// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2012 SAMSUNG Electronics * Jaehoon Chung * Rajeshawari Shinde */ #include #include #include #include #include #include #include #include #include #include #include #include #define PAGE_SIZE 4096 /* Internal DMA Controller (IDMAC) descriptor for 32-bit addressing mode */ struct dwmci_idmac32 { u32 des0; /* Control descriptor */ u32 des1; /* Buffer size */ u32 des2; /* Buffer physical address */ u32 des3; /* Next descriptor physical address */ } __aligned(ARCH_DMA_MINALIGN); /* Internal DMA Controller (IDMAC) descriptor for 64-bit addressing mode */ struct dwmci_idmac64 { u32 des0; /* Control descriptor */ u32 des1; /* Reserved */ u32 des2; /* Buffer sizes */ u32 des3; /* Reserved */ u32 des4; /* Lower 32-bits of Buffer Address Pointer 1 */ u32 des5; /* Upper 32-bits of Buffer Address Pointer 1 */ u32 des6; /* Lower 32-bits of Next Descriptor Address */ u32 des7; /* Upper 32-bits of Next Descriptor Address */ } __aligned(ARCH_DMA_MINALIGN); /* Register offsets for DW MMC blocks with 32-bit IDMAC */ static const struct dwmci_idmac_regs dwmci_idmac_regs32 = { .dbaddrl = DWMCI_DBADDR, .idsts = DWMCI_IDSTS, .idinten = DWMCI_IDINTEN, .dscaddrl = DWMCI_DSCADDR, .bufaddrl = DWMCI_BUFADDR, }; /* Register offsets for DW MMC blocks with 64-bit IDMAC */ static const struct dwmci_idmac_regs dwmci_idmac_regs64 = { .dbaddrl = DWMCI_DBADDRL, .dbaddru = DWMCI_DBADDRU, .idsts = DWMCI_IDSTS64, .idinten = DWMCI_IDINTEN64, .dscaddrl = DWMCI_DSCADDRL, .dscaddru = DWMCI_DSCADDRU, .bufaddrl = DWMCI_BUFADDRL, .bufaddru = DWMCI_BUFADDRU, }; static int dwmci_wait_reset(struct dwmci_host *host, u32 value) { unsigned long timeout = 1000; u32 ctrl; dwmci_writel(host, DWMCI_CTRL, value); while (timeout--) { ctrl = dwmci_readl(host, DWMCI_CTRL); if (!(ctrl & DWMCI_RESET_ALL)) return 1; } return 0; } static void dwmci_set_idma_desc32(struct dwmci_idmac32 *desc, u32 control, u32 buf_size, u32 buf_addr) { phys_addr_t desc_phys = virt_to_phys(desc); u32 next_desc_phys = desc_phys + sizeof(struct dwmci_idmac32); desc->des0 = control; desc->des1 = buf_size; desc->des2 = buf_addr; desc->des3 = next_desc_phys; } static void dwmci_set_idma_desc64(struct dwmci_idmac64 *desc, u32 control, u32 buf_size, u64 buf_addr) { phys_addr_t desc_phys = virt_to_phys(desc); u64 next_desc_phys = desc_phys + sizeof(struct dwmci_idmac64); desc->des0 = control; desc->des1 = 0; desc->des2 = buf_size; desc->des3 = 0; desc->des4 = buf_addr & 0xffffffff; desc->des5 = buf_addr >> 32; desc->des6 = next_desc_phys & 0xffffffff; desc->des7 = next_desc_phys >> 32; } static void dwmci_prepare_desc(struct dwmci_host *host, struct mmc_data *data, void *cur_idmac, void *bounce_buffer) { struct dwmci_idmac32 *desc32 = cur_idmac; struct dwmci_idmac64 *desc64 = cur_idmac; ulong data_start, data_end; unsigned int blk_cnt, i; data_start = (ulong)cur_idmac; blk_cnt = data->blocks; for (i = 0;; i++) { phys_addr_t buf_phys = virt_to_phys(bounce_buffer); unsigned int flags, cnt; flags = DWMCI_IDMAC_OWN | DWMCI_IDMAC_CH; if (i == 0) flags |= DWMCI_IDMAC_FS; if (blk_cnt <= 8) { flags |= DWMCI_IDMAC_LD; cnt = data->blocksize * blk_cnt; } else { cnt = data->blocksize * 8; } if (host->dma_64bit_address) { dwmci_set_idma_desc64(desc64, flags, cnt, buf_phys + i * PAGE_SIZE); desc64++; } else { dwmci_set_idma_desc32(desc32, flags, cnt, buf_phys + i * PAGE_SIZE); desc32++; } if (blk_cnt <= 8) break; blk_cnt -= 8; } if (host->dma_64bit_address) data_end = (ulong)desc64; else data_end = (ulong)desc32; flush_dcache_range(data_start, roundup(data_end, ARCH_DMA_MINALIGN)); } static void dwmci_prepare_data(struct dwmci_host *host, struct mmc_data *data, void *cur_idmac, void *bounce_buffer) { const u32 idmacl = virt_to_phys(cur_idmac) & 0xffffffff; const u32 idmacu = (u64)virt_to_phys(cur_idmac) >> 32; unsigned long ctrl; dwmci_wait_reset(host, DWMCI_CTRL_FIFO_RESET); /* Clear IDMAC interrupt */ dwmci_writel(host, host->regs->idsts, 0xffffffff); dwmci_writel(host, host->regs->dbaddrl, idmacl); if (host->dma_64bit_address) dwmci_writel(host, host->regs->dbaddru, idmacu); dwmci_prepare_desc(host, data, cur_idmac, bounce_buffer); ctrl = dwmci_readl(host, DWMCI_CTRL); ctrl |= DWMCI_IDMAC_EN | DWMCI_DMA_EN; dwmci_writel(host, DWMCI_CTRL, ctrl); ctrl = dwmci_readl(host, DWMCI_BMOD); ctrl |= DWMCI_BMOD_IDMAC_FB | DWMCI_BMOD_IDMAC_EN; dwmci_writel(host, DWMCI_BMOD, ctrl); dwmci_writel(host, DWMCI_BLKSIZ, data->blocksize); dwmci_writel(host, DWMCI_BYTCNT, data->blocksize * data->blocks); } static int dwmci_fifo_ready(struct dwmci_host *host, u32 bit, u32 *len) { u32 timeout = 20000; *len = dwmci_readl(host, DWMCI_STATUS); while (--timeout && (*len & bit)) { udelay(200); *len = dwmci_readl(host, DWMCI_STATUS); } if (!timeout) { debug("%s: FIFO underflow timeout\n", __func__); return -ETIMEDOUT; } return 0; } static unsigned int dwmci_get_timeout(struct mmc *mmc, const unsigned int size) { unsigned int timeout; timeout = size * 8; /* counting in bits */ timeout *= 10; /* wait 10 times as long */ timeout /= mmc->clock; timeout /= mmc->bus_width; timeout /= mmc->ddr_mode ? 2 : 1; timeout *= 1000; /* counting in msec */ timeout = (timeout < 1000) ? 1000 : timeout; return timeout; } static int dwmci_data_transfer(struct dwmci_host *host, struct mmc_data *data) { struct mmc *mmc = host->mmc; int ret = 0; u32 timeout, mask, size, i, len = 0; u32 *buf = NULL; ulong start = get_timer(0); size = data->blocksize * data->blocks; if (data->flags == MMC_DATA_READ) buf = (unsigned int *)data->dest; else buf = (unsigned int *)data->src; timeout = dwmci_get_timeout(mmc, size); size /= 4; for (;;) { mask = dwmci_readl(host, DWMCI_RINTSTS); /* Error during data transfer */ if (mask & (DWMCI_DATA_ERR | DWMCI_DATA_TOUT)) { debug("%s: DATA ERROR!\n", __func__); ret = -EINVAL; break; } if (host->fifo_mode && size) { len = 0; if (data->flags == MMC_DATA_READ && (mask & (DWMCI_INTMSK_RXDR | DWMCI_INTMSK_DTO))) { dwmci_writel(host, DWMCI_RINTSTS, mask & (DWMCI_INTMSK_RXDR | DWMCI_INTMSK_DTO)); while (size) { ret = dwmci_fifo_ready(host, DWMCI_FIFO_EMPTY, &len); if (ret < 0) break; len = (len >> DWMCI_FIFO_SHIFT) & DWMCI_FIFO_MASK; len = min(size, len); for (i = 0; i < len; i++) *buf++ = dwmci_readl(host, DWMCI_DATA); size = size > len ? (size - len) : 0; } } else if (data->flags == MMC_DATA_WRITE && (mask & DWMCI_INTMSK_TXDR)) { while (size) { ret = dwmci_fifo_ready(host, DWMCI_FIFO_FULL, &len); if (ret < 0) break; len = host->fifo_depth - ((len >> DWMCI_FIFO_SHIFT) & DWMCI_FIFO_MASK); len = min(size, len); for (i = 0; i < len; i++) dwmci_writel(host, DWMCI_DATA, *buf++); size = size > len ? (size - len) : 0; } dwmci_writel(host, DWMCI_RINTSTS, DWMCI_INTMSK_TXDR); } } /* Data arrived correctly */ if (mask & DWMCI_INTMSK_DTO) { ret = 0; break; } /* Check for timeout */ if (get_timer(start) > timeout) { debug("%s: Timeout waiting for data!\n", __func__); ret = -ETIMEDOUT; break; } } dwmci_writel(host, DWMCI_RINTSTS, mask); return ret; } static int dwmci_dma_transfer(struct dwmci_host *host, uint flags, struct bounce_buffer *bbstate) { int ret; u32 mask, ctrl; if (flags == MMC_DATA_READ) mask = DWMCI_IDINTEN_RI; else mask = DWMCI_IDINTEN_TI; ret = wait_for_bit_le32(host->ioaddr + host->regs->idsts, mask, true, 1000, false); if (ret) debug("%s: DWMCI_IDINTEN mask 0x%x timeout\n", __func__, mask); /* Clear interrupts */ dwmci_writel(host, host->regs->idsts, DWMCI_IDINTEN_MASK); ctrl = dwmci_readl(host, DWMCI_CTRL); ctrl &= ~DWMCI_DMA_EN; dwmci_writel(host, DWMCI_CTRL, ctrl); bounce_buffer_stop(bbstate); return ret; } static int dwmci_set_transfer_mode(struct dwmci_host *host, struct mmc_data *data) { unsigned long mode; mode = DWMCI_CMD_DATA_EXP; if (data->flags & MMC_DATA_WRITE) mode |= DWMCI_CMD_RW; return mode; } static void dwmci_wait_while_busy(struct dwmci_host *host, struct mmc_cmd *cmd) { unsigned int timeout = 500; /* msec */ ulong start; start = get_timer(0); while (dwmci_readl(host, DWMCI_STATUS) & DWMCI_BUSY) { if (get_timer(start) > timeout) { debug("%s: Timeout on data busy, continue anyway\n", __func__); break; } } } static int dwmci_send_cmd_common(struct dwmci_host *host, struct mmc_cmd *cmd, struct mmc_data *data, void *cur_idmac) { int ret, flags = 0, i; u32 retry = 100000; u32 mask; struct bounce_buffer bbstate; dwmci_wait_while_busy(host, cmd); dwmci_writel(host, DWMCI_RINTSTS, DWMCI_INTMSK_ALL); if (data) { if (host->fifo_mode) { dwmci_writel(host, DWMCI_BLKSIZ, data->blocksize); dwmci_writel(host, DWMCI_BYTCNT, data->blocksize * data->blocks); dwmci_wait_reset(host, DWMCI_CTRL_FIFO_RESET); } else { if (data->flags == MMC_DATA_READ) { ret = bounce_buffer_start(&bbstate, (void *)data->dest, data->blocksize * data->blocks, GEN_BB_WRITE); } else { ret = bounce_buffer_start(&bbstate, (void *)data->src, data->blocksize * data->blocks, GEN_BB_READ); } if (ret) return ret; dwmci_prepare_data(host, data, cur_idmac, bbstate.bounce_buffer); } } dwmci_writel(host, DWMCI_CMDARG, cmd->cmdarg); if (data) flags = dwmci_set_transfer_mode(host, data); if ((cmd->resp_type & MMC_RSP_136) && (cmd->resp_type & MMC_RSP_BUSY)) return -EBUSY; if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) flags |= DWMCI_CMD_ABORT_STOP; else flags |= DWMCI_CMD_PRV_DAT_WAIT; if (cmd->resp_type & MMC_RSP_PRESENT) { flags |= DWMCI_CMD_RESP_EXP; if (cmd->resp_type & MMC_RSP_136) flags |= DWMCI_CMD_RESP_LENGTH; } if (cmd->resp_type & MMC_RSP_CRC) flags |= DWMCI_CMD_CHECK_CRC; flags |= cmd->cmdidx | DWMCI_CMD_START | DWMCI_CMD_USE_HOLD_REG; debug("Sending CMD%d\n", cmd->cmdidx); dwmci_writel(host, DWMCI_CMD, flags); for (i = 0; i < retry; i++) { mask = dwmci_readl(host, DWMCI_RINTSTS); if (mask & DWMCI_INTMSK_CDONE) { if (!data) dwmci_writel(host, DWMCI_RINTSTS, mask); break; } } if (i == retry) { debug("%s: Timeout\n", __func__); return -ETIMEDOUT; } if (mask & DWMCI_INTMSK_RTO) { /* * Timeout here is not necessarily fatal. (e)MMC cards * will splat here when they receive CMD55 as they do * not support this command and that is exactly the way * to tell them apart from SD cards. Thus, this output * below shall be debug(). eMMC cards also do not favor * CMD8, please keep that in mind. */ debug("%s: Response Timeout\n", __func__); return -ETIMEDOUT; } else if (mask & DWMCI_INTMSK_RE) { debug("%s: Response Error\n", __func__); return -EIO; } else if ((cmd->resp_type & MMC_RSP_CRC) && (mask & DWMCI_INTMSK_RCRC)) { debug("%s: Response CRC Error\n", __func__); return -EIO; } if (cmd->resp_type & MMC_RSP_PRESENT) { if (cmd->resp_type & MMC_RSP_136) { cmd->response[0] = dwmci_readl(host, DWMCI_RESP3); cmd->response[1] = dwmci_readl(host, DWMCI_RESP2); cmd->response[2] = dwmci_readl(host, DWMCI_RESP1); cmd->response[3] = dwmci_readl(host, DWMCI_RESP0); } else { cmd->response[0] = dwmci_readl(host, DWMCI_RESP0); } } if (data) { ret = dwmci_data_transfer(host, data); if (!host->fifo_mode) ret = dwmci_dma_transfer(host, data->flags, &bbstate); } udelay(100); return ret; } #ifdef CONFIG_DM_MMC static int dwmci_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data) { struct mmc *mmc = mmc_get_mmc_dev(dev); #else static int dwmci_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { #endif struct dwmci_host *host = mmc->priv; const size_t buf_size = data ? DIV_ROUND_UP(data->blocks, 8) : 0; if (host->dma_64bit_address) { ALLOC_CACHE_ALIGN_BUFFER(struct dwmci_idmac64, idmac, buf_size); return dwmci_send_cmd_common(host, cmd, data, idmac); } else { ALLOC_CACHE_ALIGN_BUFFER(struct dwmci_idmac32, idmac, buf_size); return dwmci_send_cmd_common(host, cmd, data, idmac); } } static int dwmci_control_clken(struct dwmci_host *host, bool on) { const u32 val = on ? DWMCI_CLKEN_ENABLE | DWMCI_CLKEN_LOW_PWR : 0; const u32 cmd_only_clk = DWMCI_CMD_PRV_DAT_WAIT | DWMCI_CMD_UPD_CLK; int timeout = 10000; u32 status; dwmci_writel(host, DWMCI_CLKENA, val); /* Inform CIU */ dwmci_writel(host, DWMCI_CMD, DWMCI_CMD_START | cmd_only_clk); do { status = dwmci_readl(host, DWMCI_CMD); if (timeout-- < 0) { debug("%s: Timeout!\n", __func__); return -ETIMEDOUT; } } while (status & DWMCI_CMD_START); return 0; } /* * Update the clock divider. * * To prevent a clock glitch keep the clock stopped during the update of * clock divider and clock source. */ static int dwmci_update_div(struct dwmci_host *host, u32 div) { int ret; /* Disable clock */ ret = dwmci_control_clken(host, false); if (ret) return ret; /* Set clock to desired speed */ dwmci_writel(host, DWMCI_CLKDIV, div); dwmci_writel(host, DWMCI_CLKSRC, 0); /* Enable clock */ return dwmci_control_clken(host, true); } static int dwmci_setup_bus(struct dwmci_host *host, u32 freq) { u32 div; unsigned long sclk; int ret; if (freq == host->clock || freq == 0) return 0; /* * If host->get_mmc_clk isn't defined, then assume that host->bus_hz is * source clock value. host->bus_hz should be set by user. */ if (host->get_mmc_clk) { sclk = host->get_mmc_clk(host, freq); } else if (host->bus_hz) { sclk = host->bus_hz; } else { debug("%s: Didn't get source clock value\n", __func__); return -EINVAL; } if (sclk == freq) div = 0; /* bypass mode */ else div = DIV_ROUND_UP(sclk, 2 * freq); ret = dwmci_update_div(host, div); if (ret) return ret; host->clock = freq; return 0; } #ifdef CONFIG_DM_MMC static int dwmci_set_ios(struct udevice *dev) { struct mmc *mmc = mmc_get_mmc_dev(dev); #else static int dwmci_set_ios(struct mmc *mmc) { #endif struct dwmci_host *host = (struct dwmci_host *)mmc->priv; u32 ctype, regs; debug("Bus width = %d, clock: %d\n", mmc->bus_width, mmc->clock); dwmci_setup_bus(host, mmc->clock); switch (mmc->bus_width) { case 8: ctype = DWMCI_CTYPE_8BIT; break; case 4: ctype = DWMCI_CTYPE_4BIT; break; default: ctype = DWMCI_CTYPE_1BIT; break; } dwmci_writel(host, DWMCI_CTYPE, ctype); regs = dwmci_readl(host, DWMCI_UHS_REG); if (mmc->ddr_mode) regs |= DWMCI_DDR_MODE; else regs &= ~DWMCI_DDR_MODE; dwmci_writel(host, DWMCI_UHS_REG, regs); if (host->clksel) { int ret; ret = host->clksel(host); if (ret) return ret; } #if CONFIG_IS_ENABLED(DM_REGULATOR) if (mmc->vqmmc_supply) { int ret; ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, false); if (ret) return ret; if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) regulator_set_value(mmc->vqmmc_supply, 1800000); else regulator_set_value(mmc->vqmmc_supply, 3300000); ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, true); if (ret) return ret; } #endif return 0; } static void dwmci_init_fifo(struct dwmci_host *host) { u32 fifo_thr, fifoth_val; if (!host->fifo_depth) { u32 fifo_size; /* * Automatically detect FIFO depth from FIFOTH register. * Power-on value of RX_WMark is FIFO_DEPTH-1. */ fifo_size = dwmci_readl(host, DWMCI_FIFOTH); fifo_size = ((fifo_size & RX_WMARK_MASK) >> RX_WMARK_SHIFT) + 1; host->fifo_depth = fifo_size; } fifo_thr = host->fifo_depth / 2; fifoth_val = MSIZE(0x2) | RX_WMARK(fifo_thr - 1) | TX_WMARK(fifo_thr); dwmci_writel(host, DWMCI_FIFOTH, fifoth_val); } static void dwmci_init_dma(struct dwmci_host *host) { int addr_config; if (host->fifo_mode) return; addr_config = (dwmci_readl(host, DWMCI_HCON) >> 27) & 0x1; if (addr_config == 1) { host->dma_64bit_address = true; host->regs = &dwmci_idmac_regs64; debug("%s: IDMAC supports 64-bit address mode\n", __func__); } else { host->dma_64bit_address = false; host->regs = &dwmci_idmac_regs32; debug("%s: IDMAC supports 32-bit address mode\n", __func__); } dwmci_writel(host, host->regs->idinten, DWMCI_IDINTEN_MASK); } static int dwmci_init(struct mmc *mmc) { struct dwmci_host *host = mmc->priv; if (host->board_init) host->board_init(host); dwmci_writel(host, DWMCI_PWREN, 1); if (!dwmci_wait_reset(host, DWMCI_RESET_ALL)) { debug("%s[%d] Fail-reset!!\n", __func__, __LINE__); return -EIO; } /* Enumerate at 400KHz */ dwmci_setup_bus(host, mmc->cfg->f_min); dwmci_writel(host, DWMCI_RINTSTS, 0xffffffff); dwmci_writel(host, DWMCI_INTMASK, 0); dwmci_writel(host, DWMCI_TMOUT, 0xffffffff); dwmci_writel(host, DWMCI_BMOD, 1); dwmci_init_fifo(host); dwmci_init_dma(host); dwmci_writel(host, DWMCI_CLKENA, 0); dwmci_writel(host, DWMCI_CLKSRC, 0); return 0; } #ifdef CONFIG_DM_MMC int dwmci_probe(struct udevice *dev) { struct mmc *mmc = mmc_get_mmc_dev(dev); return dwmci_init(mmc); } const struct dm_mmc_ops dm_dwmci_ops = { .send_cmd = dwmci_send_cmd, .set_ios = dwmci_set_ios, }; #else static const struct mmc_ops dwmci_ops = { .send_cmd = dwmci_send_cmd, .set_ios = dwmci_set_ios, .init = dwmci_init, }; #endif void dwmci_setup_cfg(struct mmc_config *cfg, struct dwmci_host *host, u32 max_clk, u32 min_clk) { cfg->name = host->name; #ifndef CONFIG_DM_MMC cfg->ops = &dwmci_ops; #endif cfg->f_min = min_clk; cfg->f_max = max_clk; cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195; cfg->host_caps = host->caps; if (host->buswidth == 8) { cfg->host_caps |= MMC_MODE_8BIT; cfg->host_caps &= ~MMC_MODE_4BIT; } else { cfg->host_caps |= MMC_MODE_4BIT; cfg->host_caps &= ~MMC_MODE_8BIT; } cfg->host_caps |= MMC_MODE_HS | MMC_MODE_HS_52MHz; cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; } #ifdef CONFIG_BLK int dwmci_bind(struct udevice *dev, struct mmc *mmc, struct mmc_config *cfg) { return mmc_bind(dev, mmc, cfg); } #else int add_dwmci(struct dwmci_host *host, u32 max_clk, u32 min_clk) { dwmci_setup_cfg(&host->cfg, host, max_clk, min_clk); host->mmc = mmc_create(&host->cfg, host); if (!host->mmc) return -1; return 0; } #endif