer with 0xff first except the full page transfer.
* This simplifies the logic.
*/
if (!buf || !oob_required)
memset(tmp_buf, 0xff, size);
cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
/* Arrange the buffer for syndrome payload/ecc layout. */
if (buf) {
for (i = 0; i < ecc_steps; i++) {
pos = i * (ecc_size + ecc_bytes);
len = ecc_size;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(tmp_buf + pos, buf, len);
buf += len;
if (len < ecc_size) {
len = ecc_size - len;
memcpy(tmp_buf + writesize + oob_skip, buf,
len);
buf += len;
}
}
}
if (oob_required) {
const u8 *oob = chip->oob_poi;
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
(cdns_chip->sector_size + chip->ecc.bytes)
+ cdns_chip->sector_size + oob_skip;
/* BBM at the beginning of the OOB area. */
memcpy(tmp_buf + writesize, oob, oob_skip);
/* OOB free. */
memcpy(tmp_buf + oob_data_offset, oob,
cdns_chip->avail_oob_size);
oob += cdns_chip->avail_oob_size;
/* OOB ECC. */
for (i = 0; i < ecc_steps; i++) {
pos = ecc_size + i * (ecc_size + ecc_bytes);
if (i == (ecc_steps - 1))
pos += cdns_chip->avail_oob_size;
len = ecc_bytes;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(tmp_buf + pos, oob, len);
oob += len;
if (len < ecc_bytes) {
len = ecc_bytes - len;
memcpy(tmp_buf + writesize + oob_skip, oob,
len);
oob += len;
}
}
}
cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
return cadence_nand_cdma_transfer(cadence,
cdns_chip->cs[chip->cur_cs],
page, cadence->buf, NULL,
mtd->writesize +
mtd->oobsize,
0, DMA_TO_DEVICE, false);
}
static int cadence_nand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return cadence_nand_write_page_raw(mtd, chip, NULL, true, page);
}
static int cadence_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
int status;
int ecc_err_count = 0;
status = cadence_nand_select_target(chip);
if (status)
return status;
cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
mtd->writesize
+ cdns_chip->bbm_offs, 1);
/*
* If data buffer can be accessed by DMA and data_control feature
* is supported then transfer data and oob directly.
*/
if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
cadence->caps2.data_control_supp && !(chip->options & NAND_USE_BOUNCE_BUFFER)) {
u8 *oob;
if (oob_required)
oob = chip->oob_poi;
else
oob = cadence->buf + mtd->writesize;
cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
status = cadence_nand_cdma_transfer(cadence,
cdns_chip->cs[chip->cur_cs],
page, buf, oob,
mtd->writesize,
cdns_chip->avail_oob_size,
DMA_FROM_DEVICE, true);
/* Otherwise use bounce buffer. */
} else {
cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
status = cadence_nand_cdma_transfer(cadence,
cdns_chip->cs[chip->cur_cs],
page, cadence->buf,
NULL, mtd->writesize
+ cdns_chip->avail_oob_size,
0, DMA_FROM_DEVICE, true);
memcpy(buf, cadence->buf, mtd->writesize);
if (oob_required)
memcpy(chip->oob_poi,
cadence->buf + mtd->writesize,
mtd->oobsize);
}
switch (status) {
case STAT_ECC_UNCORR:
mtd->ecc_stats.failed++;
ecc_err_count++;
break;
case STAT_ECC_CORR:
ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
cadence->cdma_desc->status);
mtd->ecc_stats.corrected += ecc_err_count;
break;
case STAT_ERASED:
case STAT_OK:
break;
default:
dev_err(cadence->dev, "read page failed\n");
return -EIO;
}
if (oob_required)
if (cadence_nand_read_bbm(mtd, chip, page, chip->oob_poi))
return -EIO;
return ecc_err_count;
}
static int cadence_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
return cadence_nand_read_page(mtd, chip, cadence->buf, 1, page);
}
static int cadence_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
int oob_skip = cdns_chip->bbm_len;
int writesize = mtd->writesize;
int ecc_steps = chip->ecc.steps;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
void *tmp_buf = cadence->buf;
int i, pos, len;
int status;
status = cadence_nand_select_target(chip);
if (status)
return status;
cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
status = cadence_nand_cdma_transfer(cadence,
cdns_chip->cs[chip->cur_cs],
page, cadence->buf, NULL,
mtd->writesize
+ mtd->oobsize,
0, DMA_FROM_DEVICE, false);
switch (status) {
case STAT_ERASED:
case STAT_OK:
break;
default:
dev_err(cadence->dev, "read raw page failed\n");
return -EIO;
}
/* Arrange the buffer for syndrome payload/ecc layout. */
if (buf) {
for (i = 0; i < ecc_steps; i++) {
pos = i * (ecc_size + ecc_bytes);
len = ecc_size;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(buf, tmp_buf + pos, len);
buf += len;
if (len < ecc_size) {
len = ecc_size - len;
memcpy(buf, tmp_buf + writesize + oob_skip,
len);
buf += len;
}
}
}
if (oob_required) {
u8 *oob = chip->oob_poi;
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
(cdns_chip->sector_size + chip->ecc.bytes)
+ cdns_chip->sector_size + oob_skip;
/* OOB free. */
memcpy(oob, tmp_buf + oob_data_offset,
cdns_chip->avail_oob_size);
/* BBM at the beginning of the OOB area. */
memcpy(oob, tmp_buf + writesize, oob_skip);
oob += cdns_chip->avail_oob_size;
/* OOB ECC */
for (i = 0; i < ecc_steps; i++) {
pos = ecc_size + i * (ecc_size + ecc_bytes);
len = ecc_bytes;
if (i == (ecc_steps - 1))
pos += cdns_chip->avail_oob_size;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(oob, tmp_buf + pos, len);
oob += len;
if (len < ecc_bytes) {
len = ecc_bytes - len;
memcpy(oob, tmp_buf + writesize + oob_skip,
len);
oob += len;
}
}
}
return 0;
}
static int cadence_nand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return cadence_nand_read_page_raw(mtd, chip, NULL, true, page);
}
static void cadence_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
u8 thread_nr = 0;
u32 sdma_size;
int status;
int len_in_words = len >> 2;
/* Wait until slave DMA interface is ready to data transfer. */
status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
if (status) {
pr_err("Wait on sdma failed:%x\n", status);
hang();
}
if (!cadence->caps1->has_dma) {
readsq(cadence->io.virt, buf, len_in_words);
if (sdma_size > len) {
memcpy(cadence->buf, buf + (len_in_words << 2),
len - (len_in_words << 2));
readsl(cadence->io.virt, cadence->buf,
sdma_size / 4 - len_in_words);
}
}
}
static void cadence_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
u8 thread_nr = 0;
u32 sdma_size;
int status;
int len_in_words = len >> 2;
/* Wait until slave DMA interface is ready to data transfer. */
status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
if (status) {
pr_err("Wait on sdma failed:%x\n", status);
hang();
}
if (!cadence->caps1->has_dma) {
writesq(cadence->io.virt, buf, len_in_words);
if (sdma_size > len) {
memcpy(cadence->buf, buf + (len_in_words << 2),
len - (len_in_words << 2));
writesl(cadence->io.virt, cadence->buf,
sdma_size / 4 - len_in_words);
}
}
}
static int cadence_nand_cmd_opcode(struct nand_chip *chip, unsigned int op_id)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
u64 mini_ctrl_cmd = 0;
int ret;
mini_ctrl_cmd |= GCMD_LAY_TWB;
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, GCMD_LAY_INSTR_CMD);
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, op_id);
ret = cadence_nand_generic_cmd_send(cadence,
cdns_chip->cs[chip->cur_cs],
mini_ctrl_cmd);
if (ret)
dev_err(cadence->dev, "send cmd %x failed\n",
op_id);
return ret;
}
static int cadence_nand_cmd_address(struct nand_chip *chip,
unsigned int naddrs, const u8 *addrs)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
u64 address = 0;
u64 mini_ctrl_cmd = 0;
int ret;
int i;
mini_ctrl_cmd |= GCMD_LAY_TWB;
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
GCMD_LAY_INSTR_ADDR);
for (i = 0; i < naddrs; i++)
address |= (u64)addrs[i] << (8 * i);
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
address);
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
naddrs - 1);
ret = cadence_nand_generic_cmd_send(cadence,
cdns_chip->cs[chip->cur_cs],
mini_ctrl_cmd);
if (ret)
pr_err("send address %llx failed\n", address);
return ret;
}
static int cadence_nand_cmd_data(struct nand_chip *chip,
unsigned int len, u8 mode)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
u64 mini_ctrl_cmd = 0;
int ret;
mini_ctrl_cmd |= GCMD_LAY_TWB;
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
GCMD_LAY_INSTR_DATA);
if (mode)
mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, GCMD_DIR_WRITE);
mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
ret = cadence_nand_generic_cmd_send(cadence,
cdns_chip->cs[chip->cur_cs],
mini_ctrl_cmd);
if (ret) {
pr_err("send generic data cmd failed\n");
return ret;
}
return ret;
}
static int cadence_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
int status;
status = cadence_nand_wait_for_value(cadence, RBN_SETINGS,
TIMEOUT_US,
BIT(cdns_chip->cs[chip->cur_cs]),
false);
return status;
}
static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
if (section)
return -ERANGE;
oobregion->offset = cdns_chip->bbm_len;
oobregion->length = cdns_chip->avail_oob_size
- cdns_chip->bbm_len;
return 0;
}
static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
if (section)
return -ERANGE;
oobregion->offset = cdns_chip->avail_oob_size;
oobregion->length = chip->ecc.total;
return 0;
}
static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
.rfree = cadence_nand_ooblayout_free,
.ecc = cadence_nand_ooblayout_ecc,
};
static int calc_cycl(u32 timing, u32 clock)
{
if (timing == 0 || clock == 0)
return 0;
if ((timing % clock) > 0)
return timing / clock;
else
return timing / clock - 1;
}
/* Calculate max data valid window. */
static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
u32 board_delay_skew_min, u32 ext_mode)
{
if (ext_mode == 0)
clk_period /= 2;
return (trp_cnt + 1) * clk_period + trhoh_min +
board_delay_skew_min;
}
/* Calculate data valid window. */
static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
u32 trea_max, u32 ext_mode)
{
if (ext_mode == 0)
clk_period /= 2;
return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
}
static inline int of_get_child_count(const ofnode node)
{
return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node));
}
static int cadence_setup_data_interface(struct mtd_info *mtd, int chipnr,
const struct nand_data_interface *conf)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(mtd_to_nand(mtd));
const struct nand_sdr_timings *sdr;
struct cadence_nand_timings *t = &cdns_chip->timings;
u32 reg;
u32 board_delay = cadence->board_delay;
u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
cadence->nf_clk_rate);
u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
u32 if_skew = cadence->caps1->if_skew;
u32 board_delay_skew_min = board_delay - if_skew;
u32 board_delay_skew_max = board_delay + if_skew;
u32 dqs_sampl_res, phony_dqs_mod;
u32 tdvw, tdvw_min, tdvw_max;
u32 ext_rd_mode, ext_wr_mode;
u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
u32 sampling_point;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
memset(t, 0, sizeof(*t));
/* Sampling point calculation. */
if (cadence->caps2.is_phy_type_dll)
phony_dqs_mod = 2;
else
phony_dqs_mod = 1;
dqs_sampl_res = clk_period / phony_dqs_mod;
tdvw_min = sdr->tREA_max + board_delay_skew_max;
/*
* The idea of those calculation is to get the optimum value
* for tRP and tRH timings. If it is NOT possible to sample data
* with optimal tRP/tRH settings, the parameters will be extended.
* If clk_period is 50ns (the lowest value) this condition is met
* for SDR timing modes 1, 2, 3, 4 and 5.
* If clk_period is 20ns the condition is met only for SDR timing
* mode 5.
*/
if (sdr->tRC_min <= clk_period &&
sdr->tRP_min <= (clk_period / 2) &&
sdr->tREH_min <= (clk_period / 2)) {
/* Performance mode. */
ext_rd_mode = 0;
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
sdr->tREA_max, ext_rd_mode);
tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
board_delay_skew_min,
ext_rd_mode);
/*
* Check if data valid window and sampling point can be found
* and is not on the edge (ie. we have hold margin).
* If not extend the tRP timings.
*/
if (tdvw > 0) {
if (tdvw_max <= tdvw_min ||
(tdvw_max % dqs_sampl_res) == 0) {
/*
* No valid sampling point so the RE pulse need
* to be widen widening by half clock cycle.
*/
ext_rd_mode = 1;
}
} else {
/*
* There is no valid window
* to be able to sample data the tRP need to be widen.
* Very safe calculations are performed here.
*/
trp_cnt = (sdr->tREA_max + board_delay_skew_max
+ dqs_sampl_res) / clk_period;
ext_rd_mode = 1;
}
} else {
/* Extended read mode. */
u32 trh;
ext_rd_mode = 1;
trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
if (sdr->tREH_min >= trh)
trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
else
trh_cnt = calc_cycl(trh, clk_period);
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
sdr->tREA_max, ext_rd_mode);
/*
* Check if data valid window and sampling point can be found
* or if it is at the edge check if previous is valid
* - if not extend the tRP timings.
*/
if (tdvw > 0) {
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
sdr->tRHOH_min,
board_delay_skew_min,
ext_rd_mode);
if ((((tdvw_max / dqs_sampl_res)
* dqs_sampl_res) <= tdvw_min) ||
(((tdvw_max % dqs_sampl_res) == 0) &&
(((tdvw_max / dqs_sampl_res - 1)
* dqs_sampl_res) <= tdvw_min))) {
/*
* Data valid window width is lower than
* sampling resolution and do not hit any
* sampling point to be sure the sampling point
* will be found the RE low pulse width will be
* extended by one clock cycle.
*/
trp_cnt = trp_cnt + 1;
}
} else {
/*
* There is no valid window to be able to sample data.
* The tRP need to be widen.
* Very safe calculations are performed here.
*/
trp_cnt = (sdr->tREA_max + board_delay_skew_max
+ dqs_sampl_res) / clk_period;
}
}
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
sdr->tRHOH_min,
board_delay_skew_min, ext_rd_mode);
if (sdr->tWC_min <= clk_period &&
(sdr->tWP_min + if_skew) <= (clk_period / 2) &&
(sdr->tWH_min + if_skew) <= (clk_period / 2)) {
ext_wr_mode = 0;
} else {
u32 twh;
ext_wr_mode = 1;
twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
clk_period);
twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
if (sdr->tWH_min >= twh)
twh = sdr->tWH_min;
twh_cnt = calc_cycl(twh + if_skew, clk_period);
}
reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
t->async_toggle_timings = reg;
dev_dbg(cadence->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
/*
* If timing exceeds delay field in timing register
* then use maximum value.
*/
if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
else
reg |= TIMINGS0_TCCS;
reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
t->timings0 = reg;
dev_dbg(cadence->dev, "TIMINGS0_SDR\t%x\n", reg);
/* The following is related to single signal so skew is not needed. */
trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
trhz_cnt = trhz_cnt + 1;
twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
/*
* Because of the two stage syncflop the value must be increased by 3
* first value is related with sync, second value is related
* with output if delay.
*/
twb_cnt = twb_cnt + 3 + 5;
/*
* The following is related to the we edge of the random data input
* sequence so skew is not needed.
*/
tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
t->timings1 = reg;
dev_dbg(cadence->dev, "TIMINGS1_SDR\t%x\n", reg);
tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
if (tfeat_cnt < twb_cnt)
tfeat_cnt = twb_cnt;
tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
t->timings2 = reg;
dev_dbg(cadence->dev, "TIMINGS2_SDR\t%x\n", reg);
if (cadence->caps2.is_phy_type_dll) {
reg = DLL_PHY_CTRL_DLL_RST_N;
if (ext_wr_mode)
reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
if (ext_rd_mode)
reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
t->dll_phy_ctrl = reg;
dev_dbg(cadence->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
}
/* Sampling point calculation. */
if ((tdvw_max % dqs_sampl_res) > 0)
sampling_point = tdvw_max / dqs_sampl_res;
else
sampling_point = (tdvw_max / dqs_sampl_res - 1);
if (sampling_point * dqs_sampl_res > tdvw_min) {
dll_phy_dqs_timing =
FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
phony_dqs_timing = sampling_point / phony_dqs_mod;
if ((sampling_point % 2) > 0) {
dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
if ((tdvw_max % dqs_sampl_res) == 0)
/*
* Calculation for sampling point at the edge
* of data and being odd number.
*/
phony_dqs_timing = (tdvw_max / dqs_sampl_res)
/ phony_dqs_mod - 1;
if (!cadence->caps2.is_phy_type_dll)
phony_dqs_timing--;
} else {
phony_dqs_timing--;
}
rd_del_sel = phony_dqs_timing + 3;
} else {
dev_warn(cadence->dev,
"ERROR : cannot find valid sampling point\n");
}
reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
if (cadence->caps2.is_phy_type_dll)
reg |= PHY_CTRL_SDR_DQS;
t->phy_ctrl = reg;
dev_dbg(cadence->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
if (cadence->caps2.is_phy_type_dll) {
dev_dbg(cadence->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
dev_dbg(cadence->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
dev_dbg(cadence->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
dll_phy_dqs_timing);
t->phy_dqs_timing = dll_phy_dqs_timing;
reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
dev_dbg(cadence->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
reg);
t->phy_gate_lpbk_ctrl = reg;
dev_dbg(cadence->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
PHY_DLL_MASTER_CTRL_BYPASS_MODE);
dev_dbg(cadence->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
}
return 0;
}
static int cadence_nand_attach_chip(struct nand_chip *chip)
{
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
static struct nand_ecclayout nand_oob;
u32 ecc_size;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
if (chip->options & NAND_BUSWIDTH_16) {
ret = cadence_nand_set_access_width16(cadence, true);
if (ret)
return ret;
}
chip->options |= NAND_USE_BOUNCE_BUFFER;
chip->bbt_options |= NAND_BBT_USE_FLASH;
chip->bbt_options |= NAND_BBT_NO_OOB;
chip->ecc.mode = NAND_ECC_HW_SYNDROME;
chip->options |= NAND_NO_SUBPAGE_WRITE;
cdns_chip->bbm_offs = chip->badblockpos;
cdns_chip->bbm_offs &= ~0x01;
/* this value should be even number */
cdns_chip->bbm_len = 2;
ret = cadence_ecc_setup(mtd, chip, mtd->oobsize - cdns_chip->bbm_len);
if (ret) {
dev_err(cadence->dev, "ECC configuration failed\n");
return ret;
}
dev_dbg(cadence->dev,
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
/* Error correction configuration. */
cdns_chip->sector_size = chip->ecc.size;
cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
if (cdns_chip->avail_oob_size > cadence->bch_metadata_size)
cdns_chip->avail_oob_size = cadence->bch_metadata_size;
if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
> mtd->oobsize)
cdns_chip->avail_oob_size -= 4;
ret = cadence_nand_get_ecc_strength_idx(cadence, chip->ecc.strength);
if (ret < 0)
return -EINVAL;
cdns_chip->corr_str_idx = (u8)ret;
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
TIMEOUT_US,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
cadence_nand_set_ecc_strength(cadence,
cdns_chip->corr_str_idx);
cadence_nand_set_erase_detection(cadence, true,
chip->ecc.strength);
dev_dbg(cadence->dev,
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
/* Override the default read operations. */
chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
chip->ecc.read_page = cadence_nand_read_page;
chip->ecc.read_page_raw = cadence_nand_read_page_raw;
chip->ecc.write_page = cadence_nand_write_page;
chip->ecc.write_page_raw = cadence_nand_write_page_raw;
chip->ecc.read_oob = cadence_nand_read_oob;
chip->ecc.write_oob = cadence_nand_write_oob;
chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
chip->erase = cadence_nand_erase;
if ((mtd->writesize + mtd->oobsize) > cadence->buf_size)
cadence->buf_size = mtd->writesize + mtd->oobsize;
mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
nand_oob.eccbytes = cdns_chip->chip.ecc.bytes;
cdns_chip->chip.ecc.layout = &nand_oob;
return 0;
}
/* Dummy implementation: we don't support multiple chips */
static void cadence_nand_select_chip(struct mtd_info *mtd, int chipnr)
{
switch (chipnr) {
case -1:
case 0:
break;
default:
WARN_ON(chipnr);
}
}
static int cadence_nand_status(struct mtd_info *mtd, unsigned int command)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
ret = cadence_nand_cmd_opcode(chip, command);
if (ret)
return ret;
ret = cadence_nand_cmd_data(chip, 1, GCMD_DIR_READ);
if (ret)
return ret;
return 0;
}
static int cadence_nand_readid(struct mtd_info *mtd, int offset_in_page, unsigned int command)
{
struct nand_chip *chip = mtd_to_nand(mtd);
u8 addrs = (u8)offset_in_page;
int ret = 0;
ret = cadence_nand_cmd_opcode(chip, command);
if (ret)
return ret;
ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &addrs);
if (ret)
return ret;
ret = cadence_nand_cmd_data(chip, 8, GCMD_DIR_READ);
if (ret)
return ret;
return 0;
}
static int cadence_nand_param(struct mtd_info *mtd, u8 offset_in_page, unsigned int command)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
ret = cadence_nand_cmd_opcode(chip, command);
if (ret)
return ret;
ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &offset_in_page);
if (ret)
return ret;
ret = cadence_nand_waitfunc(mtd, chip);
if (ret)
return ret;
ret = cadence_nand_cmd_data(chip, sizeof(struct nand_jedec_params), GCMD_DIR_READ);
if (ret)
return ret;
return 0;
}
static int cadence_nand_reset(struct mtd_info *mtd, unsigned int command)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
ret = cadence_nand_cmd_opcode(chip, command);
if (ret)
return ret;
ret = cadence_nand_waitfunc(mtd, chip);
if (ret)
return ret;
return 0;
}
static int cadence_nand_features(struct mtd_info *mtd, u8 offset_in_page, u32 command)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
ret = cadence_nand_cmd_opcode(chip, command);
if (ret)
return ret;
ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &offset_in_page);
if (ret)
return ret;
if (command == NAND_CMD_GET_FEATURES)
ret = cadence_nand_cmd_data(chip, ONFI_SUBFEATURE_PARAM_LEN,
GCMD_DIR_READ);
else
ret = cadence_nand_cmd_data(chip, ONFI_SUBFEATURE_PARAM_LEN,
GCMD_DIR_WRITE);
return ret;
}
static void cadence_nand_cmdfunc(struct mtd_info *mtd, unsigned int command,
int offset_in_page, int page)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
int ret = 0;
cadence->cmd = command;
switch (command) {
case NAND_CMD_STATUS:
ret = cadence_nand_status(mtd, command);
break;
case NAND_CMD_READID:
ret = cadence_nand_readid(mtd, offset_in_page, command);
break;
case NAND_CMD_PARAM:
ret = cadence_nand_param(mtd, offset_in_page, command);
break;
case NAND_CMD_RESET:
ret = cadence_nand_reset(mtd, command);
break;
case NAND_CMD_SET_FEATURES:
case NAND_CMD_GET_FEATURES:
ret = cadence_nand_features(mtd, offset_in_page, command);
break;
/*
* ecc will override other command for read, write and erase
*/
default:
break;
}
if (cadence->cmd == NAND_CMD_RESET) {
ret = cadence_nand_select_target(chip);
if (ret)
dev_err(cadence->dev, "Chip select failure after reset\n");
}
if (ret != 0)
printf("ERROR:%s:command:0x%x\n", __func__, cadence->cmd);
}
static int cadence_nand_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
TIMEOUT_US,
CTRL_STATUS_CTRL_BUSY, true))
return -ETIMEDOUT;
return 0;
}
static u8 cadence_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
u32 size = 1;
u8 val;
if (cadence->buf_index == 0) {
if (cadence->cmd == NAND_CMD_READID)
size = 8;
else if (cadence->cmd == NAND_CMD_PARAM)
size = sizeof(struct nand_jedec_params);
else if (cadence->cmd == NAND_CMD_GET_FEATURES)
size = ONFI_SUBFEATURE_PARAM_LEN;
cadence_nand_read_buf(mtd, &cadence->buf[0], size);
}
val = *(&cadence->buf[0] + cadence->buf_index);
cadence->buf_index++;
return val;
}
static void cadence_nand_write_byte(struct mtd_info *mtd, u8 byte)
{
cadence_nand_write_buf(mtd, &byte, 1);
}
static int cadence_nand_chip_init(struct cadence_nand_info *cadence, ofnode node)
{
struct cdns_nand_chip *cdns_chip;
struct nand_chip *chip;
struct mtd_info *mtd;
int ret, i;
int nsels;
u32 cs;
if (!ofnode_get_property(node, "reg", &nsels))
return -ENODEV;
nsels /= sizeof(u32);
if (nsels <= 0) {
dev_err(cadence->dev, "invalid reg property size %d\n", nsels);
return -EINVAL;
}
cdns_chip = devm_kzalloc(cadence->dev, sizeof(*cdns_chip) +
(nsels * sizeof(u8)), GFP_KERNEL);
if (!cdns_chip)
return -ENODEV;
cdns_chip->nsels = nsels;
for (i = 0; i < nsels; i++) {
/* Retrieve CS id. */
ret = ofnode_read_u32_index(node, "reg", i, &cs);
if (ret) {
dev_err(cadence->dev,
"could not retrieve reg property: %d\n",
ret);
goto free_buf;
}
if (cs >= cadence->caps2.max_banks) {
dev_err(cadence->dev,
"invalid reg value: %u (max CS = %d)\n",
cs, cadence->caps2.max_banks);
ret = -EINVAL;
goto free_buf;
}
if (test_and_set_bit(cs, &cadence->assigned_cs)) {
dev_err(cadence->dev,
"CS %d already assigned\n", cs);
ret = -EINVAL;
goto free_buf;
}
cdns_chip->cs[i] = cs;
}
chip = &cdns_chip->chip;
chip->controller = &cadence->controller;
nand_set_flash_node(chip, node);
mtd = nand_to_mtd(chip);
mtd->dev->parent = cadence->dev;
chip->options |= NAND_BUSWIDTH_AUTO;
chip->select_chip = cadence_nand_select_chip;
chip->cmdfunc = cadence_nand_cmdfunc;
chip->dev_ready = cadence_nand_dev_ready;
chip->read_byte = cadence_nand_read_byte;
chip->write_byte = cadence_nand_write_byte;
chip->waitfunc = cadence_nand_waitfunc;
chip->read_buf = cadence_nand_read_buf;
chip->write_buf = cadence_nand_write_buf;
chip->setup_data_interface = cadence_setup_data_interface;
ret = nand_scan_ident(mtd, 1, NULL);
if (ret) {
dev_err(cadence->dev, "Chip identification failure\n");
goto free_buf;
}
ret = cadence_nand_attach_chip(chip);
if (ret) {
dev_err(cadence->dev, "Chip not able to attached\n");
goto free_buf;
}
ret = nand_scan_tail(mtd);
if (ret) {
dev_err(cadence->dev, "could not scan the nand chip\n");
goto free_buf;
}
ret = nand_register(0, mtd);
if (ret) {
dev_err(cadence->dev, "Failed to register MTD: %d\n", ret);
goto free_buf;
}
return 0;
free_buf:
devm_kfree(cadence->dev, cdns_chip);
return ret;
}
static int cadence_nand_chips_init(struct cadence_nand_info *cadence)
{
struct udevice *dev = cadence->dev;
ofnode node = dev_ofnode(dev);
ofnode nand_node;
int max_cs = cadence->caps2.max_banks;
int nchips, ret;
nchips = of_get_child_count(node);
if (nchips > max_cs) {
dev_err(cadence->dev,
"too many NAND chips: %d (max = %d CS)\n",
nchips, max_cs);
return -EINVAL;
}
ofnode_for_each_subnode(nand_node, node) {
ret = cadence_nand_chip_init(cadence, nand_node);
if (ret)
return ret;
}
return 0;
}
static int cadence_nand_init(struct cadence_nand_info *cadence)
{
int ret;
cadence->cdma_desc = dma_alloc_coherent(sizeof(*cadence->cdma_desc),
(unsigned long *)&cadence->dma_cdma_desc);
if (!cadence->cdma_desc)
return -ENOMEM;
cadence->buf_size = SZ_16K;
cadence->buf = kmalloc(cadence->buf_size, GFP_KERNEL);
if (!cadence->buf) {
ret = -ENOMEM;
goto free_buf_desc;
}
//Hardware initialization
ret = cadence_nand_hw_init(cadence);
if (ret)
goto free_buf;
cadence->curr_corr_str_idx = 0xFF;
ret = cadence_nand_chips_init(cadence);
if (ret) {
dev_err(cadence->dev, "Failed to register MTD: %d\n",
ret);
goto free_buf;
}
kfree(cadence->buf);
cadence->buf = kzalloc(cadence->buf_size, GFP_KERNEL);
if (!cadence->buf) {
ret = -ENOMEM;
goto free_buf_desc;
}
return 0;
free_buf:
kfree(cadence->buf);
free_buf_desc:
dma_free_coherent(cadence->cdma_desc);
return ret;
}
static const struct cadence_nand_dt_devdata cadence_nand_default = {
.if_skew = 0,
.has_dma = 0,
};
static const struct udevice_id cadence_nand_dt_ids[] = {
{
.compatible = "cdns,nand",
.data = (unsigned long)&cadence_nand_default
}, {}
};
static int cadence_nand_dt_probe(struct udevice *dev)
{
struct cadence_nand_info *cadence = dev_get_priv(dev);
const struct udevice_id *of_id;
const struct cadence_nand_dt_devdata *devdata;
struct resource res;
int ret;
u32 val;
if (!dev) {
dev_warn(dev, "Device ptr null\n");
return -EINVAL;
}
of_id = &cadence_nand_dt_ids[0];
devdata = (struct cadence_nand_dt_devdata *)of_id->data;
cadence->caps1 = devdata;
cadence->dev = dev;
ret = clk_get_by_index(dev, 0, &cadence->clk);
if (ret)
return ret;
ret = clk_enable(&cadence->clk);
if (ret && ret != -ENOSYS && ret != -ENOMEM) {
dev_err(dev, "failed to enable clock\n");
return ret;
}
cadence->nf_clk_rate = clk_get_rate(&cadence->clk);
ret = reset_get_by_index(dev, 1, &cadence->softphy_reset);
if (ret) {
if (ret != -ENOMEM)
dev_warn(dev, "Can't get softphy_reset: %d\n", ret);
} else {
reset_deassert(&cadence->softphy_reset);
}
ret = reset_get_by_index(dev, 0, &cadence->nand_reset);
if (ret) {
if (ret != -ENOMEM)
dev_warn(dev, "Can't get nand_reset: %d\n", ret);
} else {
reset_deassert(&cadence->nand_reset);
}
ret = dev_read_resource_byname(dev, "reg", &res);
if (ret)
return ret;
cadence->reg = devm_ioremap(dev, res.start, resource_size(&res));
ret = dev_read_resource_byname(dev, "sdma", &res);
if (ret)
return ret;
cadence->io.dma = res.start;
cadence->io.virt = devm_ioremap(dev, res.start, resource_size(&res));
ret = ofnode_read_u32(dev_ofnode(dev->parent),
"cdns,board-delay-ps", &val);
if (ret) {
val = 4830;
dev_info(cadence->dev,
"missing cdns,board-delay-ps property, %d was set\n",
val);
}
cadence->board_delay = val;
ret = cadence_nand_init(cadence);
if (ret)
return ret;
return 0;
}
U_BOOT_DRIVER(cadence_nand_dt) = {
.name = "cadence-nand-dt",
.id = UCLASS_MTD,
.of_match = cadence_nand_dt_ids,
.probe = cadence_nand_dt_probe,
.priv_auto = sizeof(struct cadence_nand_info),
};
void board_nand_init(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
DM_DRIVER_GET(cadence_nand_dt),
&dev);
if (ret && ret != -ENODEV)
pr_err("Failed to initialize Cadence NAND controller. (error %d)\n",
ret);
}