u-boot/drivers/net/fsl_enetc.c
Marek Vasut 219b048820 net: fsl_enetc: Enable optional ENETREF clock on i.MX95
The ENETCv4 port DT nodes on i.MX95 may contain optional clock phandle
to IMX95_CLK_ENETREF "ref" clock. These "ref" clock must be enabled for
the ethernet to work. These "ref" clock are enabled after cold boot, but
when the system booted Linux and rebooted, those "ref" clock might have
been disabled in the process, which would make ethernet inoperable after
reboot. Make sure those "ref" clock are always correctly enabled.

Signed-off-by: Marek Vasut <marex@denx.de>
2025-01-27 00:27:54 -03:00

1071 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* ENETC ethernet controller driver
* Copyright 2017-2021 NXP
* Copyright 2023-2025 NXP
*/
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <fdt_support.h>
#include <malloc.h>
#include <memalign.h>
#include <net.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <pci.h>
#include <miiphy.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/build_bug.h>
#ifdef CONFIG_ARCH_IMX9
#include <asm/mach-imx/sys_proto.h>
#include <cpu_func.h>
#endif
#include "fsl_enetc.h"
#define ENETC_DRIVER_NAME "enetc_eth"
/*
* Calculate number of buffer descriptors per cacheline, and compile-time
* validate that:
* - the RX and TX descriptors are the same size
* - the descriptors fit exactly into cachelines without overlap
* - all descriptors fit exactly into cachelines
*/
#define ENETC_NUM_BD_IN_CL \
((ARCH_DMA_MINALIGN / sizeof(struct enetc_tx_bd)) + \
BUILD_BUG_ON_ZERO(sizeof(struct enetc_tx_bd) != \
sizeof(union enetc_rx_bd)) + \
BUILD_BUG_ON_ZERO(ARCH_DMA_MINALIGN % sizeof(struct enetc_tx_bd)) + \
BUILD_BUG_ON_ZERO(ARCH_DMA_MINALIGN % sizeof(union enetc_rx_bd)) + \
BUILD_BUG_ON_ZERO(ENETC_BD_CNT % \
(ARCH_DMA_MINALIGN / sizeof(struct enetc_tx_bd))))
static int enetc_remove(struct udevice *dev);
static int enetc_is_imx95(struct udevice *dev)
{
struct pci_child_plat *pplat = dev_get_parent_plat(dev);
/* Test whether this is i.MX95 ENETCv4. This may be optimized out. */
return IS_ENABLED(CONFIG_ARCH_IMX9) &&
pplat->vendor == PCI_VENDOR_ID_PHILIPS;
}
static int enetc_is_ls1028a(struct udevice *dev)
{
struct pci_child_plat *pplat = dev_get_parent_plat(dev);
/* Test whether this is LS1028A ENETC. This may be optimized out. */
return IS_ENABLED(CONFIG_ARCH_LS1028A) &&
pplat->vendor == PCI_VENDOR_ID_FREESCALE;
}
static int enetc_dev_id(struct udevice *dev)
{
if (enetc_is_imx95(dev))
return PCI_DEV(pci_get_devfn(dev)) >> 3;
if (enetc_is_ls1028a(dev))
return PCI_FUNC(pci_get_devfn(dev));
return 0;
}
static void enetc_inval_rxbd(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
union enetc_rx_bd *desc = &priv->enetc_rxbd[priv->rx_bdr.next_prod_idx];
unsigned long start = rounddown((unsigned long)desc, ARCH_DMA_MINALIGN);
unsigned long end = roundup((unsigned long)desc + sizeof(*desc),
ARCH_DMA_MINALIGN);
if (enetc_is_imx95(dev))
invalidate_dcache_range(start, end);
}
static void enetc_flush_bd(struct udevice *dev, int pi, bool tx)
{
struct enetc_priv *priv = dev_get_priv(dev);
union enetc_rx_bd *rxdesc = &priv->enetc_rxbd[pi];
struct enetc_tx_bd *txdesc = &priv->enetc_txbd[pi];
unsigned long desc = tx ? (unsigned long)txdesc : (unsigned long)rxdesc;
unsigned long size = tx ? sizeof(*txdesc) : sizeof(*rxdesc);
unsigned long start = rounddown(desc, ARCH_DMA_MINALIGN);
unsigned long end = roundup(desc + size, ARCH_DMA_MINALIGN);
if (enetc_is_imx95(dev))
flush_dcache_range(start, end);
}
static void enetc_inval_buffer(struct udevice *dev, void *buf, size_t size)
{
unsigned long start = rounddown((unsigned long)buf, ARCH_DMA_MINALIGN);
unsigned long end = roundup((unsigned long)buf + size,
ARCH_DMA_MINALIGN);
if (enetc_is_imx95(dev))
invalidate_dcache_range(start, end);
}
static void enetc_flush_buffer(struct udevice *dev, void *buf, size_t size)
{
unsigned long start = rounddown((unsigned long)buf, ARCH_DMA_MINALIGN);
unsigned long end = roundup((unsigned long)buf + size,
ARCH_DMA_MINALIGN);
if (enetc_is_imx95(dev))
flush_dcache_range(start, end);
}
/* register accessors */
static u32 enetc_read_reg(void __iomem *addr)
{
return readl(addr);
}
static void enetc_write_reg(void __iomem *addr, u32 val)
{
writel(val, addr);
}
static void enetc_write(struct enetc_priv *priv, u32 off, u32 val)
{
enetc_write_reg(priv->regs_base + off, val);
}
/* base port register accessors */
static void enetc_write_pmr(struct udevice *dev, u32 val)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u32 off = ENETC_PMR + data->reg_offset_pmr;
enetc_write_reg(priv->port_regs + off, val);
}
static void enetc_write_psipmar(struct udevice *dev, int n, u32 val)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u32 off = (n ? ENETC_PSIPMAR1 : ENETC_PSIPMAR0) +
data->reg_offset_psipmar;
enetc_write_reg(priv->port_regs + off, val);
}
/* port station register accessors */
static void enetc_write_psicfgr(struct udevice *dev, int port, u32 val)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u32 off = ENETC_PSICFGR(port, ENETC_PSICFGR_SHIFT_LS) +
data->reg_offset_psicfgr;
enetc_write_reg(priv->port_regs + off, val);
}
/* port register accessors */
static u32 enetc_read_pcapr_mdio(struct udevice *dev)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u32 off = ENETC_PCAPR0 + data->reg_offset_pcapr;
const u32 reg = enetc_read_reg(priv->port_regs + off);
if (enetc_is_imx95(dev))
return reg & ENETC_PCS_PROT;
else if (enetc_is_ls1028a(dev))
return reg & ENETC_PCAPRO_MDIO;
return 0;
}
static void enetc_write_port(struct enetc_priv *priv, u32 off, u32 val)
{
enetc_write_reg(priv->port_regs + off, val);
}
/* MAC port register accessors */
static u32 enetc_read_mac_port(struct udevice *dev, u32 off)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
return enetc_read_reg(priv->port_regs + data->reg_offset_mac + off);
}
static void enetc_write_mac_port(struct udevice *dev, u32 off, u32 val)
{
struct enetc_data *data = (struct enetc_data *)dev_get_driver_data(dev);
struct enetc_priv *priv = dev_get_priv(dev);
enetc_write_reg(priv->port_regs + data->reg_offset_mac + off, val);
}
/* BDR register accessor, see also ENETC_BDR() */
static void enetc_bdr_write(struct enetc_priv *priv, int type, int n,
u32 off, u32 val)
{
enetc_write(priv, ENETC_BDR(type, n, off), val);
}
/*
* sets the MAC address in IERB registers, this setting is persistent and
* carried over to Linux.
*/
#define IERB_BASE 0x1f0800000ULL
#define IERB_PFMAC(pf, vf, n) (IERB_BASE + 0x8000 + (pf) * 0x100 + (vf) * 8 \
+ (n) * 4)
static void enetc_set_ierb_primary_mac(struct udevice *dev, void *blob)
{
static int ierb_fn_to_pf[] = { 0, 1, 2, -1, -1, -1, 3 };
struct pci_child_plat *ppdata = dev_get_parent_plat(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
struct enetc_priv *priv = dev_get_priv(dev);
const u8 *enetaddr = pdata->enetaddr;
u16 lower = *(const u16 *)(enetaddr + 4);
u32 upper = *(const u32 *)enetaddr;
int devfn, offset;
char path[256];
if (enetc_is_imx95(dev)) {
/*
* Configure the ENETC primary MAC addresses - Set register
* PMAR0/1 for SI 0 and PSIaPMAR0/1 for SI 1, 2 .. a
* (optionally pre-configured in IERB).
*/
devfn = enetc_dev_id(dev);
if (devfn > 2)
return;
enetc_write(priv, IMX95_ENETC_SIPMAR0, upper);
enetc_write(priv, IMX95_ENETC_SIPMAR1, lower);
snprintf(path, 256, "/soc/pcie@%x/ethernet@%x,%x",
PCI_BUS(dm_pci_get_bdf(dev)), PCI_DEV(ppdata->devfn),
PCI_FUNC(ppdata->devfn));
} else if (enetc_is_ls1028a(dev)) {
/*
* LS1028A is the only part with IERB at this time and
* there are plans to change its structure, keep this
* LS1028A specific for now.
*/
devfn = PCI_FUNC(ppdata->devfn);
if (ierb_fn_to_pf[devfn] < 0)
return;
out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 0), upper);
out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 1), (u32)lower);
snprintf(path, 256, "/soc/pcie@1f0000000/ethernet@%x,%x",
PCI_DEV(ppdata->devfn), PCI_FUNC(ppdata->devfn));
} else {
return;
}
offset = fdt_path_offset(blob, path);
if (offset >= 0)
fdt_setprop(blob, offset, "mac-address", pdata->enetaddr, 6);
}
/* sets up primary MAC addresses in DT/IERB */
void fdt_fixup_enetc_mac(void *blob)
{
struct udevice *dev;
struct uclass *uc;
uclass_get(UCLASS_ETH, &uc);
uclass_foreach_dev(dev, uc) {
if (!dev->driver || !dev->driver->name ||
strcmp(dev->driver->name, ENETC_DRIVER_NAME))
continue;
enetc_set_ierb_primary_mac(dev, blob);
}
}
/*
* Bind the device:
* - set a more explicit name on the interface
*/
static int enetc_bind(struct udevice *dev)
{
char name[16];
static int eth_num_devices;
/*
* prefer using PCI function numbers to number interfaces, but these
* are only available if dts nodes are present. For PCI they are
* optional, handle that case too. Just in case some nodes are present
* and some are not, use different naming scheme - enetc-N based on
* PCI function # and enetc#N based on interface count
*/
if (ofnode_valid(dev_ofnode(dev)))
sprintf(name, "enetc-%u", enetc_dev_id(dev));
else
sprintf(name, "enetc#%u", eth_num_devices++);
device_set_name(dev, name);
return 0;
}
/* MDIO wrappers, we're using these to drive internal MDIO to get to serdes */
static int enetc_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct enetc_mdio_priv priv;
priv.regs_base = bus->priv;
return enetc_mdio_read_priv(&priv, addr, devad, reg);
}
static int enetc_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct enetc_mdio_priv priv;
priv.regs_base = bus->priv;
return enetc_mdio_write_priv(&priv, addr, devad, reg, val);
}
/* only interfaces that can pin out through serdes have internal MDIO */
static bool enetc_has_imdio(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
return !!(priv->imdio.priv);
}
/* set up serdes for SGMII */
static int enetc_init_sgmii(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
bool is2500 = false;
u16 reg;
if (!enetc_has_imdio(dev))
return 0;
if (priv->uclass_id == PHY_INTERFACE_MODE_2500BASEX)
is2500 = true;
/*
* Set to SGMII mode, for 1Gbps enable AN, for 2.5Gbps set fixed speed.
* Although fixed speed is 1Gbps, we could be running at 2.5Gbps based
* on PLL configuration. Setting 1G for 2.5G here is counter intuitive
* but intentional.
*/
reg = ENETC_PCS_IF_MODE_SGMII;
reg |= is2500 ? ENETC_PCS_IF_MODE_SPEED_1G : ENETC_PCS_IF_MODE_SGMII_AN;
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_IF_MODE, reg);
/* Dev ability - SGMII */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SGMII);
/* Adjust link timer for SGMII */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_LINK_TIMER1, ENETC_PCS_LINK_TIMER1_VAL);
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_LINK_TIMER2, ENETC_PCS_LINK_TIMER2_VAL);
reg = ENETC_PCS_CR_DEF_VAL;
reg |= is2500 ? ENETC_PCS_CR_RST : ENETC_PCS_CR_RESET_AN;
/* restart PCS AN */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
ENETC_PCS_CR, reg);
return 0;
}
/* set up MAC for RGMII */
static void enetc_init_rgmii(struct udevice *dev, struct phy_device *phydev)
{
u32 old_val, val, dpx = 0;
old_val = val = enetc_read_mac_port(dev, ENETC_PM_IF_MODE);
/* disable unreliable RGMII in-band signaling and force the MAC into
* the speed negotiated by the PHY.
*/
val &= ~ENETC_PM_IF_MODE_AN_ENA;
if (phydev->speed == SPEED_1000) {
val &= ~ENETC_PM_IFM_SSP_MASK;
val |= ENETC_PM_IFM_SSP_1000;
} else if (phydev->speed == SPEED_100) {
val &= ~ENETC_PM_IFM_SSP_MASK;
val |= ENETC_PM_IFM_SSP_100;
} else if (phydev->speed == SPEED_10) {
val &= ~ENETC_PM_IFM_SSP_MASK;
val |= ENETC_PM_IFM_SSP_10;
}
if (enetc_is_imx95(dev))
dpx = ENETC_PM_IFM_FULL_DPX_IMX;
else if (enetc_is_ls1028a(dev))
dpx = ENETC_PM_IFM_FULL_DPX_LS;
if (phydev->duplex == DUPLEX_FULL)
val |= dpx;
else
val &= ~dpx;
if (val == old_val)
return;
enetc_write_mac_port(dev, ENETC_PM_IF_MODE, val);
}
/* set up MAC configuration for the given interface type */
static void enetc_setup_mac_iface(struct udevice *dev,
struct phy_device *phydev)
{
struct enetc_priv *priv = dev_get_priv(dev);
u32 if_mode;
switch (priv->uclass_id) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
enetc_init_rgmii(dev, phydev);
break;
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GBASER:
/* set ifmode to (US)XGMII */
if_mode = enetc_read_mac_port(dev, ENETC_PM_IF_MODE);
if (enetc_is_imx95(dev))
if_mode &= ~ENETC_PM_IF_IFMODE_MASK_IMX;
else if (enetc_is_ls1028a(dev))
if_mode &= ~ENETC_PM_IF_IFMODE_MASK_LS;
enetc_write_mac_port(dev, ENETC_PM_IF_MODE, if_mode);
break;
};
}
/* set up serdes for SXGMII */
static int enetc_init_sxgmii(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
if (!enetc_has_imdio(dev))
return 0;
/* Dev ability - SXGMII */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SXGMII);
/* Restart PCS AN */
enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
ENETC_PCS_CR,
ENETC_PCS_CR_RST | ENETC_PCS_CR_RESET_AN);
return 0;
}
/* Apply protocol specific configuration to MAC, serdes as needed */
static void enetc_start_pcs(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
/* register internal MDIO for debug purposes */
if (enetc_read_pcapr_mdio(dev)) {
priv->imdio.read = enetc_mdio_read;
priv->imdio.write = enetc_mdio_write;
priv->imdio.priv = priv->port_regs + ENETC_PM_IMDIO_BASE;
strlcpy(priv->imdio.name, dev->name, MDIO_NAME_LEN);
if (!miiphy_get_dev_by_name(priv->imdio.name))
mdio_register(&priv->imdio);
}
if (!ofnode_valid(dev_ofnode(dev))) {
enetc_dbg(dev, "no enetc ofnode found, skipping PCS set-up\n");
return;
}
priv->uclass_id = dev_read_phy_mode(dev);
if (priv->uclass_id == PHY_INTERFACE_MODE_NA) {
enetc_dbg(dev,
"phy-mode property not found, defaulting to SGMII\n");
priv->uclass_id = PHY_INTERFACE_MODE_SGMII;
}
switch (priv->uclass_id) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_2500BASEX:
enetc_init_sgmii(dev);
break;
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GBASER:
enetc_init_sxgmii(dev);
break;
};
}
/* Configure the actual/external ethernet PHY, if one is found */
static int enetc_config_phy(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
int supported;
priv->phy = dm_eth_phy_connect(dev);
if (!priv->phy)
return -ENODEV;
supported = PHY_GBIT_FEATURES | SUPPORTED_2500baseX_Full;
priv->phy->supported &= supported;
priv->phy->advertising &= supported;
return phy_config(priv->phy);
}
/*
* Probe ENETC driver:
* - initialize port and station interface BARs
*/
static int enetc_probe(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
int res;
if (ofnode_valid(dev_ofnode(dev)) && !ofnode_is_enabled(dev_ofnode(dev))) {
enetc_dbg(dev, "interface disabled\n");
return -ENODEV;
}
priv->enetc_txbd = memalign(ENETC_BD_ALIGN,
sizeof(struct enetc_tx_bd) * ENETC_BD_CNT);
priv->enetc_rxbd = memalign(ENETC_BD_ALIGN,
sizeof(union enetc_rx_bd) * ENETC_BD_CNT);
if (!priv->enetc_txbd || !priv->enetc_rxbd) {
/* free should be able to handle NULL, just free all pointers */
free(priv->enetc_txbd);
free(priv->enetc_rxbd);
return -ENOMEM;
}
/* initialize register */
priv->regs_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE, 0);
if (!priv->regs_base) {
enetc_dbg(dev, "failed to map BAR0\n");
return -EINVAL;
}
priv->port_regs = priv->regs_base + ENETC_PORT_REGS_OFF;
dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
enetc_start_pcs(dev);
res = enetc_config_phy(dev);
if(res)
enetc_remove(dev);
return res;
}
/*
* Remove the driver from an interface:
* - free up allocated memory
*/
static int enetc_remove(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
if (miiphy_get_dev_by_name(priv->imdio.name))
mdio_unregister(&priv->imdio);
free(priv->enetc_txbd);
free(priv->enetc_rxbd);
return 0;
}
static int enetc_imx95_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_plat(dev);
struct enetc_priv *priv = dev_get_priv(dev);
u8 *addr = plat->enetaddr;
u16 lower = *(const u16 *)(addr + 4);
u32 upper = *(const u32 *)addr;
enetc_write_port(priv, IMX95_ENETC_PMAR0, upper);
enetc_write_port(priv, IMX95_ENETC_PMAR1, lower);
return 0;
}
/*
* LS1028A is the only part with IERB at this time and there are plans to
* change its structure, keep this LS1028A specific for now.
*/
#define LS1028A_IERB_BASE 0x1f0800000ULL
#define LS1028A_IERB_PSIPMAR0(pf, vf) (LS1028A_IERB_BASE + 0x8000 \
+ (pf) * 0x100 + (vf) * 8)
#define LS1028A_IERB_PSIPMAR1(pf, vf) (LS1028A_IERB_PSIPMAR0(pf, vf) + 4)
static int enetc_ls1028a_write_hwaddr(struct udevice *dev)
{
struct pci_child_plat *ppdata = dev_get_parent_plat(dev);
const int devfn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
struct eth_pdata *plat = dev_get_plat(dev);
int devfn = PCI_FUNC(ppdata->devfn);
u8 *addr = plat->enetaddr;
u32 lower, upper;
int pf;
if (devfn >= ARRAY_SIZE(devfn_to_pf))
return 0;
pf = devfn_to_pf[devfn];
if (pf < 0)
return 0;
lower = *(const u16 *)(addr + 4);
upper = *(const u32 *)addr;
out_le32(LS1028A_IERB_PSIPMAR0(pf, 0), upper);
out_le32(LS1028A_IERB_PSIPMAR1(pf, 0), lower);
return 0;
}
static int enetc_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_plat(dev);
u8 *addr = plat->enetaddr;
if (enetc_is_imx95(dev))
return enetc_imx95_write_hwaddr(dev);
if (enetc_is_ls1028a(dev))
return enetc_ls1028a_write_hwaddr(dev);
u16 lower = *(const u16 *)(addr + 4);
u32 upper = *(const u32 *)addr;
enetc_write_psipmar(dev, 0, upper);
enetc_write_psipmar(dev, 1, lower);
return 0;
}
/* Configure port parameters (# of rings, frame size, enable port) */
static void enetc_enable_si_port(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
u32 val = ENETC_PM_CC_TXP_IMX | ENETC_PM_CC_TX | ENETC_PM_CC_RX;
/* set Rx/Tx BDR count */
enetc_write_psicfgr(dev, 0, ENETC_PSICFGR_SET_BDR(ENETC_RX_BDR_CNT,
ENETC_TX_BDR_CNT));
/* set Rx max frame size */
enetc_write_mac_port(dev, ENETC_PM_MAXFRM, ENETC_RX_MAXFRM_SIZE);
/* enable MAC port */
if (enetc_is_ls1028a(dev))
val |= ENETC_PM_CC_TXP_LS | ENETC_PM_CC_PROMIS;
enetc_write_mac_port(dev, ENETC_PM_CC, val);
/* enable port */
if (enetc_is_imx95(dev))
enetc_write_port(priv, ENETC_POR, 0x0);
enetc_write_pmr(dev, ENETC_PMR_SI0_EN);
/* set SI cache policy */
enetc_write(priv, ENETC_SICAR0, ENETC_SICAR_WR_CFG |
(enetc_is_imx95(dev) ?
ENETC_SICAR_RD_CFG_IMX :
ENETC_SICAR_RD_CFG_LS));
/* enable SI */
enetc_write(priv, ENETC_SIMR, ENETC_SIMR_EN);
}
/* returns DMA address for a given buffer index */
static inline u64 enetc_rxb_address(struct udevice *dev, int i)
{
return cpu_to_le64(dm_pci_virt_to_mem(dev, net_rx_packets[i]));
}
/*
* Setup a single Tx BD Ring (ID = 0):
* - set Tx buffer descriptor address
* - set the BD count
* - initialize the producer and consumer index
*/
static void enetc_setup_tx_bdr(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *tx_bdr = &priv->tx_bdr;
u64 tx_bd_add = (u64)priv->enetc_txbd;
/* used later to advance to the next Tx BD */
tx_bdr->bd_count = ENETC_BD_CNT;
tx_bdr->next_prod_idx = 0;
tx_bdr->next_cons_idx = 0;
tx_bdr->cons_idx = priv->regs_base +
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBCIR);
tx_bdr->prod_idx = priv->regs_base +
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBPIR);
/* set Tx BD address */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR0,
lower_32_bits(tx_bd_add));
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR1,
upper_32_bits(tx_bd_add));
/* set Tx 8 BD count */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBLENR,
tx_bdr->bd_count);
/* reset both producer/consumer indexes */
enetc_write_reg(tx_bdr->cons_idx, tx_bdr->next_cons_idx);
enetc_write_reg(tx_bdr->prod_idx, tx_bdr->next_prod_idx);
/* enable TX ring */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBMR, ENETC_TBMR_EN);
}
/*
* Setup a single Rx BD Ring (ID = 0):
* - set Rx buffer descriptors address (one descriptor per buffer)
* - set buffer size as max frame size
* - enable Rx ring
* - reset consumer and producer indexes
* - set buffer for each descriptor
*/
static void enetc_setup_rx_bdr(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rx_bdr = &priv->rx_bdr;
u64 rx_bd_add = (u64)priv->enetc_rxbd;
int i;
/* used later to advance to the next BD produced by ENETC HW */
rx_bdr->bd_count = ENETC_BD_CNT;
rx_bdr->next_prod_idx = 0;
rx_bdr->next_cons_idx = 0;
rx_bdr->cons_idx = priv->regs_base +
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBCIR);
rx_bdr->prod_idx = priv->regs_base +
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBPIR);
/* set Rx BD address */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR0,
lower_32_bits(rx_bd_add));
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR1,
upper_32_bits(rx_bd_add));
/* set Rx BD count (multiple of 8) */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBLENR,
rx_bdr->bd_count);
/* set Rx buffer size */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBSR, PKTSIZE_ALIGN);
/* fill Rx BD */
memset(priv->enetc_rxbd, 0,
rx_bdr->bd_count * sizeof(union enetc_rx_bd));
for (i = 0; i < rx_bdr->bd_count; i++) {
priv->enetc_rxbd[i].w.addr = enetc_rxb_address(dev, i);
/* each RX buffer must be aligned to 64B */
WARN_ON(priv->enetc_rxbd[i].w.addr & (ARCH_DMA_MINALIGN - 1));
enetc_flush_bd(dev, i, false);
}
/* reset producer (ENETC owned) and consumer (SW owned) index */
enetc_write_reg(rx_bdr->cons_idx, rx_bdr->next_cons_idx);
enetc_write_reg(rx_bdr->prod_idx, rx_bdr->next_prod_idx);
/* enable Rx ring */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBMR, ENETC_RBMR_EN);
}
/*
* Start ENETC interface:
* - perform FLR
* - enable access to port and SI registers
* - set mac address
* - setup TX/RX buffer descriptors
* - enable Tx/Rx rings
*/
static int enetc_start(struct udevice *dev)
{
int ret;
struct enetc_priv *priv = dev_get_priv(dev);
/* reset and enable the PCI device */
dm_pci_flr(dev);
dm_pci_clrset_config16(dev, PCI_COMMAND, 0,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
enetc_enable_si_port(dev);
/* setup Tx/Rx buffer descriptors */
enetc_setup_tx_bdr(dev);
enetc_setup_rx_bdr(dev);
ret = phy_startup(priv->phy);
if (ret)
return ret;
enetc_setup_mac_iface(dev, priv->phy);
return 0;
}
/*
* Stop the network interface:
* - just quiesce it, we can wipe all configuration as _start starts from
* scratch each time
*/
static void enetc_stop(struct udevice *dev)
{
/* FLR is sufficient to quiesce the device */
dm_pci_flr(dev);
/* leave the BARs accessible after we stop, this is needed to use
* internal MDIO in command line.
*/
dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
}
/*
* ENETC transmit packet:
* - check if Tx BD ring is full
* - set buffer/packet address (dma address)
* - set final fragment flag
* - try while producer index equals consumer index or timeout
*/
static int enetc_send(struct udevice *dev, void *packet, int length)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *txr = &priv->tx_bdr;
void *nv_packet = (void *)packet;
int tries = ENETC_POLL_TRIES;
u32 pi, ci;
pi = txr->next_prod_idx;
ci = enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK;
/* Tx ring is full when */
if (((pi + 1) % txr->bd_count) == ci) {
enetc_dbg(dev, "Tx BDR full\n");
return -ETIMEDOUT;
}
enetc_dbg(dev, "TxBD[%d]send: pkt_len=%d, buff @0x%x%08x\n", pi, length,
upper_32_bits((u64)nv_packet), lower_32_bits((u64)nv_packet));
enetc_flush_buffer(dev, packet, length);
/* prepare Tx BD */
memset(&priv->enetc_txbd[pi], 0x0, sizeof(struct enetc_tx_bd));
priv->enetc_txbd[pi].addr =
cpu_to_le64(dm_pci_virt_to_mem(dev, nv_packet));
priv->enetc_txbd[pi].buf_len = cpu_to_le16(length);
priv->enetc_txbd[pi].frm_len = cpu_to_le16(length);
priv->enetc_txbd[pi].flags = cpu_to_le16(ENETC_TXBD_FLAGS_F);
dmb();
enetc_flush_bd(dev, pi, true);
/* send frame: increment producer index */
pi = (pi + 1) % txr->bd_count;
txr->next_prod_idx = pi;
enetc_write_reg(txr->prod_idx, pi);
while ((--tries >= 0) &&
(pi != (enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK)))
udelay(10);
return tries > 0 ? 0 : -ETIMEDOUT;
}
/*
* Receive frame:
* - wait for the next BD to get ready bit set
* - clean up the descriptor
* - move on and indicate to HW that the cleaned BD is available for Rx
*/
static int enetc_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rxr = &priv->rx_bdr;
int pi = rxr->next_prod_idx;
int tries = ENETC_POLL_TRIES;
u32 status;
int len;
u8 rdy;
do {
dmb();
enetc_inval_rxbd(dev);
status = le32_to_cpu(priv->enetc_rxbd[pi].r.lstatus);
/* check if current BD is ready to be consumed */
rdy = ENETC_RXBD_STATUS_R(status);
} while (--tries >= 0 && !rdy);
if (!rdy)
return -EAGAIN;
dmb();
len = le16_to_cpu(priv->enetc_rxbd[pi].r.buf_len);
*packetp = (uchar *)enetc_rxb_address(dev, pi);
enetc_inval_buffer(dev, *packetp, len);
enetc_dbg(dev, "RxBD[%d]: len=%d err=%d pkt=0x%x%08x\n", pi, len,
ENETC_RXBD_STATUS_ERRORS(status),
upper_32_bits((u64)*packetp), lower_32_bits((u64)*packetp));
return len;
}
static int enetc_free_pkt(struct udevice *dev, uchar *packet, int length)
{
const int bd_num_in_cl = enetc_is_imx95(dev) ? ENETC_NUM_BD_IN_CL : 1;
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rxr = &priv->rx_bdr;
int pi = rxr->next_prod_idx;
int ci = rxr->next_cons_idx;
uchar *packet_expected;
int i;
packet_expected = (uchar *)enetc_rxb_address(dev, pi);
if (packet != packet_expected) {
printf("%s: Unexpected packet (expected %p)\n", __func__,
packet_expected);
return -EINVAL;
}
rxr->next_prod_idx = (pi + 1) % rxr->bd_count;
ci = (ci + 1) % rxr->bd_count;
rxr->next_cons_idx = ci;
dmb();
if ((pi + 1) % bd_num_in_cl == 0) {
/* BD clean up and advance to next in ring */
for (i = 0; i < bd_num_in_cl; i++) {
memset(&priv->enetc_rxbd[pi - i], 0, sizeof(union enetc_rx_bd));
priv->enetc_rxbd[pi - i].w.addr = enetc_rxb_address(dev, pi - i);
}
/* Will flush all bds in one cacheline */
enetc_flush_bd(dev, pi - bd_num_in_cl + 1, false);
/* free up the slot in the ring for HW */
enetc_write_reg(rxr->cons_idx, ci);
}
return 0;
}
#if IS_ENABLED(CONFIG_ARCH_IMX9)
static int enetc_read_rom_hwaddr(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
unsigned int dev_id = enetc_dev_id(dev);
unsigned char *mac = pdata->enetaddr;
if (dev_id > 2)
return -EINVAL;
imx_get_mac_from_fuse(dev_id, mac);
return !is_valid_ethaddr(mac);
}
static const struct eth_ops enetc_ops_imx = {
.start = enetc_start,
.send = enetc_send,
.recv = enetc_recv,
.stop = enetc_stop,
.free_pkt = enetc_free_pkt,
.write_hwaddr = enetc_write_hwaddr,
.read_rom_hwaddr = enetc_read_rom_hwaddr,
};
static int enetc_probe_imx(struct udevice *dev)
{
struct clk *clk;
int ret;
clk = devm_clk_get_optional(dev, "ref");
if (IS_ERR(clk))
return PTR_ERR(clk);
ret = clk_enable(clk);
if (ret)
return ret;
ret = enetc_probe(dev);
if (ret)
clk_disable(clk);
return ret;
}
U_BOOT_DRIVER(eth_enetc_imx) = {
.name = ENETC_DRIVER_NAME,
.id = UCLASS_ETH,
.bind = enetc_bind,
.probe = enetc_probe_imx,
.remove = enetc_remove,
.ops = &enetc_ops_imx,
.priv_auto = sizeof(struct enetc_priv),
.plat_auto = sizeof(struct eth_pdata),
};
static const struct enetc_data enetc_data_imx = {
.reg_offset_pmr = ENETC_PMR_OFFSET_IMX,
.reg_offset_psipmar = ENETC_PSIPMARn_OFFSET_IMX,
.reg_offset_pcapr = ENETC_PCAPR_OFFSET_IMX,
.reg_offset_psicfgr = ENETC_PSICFGR_OFFSET_IMX,
.reg_offset_mac = ENETC_PM_OFFSET_IMX,
};
static struct pci_device_id enetc_ids_imx[] = {
{
PCI_DEVICE(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_ENETC4_ETH),
.driver_data = (ulong)&enetc_data_imx,
},
{}
};
U_BOOT_PCI_DEVICE(eth_enetc_imx, enetc_ids_imx);
#endif
static const struct eth_ops enetc_ops_ls = {
.start = enetc_start,
.send = enetc_send,
.recv = enetc_recv,
.stop = enetc_stop,
.free_pkt = enetc_free_pkt,
.write_hwaddr = enetc_write_hwaddr,
};
U_BOOT_DRIVER(eth_enetc_ls) = {
.name = ENETC_DRIVER_NAME,
.id = UCLASS_ETH,
.bind = enetc_bind,
.probe = enetc_probe,
.remove = enetc_remove,
.ops = &enetc_ops_ls,
.priv_auto = sizeof(struct enetc_priv),
.plat_auto = sizeof(struct eth_pdata),
};
static const struct enetc_data enetc_data_ls = {
.reg_offset_pmr = ENETC_PMR_OFFSET_LS,
.reg_offset_psipmar = ENETC_PSIPMARn_OFFSET_LS,
.reg_offset_pcapr = ENETC_PCAPR_OFFSET_LS,
.reg_offset_psicfgr = ENETC_PSICFGR_OFFSET_LS,
.reg_offset_mac = ENETC_PM_OFFSET_LS,
};
static struct pci_device_id enetc_ids_ls[] = {
{
PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_ENETC_ETH),
.driver_data = (ulong)&enetc_data_ls,
},
{}
};
U_BOOT_PCI_DEVICE(eth_enetc_ls, enetc_ids_ls);