// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2024 Maksim Kiselev */ #include #include #include #include /* DWCMSHC specific Mode Select value */ #define DWCMSHC_CTRL_HS400 0x7 /* 400KHz is max freq for card ID etc. Use that as min */ #define EMMC_MIN_FREQ 400000 #define SDHCI_TUNING_LOOP_COUNT 128 /* PHY register area pointer */ #define DWC_MSHC_PTR_PHY_R 0x300 /* PHY general configuration */ #define PHY_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x00) #define PHY_CNFG_RSTN_DEASSERT 0x1 /* Deassert PHY reset */ #define PHY_CNFG_PAD_SP_MASK GENMASK(19, 16) /* bits [19:16] */ #define PHY_CNFG_PAD_SP 0x0c /* PMOS TX drive strength */ #define PHY_CNFG_PAD_SN_MASK GENMASK(23, 20) /* bits [23:20] */ #define PHY_CNFG_PAD_SN 0x0c /* NMOS TX drive strength */ /* PHY command/response pad settings */ #define PHY_CMDPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x04) /* PHY data pad settings */ #define PHY_DATAPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x06) /* PHY clock pad settings */ #define PHY_CLKPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x08) /* PHY strobe pad settings */ #define PHY_STBPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x0a) /* PHY reset pad settings */ #define PHY_RSTNPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x0c) /* Bitfields are common for all pad settings */ #define PHY_PAD_RXSEL_1V8 0x1 /* Receiver type select for 1.8V */ #define PHY_PAD_RXSEL_3V3 0x2 /* Receiver type select for 3.3V */ #define PHY_PAD_WEAKPULL_MASK GENMASK(4, 3) /* bits [4:3] */ #define PHY_PAD_WEAKPULL_PULLUP 0x1 /* Weak pull up enabled */ #define PHY_PAD_WEAKPULL_PULLDOWN 0x2 /* Weak pull down enabled */ #define PHY_PAD_TXSLEW_CTRL_P_MASK GENMASK(8, 5) /* bits [8:5] */ #define PHY_PAD_TXSLEW_CTRL_P 0x3 /* Slew control for P-Type pad TX */ #define PHY_PAD_TXSLEW_CTRL_N_MASK GENMASK(12, 9) /* bits [12:9] */ #define PHY_PAD_TXSLEW_CTRL_N 0x3 /* Slew control for N-Type pad TX */ /* PHY CLK delay line settings */ #define PHY_SDCLKDL_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x1d) #define PHY_SDCLKDL_CNFG_UPDATE BIT(4) /* set before writing to SDCLKDL_DC */ /* PHY CLK delay line delay code */ #define PHY_SDCLKDL_DC_R (DWC_MSHC_PTR_PHY_R + 0x1e) #define PHY_SDCLKDL_DC_INITIAL 0x40 /* initial delay code */ #define PHY_SDCLKDL_DC_DEFAULT 0x32 /* default delay code */ #define PHY_SDCLKDL_DC_HS400 0x18 /* delay code for HS400 mode */ /* PHY drift_cclk_rx delay line configuration setting */ #define PHY_ATDL_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x21) #define PHY_ATDL_CNFG_INPSEL_MASK GENMASK(3, 2) /* bits [3:2] */ #define PHY_ATDL_CNFG_INPSEL 0x3 /* delay line input source */ /* PHY DLL control settings */ #define PHY_DLL_CTRL_R (DWC_MSHC_PTR_PHY_R + 0x24) #define PHY_DLL_CTRL_DISABLE 0x0 /* PHY DLL is enabled */ #define PHY_DLL_CTRL_ENABLE 0x1 /* PHY DLL is disabled */ /* PHY DLL configuration register 1 */ #define PHY_DLL_CNFG1_R (DWC_MSHC_PTR_PHY_R + 0x25) #define PHY_DLL_CNFG1_SLVDLY_MASK GENMASK(5, 4) /* bits [5:4] */ #define PHY_DLL_CNFG1_SLVDLY 0x2 /* DLL slave update delay input */ #define PHY_DLL_CNFG1_WAITCYCLE 0x5 /* DLL wait cycle input */ /* PHY DLL configuration register 2 */ #define PHY_DLL_CNFG2_R (DWC_MSHC_PTR_PHY_R + 0x26) #define PHY_DLL_CNFG2_JUMPSTEP 0xa /* DLL jump step input */ /* PHY DLL master and slave delay line configuration settings */ #define PHY_DLLDL_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x28) #define PHY_DLLDL_CNFG_SLV_INPSEL_MASK GENMASK(6, 5) /* bits [6:5] */ #define PHY_DLLDL_CNFG_SLV_INPSEL 0x3 /* clock source select for slave DL */ /* Vendor specific Registers */ #define P_VENDOR_SPECIFIC_AREA 0x500 #define DWCMSHC_EMMC_CONTROL 0x2c #define DWCMSHC_CARD_IS_EMMC BIT(0) #define DWCMSHC_ENHANCED_STROBE BIT(8) #define DWCMSHC_EMMC_ATCTRL 0x40 /* Tuning and auto-tuning fields in AT_CTRL_R control register */ #define AT_CTRL_AT_EN BIT(0) /* autotuning is enabled */ #define AT_CTRL_CI_SEL BIT(1) /* interval to drive center phase select */ #define AT_CTRL_SWIN_TH_EN BIT(2) /* sampling window threshold enable */ #define AT_CTRL_RPT_TUNE_ERR BIT(3) /* enable reporting framing errors */ #define AT_CTRL_SW_TUNE_EN BIT(4) /* enable software managed tuning */ #define AT_CTRL_WIN_EDGE_SEL_MASK GENMASK(11, 8) /* bits [11:8] */ #define AT_CTRL_WIN_EDGE_SEL 0xf /* sampling window edge select */ #define AT_CTRL_TUNE_CLK_STOP_EN BIT(16) /* clocks stopped during phase code change */ #define AT_CTRL_PRE_CHANGE_DLY_MASK GENMASK(18, 17) /* bits [18:17] */ #define AT_CTRL_PRE_CHANGE_DLY 0x1 /* 2-cycle latency */ #define AT_CTRL_POST_CHANGE_DLY_MASK GENMASK(20, 19) /* bits [20:19] */ #define AT_CTRL_POST_CHANGE_DLY 0x3 /* 4-cycle latency */ #define AT_CTRL_SWIN_TH_VAL_MASK GENMASK(31, 24) /* bits [31:24] */ #define AT_CTRL_SWIN_TH_VAL 0x9 /* sampling window threshold */ #define FLAG_IO_FIXED_1V8 BIT(0) #define BOUNDARY_OK(addr, len) \ (((addr) | (SZ_128M - 1)) == (((addr) + (len) - 1) | (SZ_128M - 1))) struct snps_sdhci_plat { struct mmc_config cfg; struct mmc mmc; u16 delay_line; u16 flags; }; /* * If DMA addr spans 128MB boundary, we split the DMA transfer into two * so that each DMA transfer doesn't exceed the boundary. */ void snps_sdhci_adma_write_desc(struct sdhci_host *host, void **desc, dma_addr_t addr, int len, bool end) { int tmplen, offset; if (likely(!len || BOUNDARY_OK(addr, len))) { sdhci_adma_write_desc(host, desc, addr, len, end); return; } offset = addr & (SZ_128M - 1); tmplen = SZ_128M - offset; sdhci_adma_write_desc(host, desc, addr, tmplen, false); addr += tmplen; len -= tmplen; sdhci_adma_write_desc(host, desc, addr, len, end); } static void snps_sdhci_set_phy(struct sdhci_host *host) { struct snps_sdhci_plat *plat = dev_get_plat(host->mmc->dev); u32 rxsel = PHY_PAD_RXSEL_3V3; u32 val; if (plat->flags & FLAG_IO_FIXED_1V8 || host->mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) rxsel = PHY_PAD_RXSEL_1V8; /* deassert phy reset & set tx drive strength */ val = PHY_CNFG_RSTN_DEASSERT; val |= FIELD_PREP(PHY_CNFG_PAD_SP_MASK, PHY_CNFG_PAD_SP); val |= FIELD_PREP(PHY_CNFG_PAD_SN_MASK, PHY_CNFG_PAD_SN); sdhci_writel(host, val, PHY_CNFG_R); /* disable delay line */ sdhci_writeb(host, PHY_SDCLKDL_CNFG_UPDATE, PHY_SDCLKDL_CNFG_R); /* set delay line */ sdhci_writeb(host, plat->delay_line, PHY_SDCLKDL_DC_R); sdhci_writeb(host, PHY_DLL_CNFG2_JUMPSTEP, PHY_DLL_CNFG2_R); /* enable delay lane */ val = sdhci_readb(host, PHY_SDCLKDL_CNFG_R); val &= ~(PHY_SDCLKDL_CNFG_UPDATE); sdhci_writeb(host, val, PHY_SDCLKDL_CNFG_R); /* configure phy pads */ val = rxsel; val |= FIELD_PREP(PHY_PAD_WEAKPULL_MASK, PHY_PAD_WEAKPULL_PULLUP); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N); sdhci_writew(host, val, PHY_CMDPAD_CNFG_R); sdhci_writew(host, val, PHY_DATAPAD_CNFG_R); sdhci_writew(host, val, PHY_RSTNPAD_CNFG_R); val = FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N); sdhci_writew(host, val, PHY_CLKPAD_CNFG_R); val = rxsel; val |= FIELD_PREP(PHY_PAD_WEAKPULL_MASK, PHY_PAD_WEAKPULL_PULLDOWN); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N); sdhci_writew(host, val, PHY_STBPAD_CNFG_R); /* enable data strobe mode */ if (plat->flags & FLAG_IO_FIXED_1V8 || host->mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) { u8 sel = FIELD_PREP(PHY_DLLDL_CNFG_SLV_INPSEL_MASK, PHY_DLLDL_CNFG_SLV_INPSEL); sdhci_writeb(host, sel, PHY_DLLDL_CNFG_R); } /* enable phy dll */ sdhci_writeb(host, PHY_DLL_CTRL_ENABLE, PHY_DLL_CTRL_R); sdhci_writeb(host, FIELD_PREP(PHY_DLL_CNFG1_SLVDLY_MASK, PHY_DLL_CNFG1_SLVDLY) | PHY_DLL_CNFG1_WAITCYCLE, PHY_DLL_CNFG1_R); } static int snps_sdhci_set_ios_post(struct sdhci_host *host) { struct snps_sdhci_plat *plat = dev_get_plat(host->mmc->dev); struct mmc *mmc = host->mmc; u32 reg; reg = sdhci_readw(host, SDHCI_HOST_CONTROL2); reg &= ~SDHCI_CTRL_UHS_MASK; switch (mmc->selected_mode) { case UHS_SDR50: case MMC_HS_52: reg |= SDHCI_CTRL_UHS_SDR50; break; case UHS_DDR50: case MMC_DDR_52: reg |= SDHCI_CTRL_UHS_DDR50; break; case UHS_SDR104: case MMC_HS_200: reg |= SDHCI_CTRL_UHS_SDR104; break; case MMC_HS_400: case MMC_HS_400_ES: reg |= DWCMSHC_CTRL_HS400; break; default: reg |= SDHCI_CTRL_UHS_SDR12; } if ((plat->flags & FLAG_IO_FIXED_1V8) || mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) reg |= SDHCI_CTRL_VDD_180; else reg &= ~SDHCI_CTRL_VDD_180; sdhci_writew(host, reg, SDHCI_HOST_CONTROL2); reg = sdhci_readw(host, P_VENDOR_SPECIFIC_AREA + DWCMSHC_EMMC_CONTROL); if (IS_MMC(mmc)) reg |= DWCMSHC_CARD_IS_EMMC; else reg &= ~DWCMSHC_CARD_IS_EMMC; if (mmc->selected_mode == MMC_HS_400_ES) reg |= DWCMSHC_ENHANCED_STROBE; else reg &= ~DWCMSHC_ENHANCED_STROBE; sdhci_writeb(host, reg, P_VENDOR_SPECIFIC_AREA + DWCMSHC_EMMC_CONTROL); if (mmc->selected_mode == MMC_HS_400 || mmc->selected_mode == MMC_HS_400_ES) plat->delay_line = PHY_SDCLKDL_DC_HS400; else sdhci_writeb(host, 0, PHY_DLLDL_CNFG_R); snps_sdhci_set_phy(host); return 0; } static int snps_sdhci_execute_tuning(struct mmc *mmc, u8 opcode) { struct sdhci_host *host = dev_get_priv(mmc->dev); char tuning_loop_counter = SDHCI_TUNING_LOOP_COUNT; struct mmc_cmd cmd; u32 ctrl, blk_size, val; int ret; sdhci_writeb(host, FIELD_PREP(PHY_ATDL_CNFG_INPSEL_MASK, PHY_ATDL_CNFG_INPSEL), PHY_ATDL_CNFG_R); val = sdhci_readl(host, P_VENDOR_SPECIFIC_AREA + DWCMSHC_EMMC_ATCTRL); /* * configure tuning settings: * - center phase select code driven in block gap interval * - disable reporting of framing errors * - disable software managed tuning * - disable user selection of sampling window edges, * instead tuning calculated edges are used */ val &= ~(AT_CTRL_CI_SEL | AT_CTRL_RPT_TUNE_ERR | AT_CTRL_SW_TUNE_EN | FIELD_PREP(AT_CTRL_WIN_EDGE_SEL_MASK, AT_CTRL_WIN_EDGE_SEL)); /* * configure tuning settings: * - enable auto-tuning * - enable sampling window threshold * - stop clocks during phase code change * - set max latency in cycles between tx and rx clocks * - set max latency in cycles to switch output phase * - set max sampling window threshold value */ val |= AT_CTRL_AT_EN | AT_CTRL_SWIN_TH_EN | AT_CTRL_TUNE_CLK_STOP_EN; val |= FIELD_PREP(AT_CTRL_PRE_CHANGE_DLY_MASK, AT_CTRL_PRE_CHANGE_DLY); val |= FIELD_PREP(AT_CTRL_POST_CHANGE_DLY_MASK, AT_CTRL_POST_CHANGE_DLY); val |= FIELD_PREP(AT_CTRL_SWIN_TH_VAL_MASK, AT_CTRL_SWIN_TH_VAL); sdhci_writel(host, val, P_VENDOR_SPECIFIC_AREA + DWCMSHC_EMMC_ATCTRL); val = sdhci_readl(host, P_VENDOR_SPECIFIC_AREA + DWCMSHC_EMMC_ATCTRL); /* perform tuning */ ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); ctrl |= SDHCI_CTRL_EXEC_TUNING; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); blk_size = SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG, 64); if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200 && mmc->bus_width == 8) blk_size = SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG, 128); sdhci_writew(host, blk_size, SDHCI_BLOCK_SIZE); sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE); cmd.cmdidx = opcode; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; do { ret = mmc_send_cmd(mmc, &cmd, NULL); ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (ret || tuning_loop_counter-- == 0) break; } while (ctrl & SDHCI_CTRL_EXEC_TUNING); if (ret || tuning_loop_counter < 0 || !(ctrl & SDHCI_CTRL_TUNED_CLK)) { if (!ret) ret = -EIO; printf("%s: Tuning failed: %d\n", __func__, ret); ctrl &= ~SDHCI_CTRL_TUNED_CLK; ctrl &= ~SDHCI_CTRL_EXEC_TUNING; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); } return ret; } static int snps_sdhci_set_enhanced_strobe(struct sdhci_host *host) { return 0; } static const struct sdhci_ops snps_sdhci_ops = { .set_ios_post = snps_sdhci_set_ios_post, .platform_execute_tuning = snps_sdhci_execute_tuning, .set_enhanced_strobe = snps_sdhci_set_enhanced_strobe, #if CONFIG_IS_ENABLED(MMC_SDHCI_ADMA_HELPERS) .adma_write_desc = snps_sdhci_adma_write_desc, #endif }; static int snps_sdhci_probe(struct udevice *dev) { struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct snps_sdhci_plat *plat = dev_get_plat(dev); struct mmc_config *cfg = &plat->cfg; struct sdhci_host *host = dev_get_priv(dev); struct clk clk; int ret; plat->delay_line = PHY_SDCLKDL_DC_DEFAULT; ret = clk_get_by_name(dev, "core", &clk); if (ret) return ret; ret = clk_prepare_enable(&clk); if (ret) return ret; host->max_clk = clk_get_rate(&clk); host->ops = &snps_sdhci_ops; host->mmc = &plat->mmc; host->mmc->priv = host; host->mmc->dev = dev; upriv->mmc = host->mmc; ret = sdhci_setup_cfg(cfg, host, cfg->f_max, EMMC_MIN_FREQ); if (ret) return ret; if ((dev_read_bool(dev, "mmc-ddr-1_8v")) || (dev_read_bool(dev, "mmc-hs200-1_8v")) || (dev_read_bool(dev, "mmc-hs400-1_8v"))) plat->flags |= FLAG_IO_FIXED_1V8; else plat->flags &= ~FLAG_IO_FIXED_1V8; return sdhci_probe(dev); } static int snps_sdhci_of_to_plat(struct udevice *dev) { struct snps_sdhci_plat *plat = dev_get_plat(dev); struct mmc_config *cfg = &plat->cfg; struct sdhci_host *host = dev_get_priv(dev); int ret; host->name = dev->name; host->ioaddr = dev_read_addr_ptr(dev); ret = mmc_of_parse(dev, cfg); if (ret) return ret; return 0; } static int snps_sdhci_bind(struct udevice *dev) { struct snps_sdhci_plat *plat = dev_get_plat(dev); return sdhci_bind(dev, &plat->mmc, &plat->cfg); } static const struct udevice_id snps_sdhci_ids[] = { { .compatible = "thead,th1520-dwcmshc" } }; U_BOOT_DRIVER(snps_sdhci_drv) = { .name = "snps_sdhci", .id = UCLASS_MMC, .of_match = snps_sdhci_ids, .of_to_plat = snps_sdhci_of_to_plat, .ops = &sdhci_ops, .bind = snps_sdhci_bind, .probe = snps_sdhci_probe, .priv_auto = sizeof(struct sdhci_host), .plat_auto = sizeof(struct snps_sdhci_plat), };