// SPDX-License-Identifier: GPL-2.0-or-later /* * J784S4: SoC specific initialization * * Copyright (C) 2023-2024 Texas Instruments Incorporated - https://www.ti.com/ * Hari Nagalla */ #include #include #include #include #include #include "sysfw-loader.h" #include "common.h" #include #include #include #include #include #include #define J784S4_MAX_DDR_CONTROLLERS 4 struct fwl_data infra_cbass0_fwls[] = { { "PSC0", 5, 1 }, { "PLL_CTRL0", 6, 1 }, { "PLL_MMR0", 8, 26 }, { "CTRL_MMR0", 9, 16 }, { "GPIO0", 16, 1 }, }, wkup_cbass0_fwls[] = { { "WKUP_PSC0", 129, 1 }, { "WKUP_PLL_CTRL0", 130, 1 }, { "WKUP_CTRL_MMR0", 131, 16 }, { "WKUP_GPIO0", 132, 1 }, { "WKUP_I2C0", 144, 1 }, { "WKUP_USART0", 160, 1 }, }, mcu_cbass0_fwls[] = { { "MCU_R5FSS0_CORE0", 1024, 4 }, { "MCU_R5FSS0_CORE0_CFG", 1025, 3 }, { "MCU_R5FSS0_CORE1", 1028, 4 }, { "MCU_R5FSS0_CORE1_CFG", 1029, 1 }, { "MCU_FSS0_CFG", 1032, 12 }, { "MCU_FSS0_S1", 1033, 8 }, { "MCU_FSS0_S0", 1036, 8 }, { "MCU_PSROM49152X32", 1048, 1 }, { "MCU_MSRAM128KX64", 1050, 8 }, { "MCU_MSRAM128KX64_CFG", 1051, 1 }, { "MCU_TIMER0", 1056, 1 }, { "MCU_TIMER9", 1065, 1 }, { "MCU_USART0", 1120, 1 }, { "MCU_I2C0", 1152, 1 }, { "MCU_CTRL_MMR0", 1200, 8 }, { "MCU_PLL_MMR0", 1201, 3 }, { "MCU_CPSW0", 1220, 2 }, }, cbass_rc_cfg0_fwls[] = { { "EMMCSD4SS0_CFG", 2400, 4 }, }, cbass_hc2_fwls[] = { { "PCIE0", 2547, 24 }, }, cbass_hc_cfg0_fwls[] = { { "PCIE0_CFG", 2577, 7 }, { "EMMC8SS0_CFG", 2579, 4 }, { "USB3SS0_CORE", 2580, 4 }, { "USB3SS1_CORE", 2581, 1 }, }, navss_cbass0_fwls[] = { { "NACSS_VIRT0", 6253, 1 }, }; static void ctrl_mmr_unlock(void) { /* Unlock all WKUP_CTRL_MMR0 module registers */ mmr_unlock(WKUP_CTRL_MMR0_BASE, 0); mmr_unlock(WKUP_CTRL_MMR0_BASE, 1); mmr_unlock(WKUP_CTRL_MMR0_BASE, 2); mmr_unlock(WKUP_CTRL_MMR0_BASE, 3); mmr_unlock(WKUP_CTRL_MMR0_BASE, 4); mmr_unlock(WKUP_CTRL_MMR0_BASE, 6); mmr_unlock(WKUP_CTRL_MMR0_BASE, 7); /* Unlock all MCU_CTRL_MMR0 module registers */ mmr_unlock(MCU_CTRL_MMR0_BASE, 0); mmr_unlock(MCU_CTRL_MMR0_BASE, 1); mmr_unlock(MCU_CTRL_MMR0_BASE, 2); mmr_unlock(MCU_CTRL_MMR0_BASE, 3); mmr_unlock(MCU_CTRL_MMR0_BASE, 4); /* Unlock all CTRL_MMR0 module registers */ mmr_unlock(CTRL_MMR0_BASE, 0); mmr_unlock(CTRL_MMR0_BASE, 1); mmr_unlock(CTRL_MMR0_BASE, 2); mmr_unlock(CTRL_MMR0_BASE, 3); mmr_unlock(CTRL_MMR0_BASE, 5); mmr_unlock(CTRL_MMR0_BASE, 7); } /* * This uninitialized global variable would normal end up in the .bss section, * but the .bss is cleared between writing and reading this variable, so move * it to the .data section. */ u32 bootindex __section(".data"); static struct rom_extended_boot_data bootdata __section(".data"); static void store_boot_info_from_rom(void) { bootindex = *(u32 *)(CONFIG_SYS_K3_BOOT_PARAM_TABLE_INDEX); memcpy(&bootdata, (uintptr_t *)ROM_EXTENDED_BOOT_DATA_INFO, sizeof(struct rom_extended_boot_data)); } void k3_spl_init(void) { struct udevice *dev; int ret; /* * Cannot delay this further as there is a chance that * K3_BOOT_PARAM_TABLE_INDEX can be over written by SPL MALLOC section. */ store_boot_info_from_rom(); /* Make all control module registers accessible */ ctrl_mmr_unlock(); if (IS_ENABLED(CONFIG_CPU_V7R)) { disable_linefill_optimization(); setup_k3_mpu_regions(); } /* Init DM early */ ret = spl_early_init(); /* Prepare console output */ preloader_console_init(); if (IS_ENABLED(CONFIG_CPU_V7R)) { /* * Process pinctrl for the serial0 a.k.a. WKUP_UART0 module and continue * regardless of the result of pinctrl. Do this without probing the * device, but instead by searching the device that would request the * given sequence number if probed. The UART will be used by the system * firmware (TIFS) image for various purposes and TIFS depends on us * to initialize its pin settings. */ ret = uclass_find_device_by_seq(UCLASS_SERIAL, 0, &dev); if (!ret) pinctrl_select_state(dev, "default"); /* * Load, start up, and configure system controller firmware. Provide * the U-Boot console init function to the TIFS post-PM configuration * callback hook, effectively switching on (or over) the console * output. */ k3_sysfw_loader(is_rom_loaded_sysfw(&bootdata), NULL, NULL); if (IS_ENABLED(CONFIG_SPL_CLK_K3)) { /* * Force probe of clk_k3 driver here to ensure basic default clock * configuration is always done for enabling PM services. */ ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(ti_clk), &dev); if (ret) panic("Failed to initialize clk-k3!\n"); } remove_fwl_configs(cbass_hc_cfg0_fwls, ARRAY_SIZE(cbass_hc_cfg0_fwls)); remove_fwl_configs(cbass_hc2_fwls, ARRAY_SIZE(cbass_hc2_fwls)); remove_fwl_configs(cbass_rc_cfg0_fwls, ARRAY_SIZE(cbass_rc_cfg0_fwls)); remove_fwl_configs(infra_cbass0_fwls, ARRAY_SIZE(infra_cbass0_fwls)); remove_fwl_configs(mcu_cbass0_fwls, ARRAY_SIZE(mcu_cbass0_fwls)); remove_fwl_configs(wkup_cbass0_fwls, ARRAY_SIZE(wkup_cbass0_fwls)); remove_fwl_configs(navss_cbass0_fwls, ARRAY_SIZE(navss_cbass0_fwls)); } /* Output System Firmware version info */ k3_sysfw_print_ver(); } void k3_mem_init(void) { struct udevice *dev; int ret, ctrl = 0; if (IS_ENABLED(CONFIG_K3_J721E_DDRSS)) { ret = uclass_get_device(UCLASS_RAM, 0, &dev); if (ret) panic("DRAM 0 init failed: %d\n", ret); ctrl++; while (ctrl < J784S4_MAX_DDR_CONTROLLERS) { ret = uclass_next_device_err(&dev); if (ret == -ENODEV) break; if (ret) panic("DRAM %d init failed: %d\n", ctrl, ret); ctrl++; } printf("Initialized %d DRAM controllers\n", ctrl); } spl_enable_cache(); } void board_init_f(ulong dummy) { k3_spl_init(); k3_mem_init(); } u32 spl_mmc_boot_mode(struct mmc *mmc, const u32 boot_device) { switch (boot_device) { case BOOT_DEVICE_MMC1: if (IS_ENABLED(CONFIG_SUPPORT_EMMC_BOOT)) return MMCSD_MODE_EMMCBOOT; if (IS_ENABLED(CONFIG_SPL_FS_FAT) || IS_ENABLED(CONFIG_SPL_FS_EXT4)) return MMCSD_MODE_FS; return MMCSD_MODE_EMMCBOOT; case BOOT_DEVICE_MMC2: return MMCSD_MODE_FS; default: return MMCSD_MODE_RAW; } } static u32 __get_backup_bootmedia(u32 main_devstat) { u32 bkup_boot = (main_devstat & MAIN_DEVSTAT_BKUP_BOOTMODE_MASK) >> MAIN_DEVSTAT_BKUP_BOOTMODE_SHIFT; switch (bkup_boot) { case BACKUP_BOOT_DEVICE_USB: return BOOT_DEVICE_DFU; case BACKUP_BOOT_DEVICE_UART: return BOOT_DEVICE_UART; case BACKUP_BOOT_DEVICE_ETHERNET: return BOOT_DEVICE_ETHERNET; case BACKUP_BOOT_DEVICE_MMC2: { u32 port = (main_devstat & MAIN_DEVSTAT_BKUP_MMC_PORT_MASK) >> MAIN_DEVSTAT_BKUP_MMC_PORT_SHIFT; if (port == 0x0) return BOOT_DEVICE_MMC1; return BOOT_DEVICE_MMC2; } case BACKUP_BOOT_DEVICE_SPI: return BOOT_DEVICE_SPI; case BACKUP_BOOT_DEVICE_I2C: return BOOT_DEVICE_I2C; } return BOOT_DEVICE_RAM; } static u32 __get_primary_bootmedia(u32 main_devstat, u32 wkup_devstat) { u32 bootmode = (wkup_devstat & WKUP_DEVSTAT_PRIMARY_BOOTMODE_MASK) >> WKUP_DEVSTAT_PRIMARY_BOOTMODE_SHIFT; bootmode |= (main_devstat & MAIN_DEVSTAT_BOOT_MODE_B_MASK) << BOOT_MODE_B_SHIFT; if (bootmode == BOOT_DEVICE_OSPI || bootmode == BOOT_DEVICE_QSPI || bootmode == BOOT_DEVICE_XSPI) bootmode = BOOT_DEVICE_SPI; if (bootmode == BOOT_DEVICE_MMC2) { u32 port = (main_devstat & MAIN_DEVSTAT_PRIM_BOOTMODE_MMC_PORT_MASK) >> MAIN_DEVSTAT_PRIM_BOOTMODE_PORT_SHIFT; if (port == 0x0) bootmode = BOOT_DEVICE_MMC1; } return bootmode; } u32 spl_spi_boot_bus(void) { u32 wkup_devstat = readl(CTRLMMR_WKUP_DEVSTAT); u32 main_devstat = readl(CTRLMMR_MAIN_DEVSTAT); u32 bootmode = ((wkup_devstat & WKUP_DEVSTAT_PRIMARY_BOOTMODE_MASK) >> WKUP_DEVSTAT_PRIMARY_BOOTMODE_SHIFT) | ((main_devstat & MAIN_DEVSTAT_BOOT_MODE_B_MASK) << BOOT_MODE_B_SHIFT); return (bootmode == BOOT_DEVICE_QSPI) ? 1 : 0; } u32 spl_boot_device(void) { u32 wkup_devstat = readl(CTRLMMR_WKUP_DEVSTAT); u32 main_devstat; if (wkup_devstat & WKUP_DEVSTAT_MCU_ONLY_MASK) { printf("ERROR: MCU only boot is not yet supported\n"); return BOOT_DEVICE_RAM; } /* MAIN CTRL MMR can only be read if MCU ONLY is 0 */ main_devstat = readl(CTRLMMR_MAIN_DEVSTAT); if (bootindex == K3_PRIMARY_BOOTMODE) return __get_primary_bootmedia(main_devstat, wkup_devstat); else return __get_backup_bootmedia(main_devstat); }