u-boot/lib/lmb.c
Sughosh Ganu f8ffc6f3cc lmb: add logic to print lmb flag strings
Instead of printing the LMB flags as numerical values, print them as
strings. This makes it easier to understand what flags are associated
with the lmb region. Also make corresponding changes to the bdinfo
command's test code.

Signed-off-by: Sughosh Ganu <sughosh.ganu@linaro.org>
Reviewed-by: Simon Glass <sjg@chromium.org>
2024-09-03 14:08:51 -06:00

784 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Procedures for maintaining information about logical memory blocks.
*
* Peter Bergner, IBM Corp. June 2001.
* Copyright (C) 2001 Peter Bergner.
*/
#include <alist.h>
#include <efi_loader.h>
#include <image.h>
#include <mapmem.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <spl.h>
#include <asm/global_data.h>
#include <asm/sections.h>
#include <linux/kernel.h>
#include <linux/sizes.h>
DECLARE_GLOBAL_DATA_PTR;
#define LMB_ALLOC_ANYWHERE 0
#define LMB_ALIST_INITIAL_SIZE 4
static struct lmb lmb;
static void lmb_print_region_flags(enum lmb_flags flags)
{
u64 bitpos;
const char *flag_str[] = { "none", "no-map", "no-overwrite" };
do {
bitpos = flags ? fls(flags) - 1 : 0;
printf("%s", flag_str[bitpos]);
flags &= ~(1ull << bitpos);
puts(flags ? ", " : "\n");
} while (flags);
}
static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
unsigned long long base, size, end;
enum lmb_flags flags;
int i;
printf(" %s.count = 0x%x\n", name, lmb_rgn_lst->count);
for (i = 0; i < lmb_rgn_lst->count; i++) {
base = rgn[i].base;
size = rgn[i].size;
end = base + size - 1;
flags = rgn[i].flags;
printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: ",
name, i, base, end, size);
lmb_print_region_flags(flags);
}
}
void lmb_dump_all_force(void)
{
printf("lmb_dump_all:\n");
lmb_dump_region(&lmb.free_mem, "memory");
lmb_dump_region(&lmb.used_mem, "reserved");
}
void lmb_dump_all(void)
{
#ifdef DEBUG
lmb_dump_all_force();
#endif
}
static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2)
{
const phys_addr_t base1_end = base1 + size1 - 1;
const phys_addr_t base2_end = base2 + size2 - 1;
return ((base1 <= base2_end) && (base2 <= base1_end));
}
static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2)
{
if (base2 == base1 + size1)
return 1;
else if (base1 == base2 + size2)
return -1;
return 0;
}
static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1,
unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
phys_addr_t base1 = rgn[r1].base;
phys_size_t size1 = rgn[r1].size;
phys_addr_t base2 = rgn[r2].base;
phys_size_t size2 = rgn[r2].size;
return lmb_addrs_overlap(base1, size1, base2, size2);
}
static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1,
unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
phys_addr_t base1 = rgn[r1].base;
phys_size_t size1 = rgn[r1].size;
phys_addr_t base2 = rgn[r2].base;
phys_size_t size2 = rgn[r2].size;
return lmb_addrs_adjacent(base1, size1, base2, size2);
}
static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
{
unsigned long i;
struct lmb_region *rgn = lmb_rgn_lst->data;
for (i = r; i < lmb_rgn_lst->count - 1; i++) {
rgn[i].base = rgn[i + 1].base;
rgn[i].size = rgn[i + 1].size;
rgn[i].flags = rgn[i + 1].flags;
}
lmb_rgn_lst->count--;
}
/* Assumption: base addr of region 1 < base addr of region 2 */
static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
rgn[r1].size += rgn[r2].size;
lmb_remove_region(lmb_rgn_lst, r2);
}
/*Assumption : base addr of region 1 < base addr of region 2*/
static void lmb_fix_over_lap_regions(struct alist *lmb_rgn_lst,
unsigned long r1, unsigned long r2)
{
struct lmb_region *rgn = lmb_rgn_lst->data;
phys_addr_t base1 = rgn[r1].base;
phys_size_t size1 = rgn[r1].size;
phys_addr_t base2 = rgn[r2].base;
phys_size_t size2 = rgn[r2].size;
if (base1 + size1 > base2 + size2) {
printf("This will not be a case any time\n");
return;
}
rgn[r1].size = base2 + size2 - base1;
lmb_remove_region(lmb_rgn_lst, r2);
}
/**
* efi_lmb_reserve() - add reservations for EFI memory
*
* Add reservations for all EFI memory areas that are not
* EFI_CONVENTIONAL_MEMORY.
*
* Return: 0 on success, 1 on failure
*/
static __maybe_unused int efi_lmb_reserve(void)
{
struct efi_mem_desc *memmap = NULL, *map;
efi_uintn_t i, map_size = 0;
efi_status_t ret;
ret = efi_get_memory_map_alloc(&map_size, &memmap);
if (ret != EFI_SUCCESS)
return 1;
for (i = 0, map = memmap; i < map_size / sizeof(*map); ++map, ++i) {
if (map->type != EFI_CONVENTIONAL_MEMORY) {
lmb_reserve_flags(map_to_sysmem((void *)(uintptr_t)
map->physical_start),
map->num_pages * EFI_PAGE_SIZE,
map->type == EFI_RESERVED_MEMORY_TYPE
? LMB_NOMAP : LMB_NONE);
}
}
efi_free_pool(memmap);
return 0;
}
static void lmb_reserve_uboot_region(void)
{
int bank;
ulong end, bank_end;
phys_addr_t rsv_start;
rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE;
end = gd->ram_top;
/*
* Reserve memory from aligned address below the bottom of U-Boot stack
* until end of RAM area to prevent LMB from overwriting that memory.
*/
debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start);
/* adjust sp by 16K to be safe */
rsv_start -= SZ_16K;
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
if (!gd->bd->bi_dram[bank].size ||
rsv_start < gd->bd->bi_dram[bank].start)
continue;
/* Watch out for RAM at end of address space! */
bank_end = gd->bd->bi_dram[bank].start +
gd->bd->bi_dram[bank].size - 1;
if (rsv_start > bank_end)
continue;
if (bank_end > end)
bank_end = end - 1;
lmb_reserve_flags(rsv_start, bank_end - rsv_start + 1,
LMB_NOOVERWRITE);
if (gd->flags & GD_FLG_SKIP_RELOC)
lmb_reserve_flags((phys_addr_t)(uintptr_t)_start,
gd->mon_len, LMB_NOOVERWRITE);
break;
}
}
static void lmb_reserve_common(void *fdt_blob)
{
lmb_reserve_uboot_region();
if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
boot_fdt_add_mem_rsv_regions(fdt_blob);
if (CONFIG_IS_ENABLED(EFI_LOADER))
efi_lmb_reserve();
}
static __maybe_unused void lmb_reserve_common_spl(void)
{
phys_addr_t rsv_start;
phys_size_t rsv_size;
/*
* Assume a SPL stack of 16KB. This must be
* more than enough for the SPL stage.
*/
if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
rsv_start = gd->start_addr_sp - 16384;
rsv_size = 16384;
lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
}
if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
/* Reserve the bss region */
rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
(phys_addr_t)(uintptr_t)__bss_start;
lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE);
}
}
/**
* lmb_add_memory() - Add memory range for LMB allocations
*
* Add the entire available memory range to the pool of memory that
* can be used by the LMB module for allocations.
*
* Return: None
*/
void lmb_add_memory(void)
{
int i;
phys_size_t size;
phys_addr_t rgn_top;
u64 ram_top = gd->ram_top;
struct bd_info *bd = gd->bd;
/* Assume a 4GB ram_top if not defined */
if (!ram_top)
ram_top = 0x100000000ULL;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
size = bd->bi_dram[i].size;
if (size) {
if (bd->bi_dram[i].start > ram_top)
continue;
rgn_top = bd->bi_dram[i].start +
bd->bi_dram[i].size;
if (rgn_top > ram_top)
size -= rgn_top - ram_top;
lmb_add(bd->bi_dram[i].start, size);
}
}
}
static long lmb_resize_regions(struct alist *lmb_rgn_lst,
unsigned long idx_start,
phys_addr_t base, phys_size_t size)
{
phys_size_t rgnsize;
unsigned long rgn_cnt, idx, idx_end;
phys_addr_t rgnbase, rgnend;
phys_addr_t mergebase, mergeend;
struct lmb_region *rgn = lmb_rgn_lst->data;
rgn_cnt = 0;
idx = idx_start;
idx_end = idx_start;
/*
* First thing to do is to identify how many regions
* the requested region overlaps.
* If the flags match, combine all these overlapping
* regions into a single region, and remove the merged
* regions.
*/
while (idx <= lmb_rgn_lst->count - 1) {
rgnbase = rgn[idx].base;
rgnsize = rgn[idx].size;
if (lmb_addrs_overlap(base, size, rgnbase,
rgnsize)) {
if (rgn[idx].flags != LMB_NONE)
return -1;
rgn_cnt++;
idx_end = idx;
}
idx++;
}
/* The merged region's base and size */
rgnbase = rgn[idx_start].base;
mergebase = min(base, rgnbase);
rgnend = rgn[idx_end].base + rgn[idx_end].size;
mergeend = max(rgnend, (base + size));
rgn[idx_start].base = mergebase;
rgn[idx_start].size = mergeend - mergebase;
/* Now remove the merged regions */
while (--rgn_cnt)
lmb_remove_region(lmb_rgn_lst, idx_start + 1);
return 0;
}
/**
* lmb_add_region_flags() - Add an lmb region to the given list
* @lmb_rgn_lst: LMB list to which region is to be added(free/used)
* @base: Start address of the region
* @size: Size of the region to be added
* @flags: Attributes of the LMB region
*
* Add a region of memory to the list. If the region does not exist, add
* it to the list. Depending on the attributes of the region to be added,
* the function might resize an already existing region or coalesce two
* adjacent regions.
*
*
* Returns: 0 if the region addition successful, -1 on failure
*/
static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size, enum lmb_flags flags)
{
unsigned long coalesced = 0;
long ret, i;
struct lmb_region *rgn = lmb_rgn_lst->data;
if (alist_err(lmb_rgn_lst))
return -1;
/* First try and coalesce this LMB with another. */
for (i = 0; i < lmb_rgn_lst->count; i++) {
phys_addr_t rgnbase = rgn[i].base;
phys_size_t rgnsize = rgn[i].size;
phys_size_t rgnflags = rgn[i].flags;
phys_addr_t end = base + size - 1;
phys_addr_t rgnend = rgnbase + rgnsize - 1;
if (rgnbase <= base && end <= rgnend) {
if (flags == rgnflags)
/* Already have this region, so we're done */
return 0;
else
return -1; /* regions with new flags */
}
ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
if (ret > 0) {
if (flags != rgnflags)
break;
rgn[i].base -= size;
rgn[i].size += size;
coalesced++;
break;
} else if (ret < 0) {
if (flags != rgnflags)
break;
rgn[i].size += size;
coalesced++;
break;
} else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
if (flags == LMB_NONE) {
ret = lmb_resize_regions(lmb_rgn_lst, i, base,
size);
if (ret < 0)
return -1;
coalesced++;
break;
} else {
return -1;
}
}
}
if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
rgn = lmb_rgn_lst->data;
if (rgn[i].flags == rgn[i + 1].flags) {
if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) {
lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
coalesced++;
} else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) {
/* fix overlapping area */
lmb_fix_over_lap_regions(lmb_rgn_lst, i, i + 1);
coalesced++;
}
}
}
if (coalesced)
return coalesced;
if (alist_full(lmb_rgn_lst) &&
!alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
return -1;
rgn = lmb_rgn_lst->data;
/* Couldn't coalesce the LMB, so add it to the sorted table. */
for (i = lmb_rgn_lst->count; i >= 0; i--) {
if (i && base < rgn[i - 1].base) {
rgn[i] = rgn[i - 1];
} else {
rgn[i].base = base;
rgn[i].size = size;
rgn[i].flags = flags;
break;
}
}
lmb_rgn_lst->count++;
return 0;
}
static long lmb_add_region(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size)
{
return lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
}
/* This routine may be called with relocation disabled. */
long lmb_add(phys_addr_t base, phys_size_t size)
{
struct alist *lmb_rgn_lst = &lmb.free_mem;
return lmb_add_region(lmb_rgn_lst, base, size);
}
long lmb_free(phys_addr_t base, phys_size_t size)
{
struct lmb_region *rgn;
struct alist *lmb_rgn_lst = &lmb.used_mem;
phys_addr_t rgnbegin, rgnend;
phys_addr_t end = base + size - 1;
int i;
rgnbegin = rgnend = 0; /* supress gcc warnings */
rgn = lmb_rgn_lst->data;
/* Find the region where (base, size) belongs to */
for (i = 0; i < lmb_rgn_lst->count; i++) {
rgnbegin = rgn[i].base;
rgnend = rgnbegin + rgn[i].size - 1;
if ((rgnbegin <= base) && (end <= rgnend))
break;
}
/* Didn't find the region */
if (i == lmb_rgn_lst->count)
return -1;
/* Check to see if we are removing entire region */
if ((rgnbegin == base) && (rgnend == end)) {
lmb_remove_region(lmb_rgn_lst, i);
return 0;
}
/* Check to see if region is matching at the front */
if (rgnbegin == base) {
rgn[i].base = end + 1;
rgn[i].size -= size;
return 0;
}
/* Check to see if the region is matching at the end */
if (rgnend == end) {
rgn[i].size -= size;
return 0;
}
/*
* We need to split the entry - adjust the current one to the
* beginging of the hole and add the region after hole.
*/
rgn[i].size = base - rgn[i].base;
return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
rgn[i].flags);
}
long lmb_reserve_flags(phys_addr_t base, phys_size_t size, enum lmb_flags flags)
{
struct alist *lmb_rgn_lst = &lmb.used_mem;
return lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
}
long lmb_reserve(phys_addr_t base, phys_size_t size)
{
return lmb_reserve_flags(base, size, LMB_NONE);
}
static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
phys_size_t size)
{
unsigned long i;
struct lmb_region *rgn = lmb_rgn_lst->data;
for (i = 0; i < lmb_rgn_lst->count; i++) {
phys_addr_t rgnbase = rgn[i].base;
phys_size_t rgnsize = rgn[i].size;
if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
break;
}
return (i < lmb_rgn_lst->count) ? i : -1;
}
static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
{
return addr & ~(size - 1);
}
static phys_addr_t __lmb_alloc_base(phys_size_t size, ulong align,
phys_addr_t max_addr, enum lmb_flags flags)
{
long i, rgn;
phys_addr_t base = 0;
phys_addr_t res_base;
struct lmb_region *lmb_used = lmb.used_mem.data;
struct lmb_region *lmb_memory = lmb.free_mem.data;
for (i = lmb.free_mem.count - 1; i >= 0; i--) {
phys_addr_t lmbbase = lmb_memory[i].base;
phys_size_t lmbsize = lmb_memory[i].size;
if (lmbsize < size)
continue;
if (max_addr == LMB_ALLOC_ANYWHERE)
base = lmb_align_down(lmbbase + lmbsize - size, align);
else if (lmbbase < max_addr) {
base = lmbbase + lmbsize;
if (base < lmbbase)
base = -1;
base = min(base, max_addr);
base = lmb_align_down(base - size, align);
} else
continue;
while (base && lmbbase <= base) {
rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
if (rgn < 0) {
/* This area isn't reserved, take it */
if (lmb_add_region_flags(&lmb.used_mem, base,
size, flags) < 0)
return 0;
return base;
}
res_base = lmb_used[rgn].base;
if (res_base < size)
break;
base = lmb_align_down(res_base - size, align);
}
}
return 0;
}
phys_addr_t lmb_alloc(phys_size_t size, ulong align)
{
return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
}
phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr)
{
phys_addr_t alloc;
alloc = __lmb_alloc_base(size, align, max_addr, LMB_NONE);
if (alloc == 0)
printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
(ulong)size, (ulong)max_addr);
return alloc;
}
static phys_addr_t __lmb_alloc_addr(phys_addr_t base, phys_size_t size,
enum lmb_flags flags)
{
long rgn;
struct lmb_region *lmb_memory = lmb.free_mem.data;
/* Check if the requested address is in one of the memory regions */
rgn = lmb_overlaps_region(&lmb.free_mem, base, size);
if (rgn >= 0) {
/*
* Check if the requested end address is in the same memory
* region we found.
*/
if (lmb_addrs_overlap(lmb_memory[rgn].base,
lmb_memory[rgn].size,
base + size - 1, 1)) {
/* ok, reserve the memory */
if (lmb_reserve_flags(base, size, flags) >= 0)
return base;
}
}
return 0;
}
/*
* Try to allocate a specific address range: must be in defined memory but not
* reserved
*/
phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size)
{
return __lmb_alloc_addr(base, size, LMB_NONE);
}
/* Return number of bytes from a given address that are free */
phys_size_t lmb_get_free_size(phys_addr_t addr)
{
int i;
long rgn;
struct lmb_region *lmb_used = lmb.used_mem.data;
struct lmb_region *lmb_memory = lmb.free_mem.data;
/* check if the requested address is in the memory regions */
rgn = lmb_overlaps_region(&lmb.free_mem, addr, 1);
if (rgn >= 0) {
for (i = 0; i < lmb.used_mem.count; i++) {
if (addr < lmb_used[i].base) {
/* first reserved range > requested address */
return lmb_used[i].base - addr;
}
if (lmb_used[i].base +
lmb_used[i].size > addr) {
/* requested addr is in this reserved range */
return 0;
}
}
/* if we come here: no reserved ranges above requested addr */
return lmb_memory[lmb.free_mem.count - 1].base +
lmb_memory[lmb.free_mem.count - 1].size - addr;
}
return 0;
}
int lmb_is_reserved_flags(phys_addr_t addr, int flags)
{
int i;
struct lmb_region *lmb_used = lmb.used_mem.data;
for (i = 0; i < lmb.used_mem.count; i++) {
phys_addr_t upper = lmb_used[i].base +
lmb_used[i].size - 1;
if (addr >= lmb_used[i].base && addr <= upper)
return (lmb_used[i].flags & flags) == flags;
}
return 0;
}
static int lmb_setup(void)
{
bool ret;
ret = alist_init(&lmb.free_mem, sizeof(struct lmb_region),
(uint)LMB_ALIST_INITIAL_SIZE);
if (!ret) {
log_debug("Unable to initialise the list for LMB free memory\n");
return -ENOMEM;
}
ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
(uint)LMB_ALIST_INITIAL_SIZE);
if (!ret) {
log_debug("Unable to initialise the list for LMB used memory\n");
return -ENOMEM;
}
return 0;
}
/**
* lmb_init() - Initialise the LMB module
*
* Initialise the LMB lists needed for keeping the memory map. There
* are two lists, in form of alloced list data structure. One for the
* available memory, and one for the used memory. Initialise the two
* lists as part of board init. Add memory to the available memory
* list and reserve common areas by adding them to the used memory
* list.
*
* Return: 0 on success, -ve on error
*/
int lmb_init(void)
{
int ret;
ret = lmb_setup();
if (ret) {
log_info("Unable to init LMB\n");
return ret;
}
lmb_add_memory();
/* Reserve the U-Boot image region once U-Boot has relocated */
if (spl_phase() == PHASE_SPL)
lmb_reserve_common_spl();
else if (spl_phase() == PHASE_BOARD_R)
lmb_reserve_common((void *)gd->fdt_blob);
return 0;
}
#if CONFIG_IS_ENABLED(UNIT_TEST)
struct lmb *lmb_get(void)
{
return &lmb;
}
int lmb_push(struct lmb *store)
{
int ret;
*store = lmb;
ret = lmb_setup();
if (ret)
return ret;
return 0;
}
void lmb_pop(struct lmb *store)
{
alist_uninit(&lmb.free_mem);
alist_uninit(&lmb.used_mem);
lmb = *store;
}
#endif /* UNIT_TEST */